Molecular spectroscopy and quantum dynamics:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
St. Louis, Missouri
Elsevier
2021
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xvii, 355 Seiten) Illustrationen, Diagramme |
ISBN: | 9780128172353 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441995 | ||
003 | DE-604 | ||
005 | 20230908 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780128172353 |9 978-0-12-817235-3 | ||
035 | |a (ZDB-30-PQE)EBC6353381 | ||
035 | |a (ZDB-30-PAD)EBC6353381 | ||
035 | |a (ZDB-89-EBL)EBL6353381 | ||
035 | |a (OCoLC)1198236331 | ||
035 | |a (DE-599)BVBBV047441995 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 539.60287 | |
084 | |a UM 3100 |0 (DE-625)145866: |2 rvk | ||
084 | |a VE 5650 |0 (DE-625)147118:253 |2 rvk | ||
084 | |a CHE 160 |2 stub | ||
084 | |a PHY 510 |2 stub | ||
245 | 1 | 0 | |a Molecular spectroscopy and quantum dynamics |c edited by Roberto Marquardt, Martin Quack |
264 | 1 | |a St. Louis, Missouri |b Elsevier |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xvii, 355 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Front Cover -- Molecular Spectroscopy and Quantum Dynamics -- Copyright -- Contents -- List of Contributors -- Preface -- 1 Foundations of Time Dependent Quantum Dynamics of Molecules Under Isolation and in Coherent Electromagnetic Fields -- 1.1 Introduction -- 1.2 Foundations of Molecular Quantum Dynamics Between High Energy Physics, Chemistry and Molecular Biology -- 1.2.1 The Standard Model of Particle Physics (SMPP) as a Theory of Microscopic Matter Including the Low Energy Range of Atomic and Molecular Quantum Dynamics -- 1.2.2 Classical Mechanics and Quantum Mechanics -- 1.2.3 Time Evolution Operator Formulation of Quantum Dynamics -- 1.2.4 Further Approaches to Quantum Mechanics and Molecular Dynamics -- 1.2.5 Time-Dependent Quantum Statistical Dynamics -- 1.3 Methods for Solving the Time-Dependent Schrödinger Equation -- 1.3.1 Spectral Decomposition Method -- 1.3.2 Linearization -- 1.3.3 The "Chebychev" Method -- 1.3.4 "Short-Iterative" Lanczos Method -- 1.3.5 "Split-Operator" Technique -- 1.3.6 The "Multicon gurational Time-Dependent Hartree" Method -- 1.3.7 Speci c Methods for the Electronic Motion -- 1.4 Hamiltonians -- 1.5 Coordinates -- 1.6 Quantum Dynamics Under Excitation With Coherent Monochromatic Radiation -- 1.6.1 Introductory Remarks -- 1.6.2 General Aspects of Atomic and Molecular Systems in Electromagnetic Field -- 1.6.3 Time-Dependent Quantum Dynamics in an Oscillatory Electromagnetic Field -- 1.6.4 Floquet Solution for Hamiltonians With Strict Periodicity -- 1.6.5 Weak-Field Quasiresonant Approximation (WF-QRA) for Coherent Monochromatic Excitation -- 1.6.6 Coherent Monochromatic Excitation Between Two Quantum States -- 1.7 Concluding Remarks -- 1.7.1 Time-Dependent Quantum Motion, Spectroscopy and Atomic and Molecular Clocks | |
505 | 8 | |a 1.7.2 Hierarchy of Interactions and Hierarchy of Timescales for the Successive Breaking of Approximate Dynamical Symmetries in Intramolecular Primary Processes -- Acknowledgments -- References -- 2 Exact Numerical Methods for Stationary-State-Based Quantum Dynamics of Complex Polyatomic Molecules -- 2.1 Introduction -- 2.2 Molecular Hamiltonians -- 2.2.1 Coordinate Systems -- 2.2.2 Formulation of the Classical Hamiltonian in Generalized Internal Coordinates -- 2.2.3 Formulation of the Quantum-Mechanical Hamiltonian in Generalized Internal Coordinates -- 2.2.4 Body-Fixed Frame Embeddings -- 2.2.5 Potential Energy Hypersurfaces -- 2.2.6 Basis Sets and Representations -- 2.2.7 Determination of Eigenstates -- 2.3 Computation of Bound Rovibrational States -- 2.3.1 On the Variational Solution -- 2.3.2 Symmetry in Nuclear-Motion Computations -- 2.3.3 Nuclear Spin Statistics -- 2.3.4 Wavefunction Analysis Tools Via Projection Techniques -- 2.4 Computation of Rovibrational Resonances -- 2.4.1 The Stabilization Method -- 2.4.2 The Technique of Complex Coordinate Scaling (CCS) -- 2.4.3 Complex Absorbing Potentials (CAP) -- 2.4.4 Wavefunction Analysis Tools -- 2.5 Applications -- 2.5.1 Computation of All the Bound (Ro)Vibrational Eigenstates -- 2.5.1.1 H216O and Its Isotopologues -- 2.5.1.2 H3+ and Its Deuterated Isotopologues -- 2.5.2 Rovibrational Computations on Quasistructural Molecules -- 2.5.2.1 H5+ -- 2.5.2.2 CH5+ -- 2.5.3 Computation of Rovibrational Resonances -- 2.5.3.1 H2O -- 2.5.3.2 Ar·NO+ -- 2.5.3.3 H2He+ -- 2.5.3.4 H2·CO -- 2.5.4 Stationary-State Computations Serving Dynamical Studies -- 2.6 Summary and Outlook -- References -- 3 2D Strong-Field Spectroscopy to Elucidate Impulsive and Adiabatic Ultrafast Electronic Control Schemes in Molecules -- 3.1 Introduction -- 3.2 Control of Coupled Electron-Nuclear Dynamics in the Potassium Molecule | |
505 | 8 | |a 3.2.1 The Model System K2 -- 3.2.2 Experimental Two-Color Setup -- 3.2.3 Molecular Dynamics Simulations -- 3.2.3.1 Calculation of the Induced Dipole Moment -- 3.2.3.2 Intensity and Orientation Averaging -- 3.2.4 Coherent Control of Coupled Electron-Nuclear Dynamics -- 3.2.4.1 Experimental Results -- 3.2.4.1.1 Intensity Dependence. -- 3.2.4.1.2 Phase Control. -- 3.2.4.2 Physical Mechanism for Ultrafast Electronic Switching -- 3.2.4.3 Target State Wave Packet Dynamics -- 3.2.5 Summary and Conclusion -- 3.3 Adiabatic Control Scenarios in Molecules -- 3.3.1 Chirped Airy Pulses -- 3.3.2 Adiabatic Control Scenarios -- 3.3.3 Interaction of Chirped Airy Pulses With Porphyrazine Molecules -- 3.3.4 Interaction of Chirped Airy Pulses With Potassium Molecules -- 3.3.4.1 Evaluation of Spectra -- 3.3.4.2 Experimental Results -- 3.3.4.3 Wave Packet Dynamics Analysis -- 3.3.4.4 Discussion -- 3.3.5 Conclusion and Outlook -- 3.4 Summary -- References -- 4 Attosecond Molecular Dynamics and Spectroscopy -- 4.1 Introduction -- 4.2 Theoretical Description of Strong-Field Phenomena -- 4.2.1 Overview of the Basic Terminology -- 4.2.2 Electric-Dipole Approximation and Gauge Invariance -- 4.2.3 The Three-Step Model of High-Harmonic Generation -- 4.2.4 High-Harmonic Generation Within the Strong-Field Approximation -- 4.3 Attosecond Technology -- 4.3.1 Chirped-Pulse Ampli cation -- 4.3.2 Carrier-Envelope Phase Stabilization -- 4.3.3 Pulse Postcompression Techniques -- 4.3.4 Attosecond Sources in the Mid-Infrared -- 4.3.5 Generation of Isolated Attosecond Pulses -- 4.3.6 Attosecond Spectroscopic Techniques -- 4.3.6.1 Reconstruction of Attosecond Beating by Interference of Two-Photon Transitions -- 4.3.6.2 Attosecond Streaking -- 4.3.6.3 Photoelectron and Photoion Spectroscopy -- 4.4 Attosecond Electron/Ion Imaging Spectroscopy | |
505 | 8 | |a 4.5 Attosecond Electron Spectroscopy in Biorelevant Molecules -- 4.6 High-Harmonic Spectroscopy -- 4.6.1 Observation of Sub-Fs Nuclear Dynamics Using High-Harmonic Spectroscopy -- 4.6.2 Observation of Laser-Induced Modi cation of the Electronic Structure -- 4.6.3 Measurement and Laser Control of Charge Migration in Ionized Iodoacetylene -- 4.7 Attosecond Time Delays in Molecular Photoionization -- 4.7.1 Phase-Resolved Near-Threshold Photoionization of Molecular Nitrogen -- 4.7.2 Attosecond Photoionization Delays in the Nitrous Oxide and Water Molecules -- 4.7.3 Stereo-Wigner Time Delays in Molecular Photoionization of Carbon Monoxide -- 4.7.4 Phase-Resolved Two-Color Multiphoton Ionization of Chiral Molecules -- 4.8 Attosecond Transient Absorption Spectroscopy -- 4.8.1 Dynamics of Rydberg and Valence States in Molecular Nitrogen Probed by ATAS -- 4.8.2 Time-Resolved X-Ray Absorption Spectroscopy Using a Table-Top High-Harmonic Source -- References -- 5 Electronic Decay Cascades in Chemical Environment -- 5.1 Introduction -- 5.2 Interatomic Decay Processes -- 5.2.1 Interatomic Coulombic Decay (ICD) -- 5.2.2 Electron-Transfer Mediated Decay -- 5.2.3 Radiative Charge Transfer and Charge Transfer Through Curve Crossing -- 5.3 Decay Cascades in Weakly Bound Atomic and Molecular Systems -- 5.3.1 Auger-ICD Cascades -- 5.3.2 Resonant Auger-ICD Cascades -- 5.3.3 Auger-ETMD Cascade -- 5.3.4 Electronic Decay Cascades in Microsolvated Clusters -- 5.3.5 Interatomic Coulombic Decay Cascades in Multiply Excited Clusters -- 5.4 Concluding Remarks -- Acknowledgments -- References -- 6 Ab Initio Semiclassical Evaluation of Vibrationally Resolved Electronic Spectra With Thawed Gaussians -- 6.1 Introduction -- 6.1.1 Notation -- 6.1.2 List of Acronyms -- 6.2 Molecular Quantum Dynamics Induced by the Interaction With Electromagnetic Field | |
505 | 8 | |a 6.2.1 Exact Dynamics, Electric Dipole Approximation, and Quasiresonant Condition -- 6.2.2 Perturbation Theory, Zero-Temperature and Condon Approximations -- 6.3 Semiclassical Approximation to Quantum Dynamics -- 6.4 Thawed Gaussian Approximation -- 6.4.1 Thawed Gaussian Approximation -- 6.4.2 Parameter Propagation of the Thawed Gaussian Wavepacket -- 6.4.3 Extended Thawed Gaussian Approximation (ETGA) -- 6.4.4 Multiple Thawed Gaussians (n-TGA) -- 6.4.5 (Non)Conservation of Norm, Inner Product, and Energy -- 6.5 Time-Dependent Approach to Electronic Spectroscopy -- 6.5.1 Linear Absorption Spectra -- 6.5.2 Condon Approximation -- 6.5.3 Connection to Fidelity Amplitude -- 6.5.4 Herzberg-Teller Approximation -- 6.5.5 Rotational Averaging of the Spectrum -- 6.5.6 Time-Resolved Electronic Spectra -- 6.6 "Standard Models" of Electronic Spectroscopy -- 6.6.1 Several Few-Dimensional Examples -- 6.7 On-the-Fly Ab Initio Implementation of the Thawed Gaussian Approximation -- 6.8 Examples of on-the-Fly Ab Initio Calculations of Electronic Spectra -- 6.8.1 Absorption and Photoelectron Spectra of Ammonia -- 6.8.2 Absorption Spectra Beyond Condon Approximation -- 6.8.3 Emission Spectra of Large Systems: Quinquethiophene -- 6.8.4 Vibrationally Resolved Pump-Probe Spectra -- 6.9 Conclusion and Outlook -- References -- 7 Atomic and Molecular Tunneling Processes in Chemistry -- 7.1 Introduction -- 7.1.1 Aim and Overview of the Article -- 7.1.2 The Quantum Mechanical Tunneling Process for "Heavy" Particles (Atoms and Molecules): a Tour d'Horizon -- 7.1.3 A Brief History of the Discovery of the Tunnel Effect and Further Developments -- 7.2 Tunneling and Parity Violation in Chiral Molecules -- 7.2.1 Exact and Approximate Studies of Tunneling in Prototypical Molecules: Hydrogen Peroxide and Ammonia Isotopomers | |
505 | 8 | |a 7.2.2 Tunneling in Chiral Molecules Where Parity Violation Dominates Over Tunneling | |
650 | 4 | |a Molecular spectroscopy.. | |
650 | 4 | |a Quantum theory | |
700 | 1 | |a Marquardt, Roberto |4 edt | |
700 | 1 | |a Quack, Martin |d 1948- |0 (DE-588)1014940516 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Marquardt, Roberto |t Molecular Spectroscopy and Quantum Dynamics |d San Diego : Elsevier,c2020 |n Druck-Ausgabe |z 978-0-12-817234-6 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844147 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6353381 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734667513856 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Marquardt, Roberto Quack, Martin 1948- |
author2_role | edt edt |
author2_variant | r m rm m q mq |
author_GND | (DE-588)1014940516 |
author_facet | Marquardt, Roberto Quack, Martin 1948- |
building | Verbundindex |
bvnumber | BV047441995 |
classification_rvk | UM 3100 VE 5650 |
classification_tum | CHE 160 PHY 510 |
collection | ZDB-30-PQE |
contents | Front Cover -- Molecular Spectroscopy and Quantum Dynamics -- Copyright -- Contents -- List of Contributors -- Preface -- 1 Foundations of Time Dependent Quantum Dynamics of Molecules Under Isolation and in Coherent Electromagnetic Fields -- 1.1 Introduction -- 1.2 Foundations of Molecular Quantum Dynamics Between High Energy Physics, Chemistry and Molecular Biology -- 1.2.1 The Standard Model of Particle Physics (SMPP) as a Theory of Microscopic Matter Including the Low Energy Range of Atomic and Molecular Quantum Dynamics -- 1.2.2 Classical Mechanics and Quantum Mechanics -- 1.2.3 Time Evolution Operator Formulation of Quantum Dynamics -- 1.2.4 Further Approaches to Quantum Mechanics and Molecular Dynamics -- 1.2.5 Time-Dependent Quantum Statistical Dynamics -- 1.3 Methods for Solving the Time-Dependent Schrödinger Equation -- 1.3.1 Spectral Decomposition Method -- 1.3.2 Linearization -- 1.3.3 The "Chebychev" Method -- 1.3.4 "Short-Iterative" Lanczos Method -- 1.3.5 "Split-Operator" Technique -- 1.3.6 The "Multicon gurational Time-Dependent Hartree" Method -- 1.3.7 Speci c Methods for the Electronic Motion -- 1.4 Hamiltonians -- 1.5 Coordinates -- 1.6 Quantum Dynamics Under Excitation With Coherent Monochromatic Radiation -- 1.6.1 Introductory Remarks -- 1.6.2 General Aspects of Atomic and Molecular Systems in Electromagnetic Field -- 1.6.3 Time-Dependent Quantum Dynamics in an Oscillatory Electromagnetic Field -- 1.6.4 Floquet Solution for Hamiltonians With Strict Periodicity -- 1.6.5 Weak-Field Quasiresonant Approximation (WF-QRA) for Coherent Monochromatic Excitation -- 1.6.6 Coherent Monochromatic Excitation Between Two Quantum States -- 1.7 Concluding Remarks -- 1.7.1 Time-Dependent Quantum Motion, Spectroscopy and Atomic and Molecular Clocks 1.7.2 Hierarchy of Interactions and Hierarchy of Timescales for the Successive Breaking of Approximate Dynamical Symmetries in Intramolecular Primary Processes -- Acknowledgments -- References -- 2 Exact Numerical Methods for Stationary-State-Based Quantum Dynamics of Complex Polyatomic Molecules -- 2.1 Introduction -- 2.2 Molecular Hamiltonians -- 2.2.1 Coordinate Systems -- 2.2.2 Formulation of the Classical Hamiltonian in Generalized Internal Coordinates -- 2.2.3 Formulation of the Quantum-Mechanical Hamiltonian in Generalized Internal Coordinates -- 2.2.4 Body-Fixed Frame Embeddings -- 2.2.5 Potential Energy Hypersurfaces -- 2.2.6 Basis Sets and Representations -- 2.2.7 Determination of Eigenstates -- 2.3 Computation of Bound Rovibrational States -- 2.3.1 On the Variational Solution -- 2.3.2 Symmetry in Nuclear-Motion Computations -- 2.3.3 Nuclear Spin Statistics -- 2.3.4 Wavefunction Analysis Tools Via Projection Techniques -- 2.4 Computation of Rovibrational Resonances -- 2.4.1 The Stabilization Method -- 2.4.2 The Technique of Complex Coordinate Scaling (CCS) -- 2.4.3 Complex Absorbing Potentials (CAP) -- 2.4.4 Wavefunction Analysis Tools -- 2.5 Applications -- 2.5.1 Computation of All the Bound (Ro)Vibrational Eigenstates -- 2.5.1.1 H216O and Its Isotopologues -- 2.5.1.2 H3+ and Its Deuterated Isotopologues -- 2.5.2 Rovibrational Computations on Quasistructural Molecules -- 2.5.2.1 H5+ -- 2.5.2.2 CH5+ -- 2.5.3 Computation of Rovibrational Resonances -- 2.5.3.1 H2O -- 2.5.3.2 Ar·NO+ -- 2.5.3.3 H2He+ -- 2.5.3.4 H2·CO -- 2.5.4 Stationary-State Computations Serving Dynamical Studies -- 2.6 Summary and Outlook -- References -- 3 2D Strong-Field Spectroscopy to Elucidate Impulsive and Adiabatic Ultrafast Electronic Control Schemes in Molecules -- 3.1 Introduction -- 3.2 Control of Coupled Electron-Nuclear Dynamics in the Potassium Molecule 3.2.1 The Model System K2 -- 3.2.2 Experimental Two-Color Setup -- 3.2.3 Molecular Dynamics Simulations -- 3.2.3.1 Calculation of the Induced Dipole Moment -- 3.2.3.2 Intensity and Orientation Averaging -- 3.2.4 Coherent Control of Coupled Electron-Nuclear Dynamics -- 3.2.4.1 Experimental Results -- 3.2.4.1.1 Intensity Dependence. -- 3.2.4.1.2 Phase Control. -- 3.2.4.2 Physical Mechanism for Ultrafast Electronic Switching -- 3.2.4.3 Target State Wave Packet Dynamics -- 3.2.5 Summary and Conclusion -- 3.3 Adiabatic Control Scenarios in Molecules -- 3.3.1 Chirped Airy Pulses -- 3.3.2 Adiabatic Control Scenarios -- 3.3.3 Interaction of Chirped Airy Pulses With Porphyrazine Molecules -- 3.3.4 Interaction of Chirped Airy Pulses With Potassium Molecules -- 3.3.4.1 Evaluation of Spectra -- 3.3.4.2 Experimental Results -- 3.3.4.3 Wave Packet Dynamics Analysis -- 3.3.4.4 Discussion -- 3.3.5 Conclusion and Outlook -- 3.4 Summary -- References -- 4 Attosecond Molecular Dynamics and Spectroscopy -- 4.1 Introduction -- 4.2 Theoretical Description of Strong-Field Phenomena -- 4.2.1 Overview of the Basic Terminology -- 4.2.2 Electric-Dipole Approximation and Gauge Invariance -- 4.2.3 The Three-Step Model of High-Harmonic Generation -- 4.2.4 High-Harmonic Generation Within the Strong-Field Approximation -- 4.3 Attosecond Technology -- 4.3.1 Chirped-Pulse Ampli cation -- 4.3.2 Carrier-Envelope Phase Stabilization -- 4.3.3 Pulse Postcompression Techniques -- 4.3.4 Attosecond Sources in the Mid-Infrared -- 4.3.5 Generation of Isolated Attosecond Pulses -- 4.3.6 Attosecond Spectroscopic Techniques -- 4.3.6.1 Reconstruction of Attosecond Beating by Interference of Two-Photon Transitions -- 4.3.6.2 Attosecond Streaking -- 4.3.6.3 Photoelectron and Photoion Spectroscopy -- 4.4 Attosecond Electron/Ion Imaging Spectroscopy 4.5 Attosecond Electron Spectroscopy in Biorelevant Molecules -- 4.6 High-Harmonic Spectroscopy -- 4.6.1 Observation of Sub-Fs Nuclear Dynamics Using High-Harmonic Spectroscopy -- 4.6.2 Observation of Laser-Induced Modi cation of the Electronic Structure -- 4.6.3 Measurement and Laser Control of Charge Migration in Ionized Iodoacetylene -- 4.7 Attosecond Time Delays in Molecular Photoionization -- 4.7.1 Phase-Resolved Near-Threshold Photoionization of Molecular Nitrogen -- 4.7.2 Attosecond Photoionization Delays in the Nitrous Oxide and Water Molecules -- 4.7.3 Stereo-Wigner Time Delays in Molecular Photoionization of Carbon Monoxide -- 4.7.4 Phase-Resolved Two-Color Multiphoton Ionization of Chiral Molecules -- 4.8 Attosecond Transient Absorption Spectroscopy -- 4.8.1 Dynamics of Rydberg and Valence States in Molecular Nitrogen Probed by ATAS -- 4.8.2 Time-Resolved X-Ray Absorption Spectroscopy Using a Table-Top High-Harmonic Source -- References -- 5 Electronic Decay Cascades in Chemical Environment -- 5.1 Introduction -- 5.2 Interatomic Decay Processes -- 5.2.1 Interatomic Coulombic Decay (ICD) -- 5.2.2 Electron-Transfer Mediated Decay -- 5.2.3 Radiative Charge Transfer and Charge Transfer Through Curve Crossing -- 5.3 Decay Cascades in Weakly Bound Atomic and Molecular Systems -- 5.3.1 Auger-ICD Cascades -- 5.3.2 Resonant Auger-ICD Cascades -- 5.3.3 Auger-ETMD Cascade -- 5.3.4 Electronic Decay Cascades in Microsolvated Clusters -- 5.3.5 Interatomic Coulombic Decay Cascades in Multiply Excited Clusters -- 5.4 Concluding Remarks -- Acknowledgments -- References -- 6 Ab Initio Semiclassical Evaluation of Vibrationally Resolved Electronic Spectra With Thawed Gaussians -- 6.1 Introduction -- 6.1.1 Notation -- 6.1.2 List of Acronyms -- 6.2 Molecular Quantum Dynamics Induced by the Interaction With Electromagnetic Field 6.2.1 Exact Dynamics, Electric Dipole Approximation, and Quasiresonant Condition -- 6.2.2 Perturbation Theory, Zero-Temperature and Condon Approximations -- 6.3 Semiclassical Approximation to Quantum Dynamics -- 6.4 Thawed Gaussian Approximation -- 6.4.1 Thawed Gaussian Approximation -- 6.4.2 Parameter Propagation of the Thawed Gaussian Wavepacket -- 6.4.3 Extended Thawed Gaussian Approximation (ETGA) -- 6.4.4 Multiple Thawed Gaussians (n-TGA) -- 6.4.5 (Non)Conservation of Norm, Inner Product, and Energy -- 6.5 Time-Dependent Approach to Electronic Spectroscopy -- 6.5.1 Linear Absorption Spectra -- 6.5.2 Condon Approximation -- 6.5.3 Connection to Fidelity Amplitude -- 6.5.4 Herzberg-Teller Approximation -- 6.5.5 Rotational Averaging of the Spectrum -- 6.5.6 Time-Resolved Electronic Spectra -- 6.6 "Standard Models" of Electronic Spectroscopy -- 6.6.1 Several Few-Dimensional Examples -- 6.7 On-the-Fly Ab Initio Implementation of the Thawed Gaussian Approximation -- 6.8 Examples of on-the-Fly Ab Initio Calculations of Electronic Spectra -- 6.8.1 Absorption and Photoelectron Spectra of Ammonia -- 6.8.2 Absorption Spectra Beyond Condon Approximation -- 6.8.3 Emission Spectra of Large Systems: Quinquethiophene -- 6.8.4 Vibrationally Resolved Pump-Probe Spectra -- 6.9 Conclusion and Outlook -- References -- 7 Atomic and Molecular Tunneling Processes in Chemistry -- 7.1 Introduction -- 7.1.1 Aim and Overview of the Article -- 7.1.2 The Quantum Mechanical Tunneling Process for "Heavy" Particles (Atoms and Molecules): a Tour d'Horizon -- 7.1.3 A Brief History of the Discovery of the Tunnel Effect and Further Developments -- 7.2 Tunneling and Parity Violation in Chiral Molecules -- 7.2.1 Exact and Approximate Studies of Tunneling in Prototypical Molecules: Hydrogen Peroxide and Ammonia Isotopomers 7.2.2 Tunneling in Chiral Molecules Where Parity Violation Dominates Over Tunneling |
ctrlnum | (ZDB-30-PQE)EBC6353381 (ZDB-30-PAD)EBC6353381 (ZDB-89-EBL)EBL6353381 (OCoLC)1198236331 (DE-599)BVBBV047441995 |
dewey-full | 539.60287 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.60287 |
dewey-search | 539.60287 |
dewey-sort | 3539.60287 |
dewey-tens | 530 - Physics |
discipline | Chemie / Pharmazie Physik Chemie |
discipline_str_mv | Chemie / Pharmazie Physik Chemie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11010nmm a2200517zc 4500</leader><controlfield tag="001">BV047441995</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230908 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128172353</subfield><subfield code="9">978-0-12-817235-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6353381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6353381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6353381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1198236331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441995</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.60287</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 3100</subfield><subfield code="0">(DE-625)145866:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5650</subfield><subfield code="0">(DE-625)147118:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 160</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 510</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular spectroscopy and quantum dynamics</subfield><subfield code="c">edited by Roberto Marquardt, Martin Quack</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">St. Louis, Missouri</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 355 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Molecular Spectroscopy and Quantum Dynamics -- Copyright -- Contents -- List of Contributors -- Preface -- 1 Foundations of Time Dependent Quantum Dynamics of Molecules Under Isolation and in Coherent Electromagnetic Fields -- 1.1 Introduction -- 1.2 Foundations of Molecular Quantum Dynamics Between High Energy Physics, Chemistry and Molecular Biology -- 1.2.1 The Standard Model of Particle Physics (SMPP) as a Theory of Microscopic Matter Including the Low Energy Range of Atomic and Molecular Quantum Dynamics -- 1.2.2 Classical Mechanics and Quantum Mechanics -- 1.2.3 Time Evolution Operator Formulation of Quantum Dynamics -- 1.2.4 Further Approaches to Quantum Mechanics and Molecular Dynamics -- 1.2.5 Time-Dependent Quantum Statistical Dynamics -- 1.3 Methods for Solving the Time-Dependent Schrödinger Equation -- 1.3.1 Spectral Decomposition Method -- 1.3.2 Linearization -- 1.3.3 The "Chebychev" Method -- 1.3.4 "Short-Iterative" Lanczos Method -- 1.3.5 "Split-Operator" Technique -- 1.3.6 The "Multicon gurational Time-Dependent Hartree" Method -- 1.3.7 Speci c Methods for the Electronic Motion -- 1.4 Hamiltonians -- 1.5 Coordinates -- 1.6 Quantum Dynamics Under Excitation With Coherent Monochromatic Radiation -- 1.6.1 Introductory Remarks -- 1.6.2 General Aspects of Atomic and Molecular Systems in Electromagnetic Field -- 1.6.3 Time-Dependent Quantum Dynamics in an Oscillatory Electromagnetic Field -- 1.6.4 Floquet Solution for Hamiltonians With Strict Periodicity -- 1.6.5 Weak-Field Quasiresonant Approximation (WF-QRA) for Coherent Monochromatic Excitation -- 1.6.6 Coherent Monochromatic Excitation Between Two Quantum States -- 1.7 Concluding Remarks -- 1.7.1 Time-Dependent Quantum Motion, Spectroscopy and Atomic and Molecular Clocks</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.7.2 Hierarchy of Interactions and Hierarchy of Timescales for the Successive Breaking of Approximate Dynamical Symmetries in Intramolecular Primary Processes -- Acknowledgments -- References -- 2 Exact Numerical Methods for Stationary-State-Based Quantum Dynamics of Complex Polyatomic Molecules -- 2.1 Introduction -- 2.2 Molecular Hamiltonians -- 2.2.1 Coordinate Systems -- 2.2.2 Formulation of the Classical Hamiltonian in Generalized Internal Coordinates -- 2.2.3 Formulation of the Quantum-Mechanical Hamiltonian in Generalized Internal Coordinates -- 2.2.4 Body-Fixed Frame Embeddings -- 2.2.5 Potential Energy Hypersurfaces -- 2.2.6 Basis Sets and Representations -- 2.2.7 Determination of Eigenstates -- 2.3 Computation of Bound Rovibrational States -- 2.3.1 On the Variational Solution -- 2.3.2 Symmetry in Nuclear-Motion Computations -- 2.3.3 Nuclear Spin Statistics -- 2.3.4 Wavefunction Analysis Tools Via Projection Techniques -- 2.4 Computation of Rovibrational Resonances -- 2.4.1 The Stabilization Method -- 2.4.2 The Technique of Complex Coordinate Scaling (CCS) -- 2.4.3 Complex Absorbing Potentials (CAP) -- 2.4.4 Wavefunction Analysis Tools -- 2.5 Applications -- 2.5.1 Computation of All the Bound (Ro)Vibrational Eigenstates -- 2.5.1.1 H216O and Its Isotopologues -- 2.5.1.2 H3+ and Its Deuterated Isotopologues -- 2.5.2 Rovibrational Computations on Quasistructural Molecules -- 2.5.2.1 H5+ -- 2.5.2.2 CH5+ -- 2.5.3 Computation of Rovibrational Resonances -- 2.5.3.1 H2O -- 2.5.3.2 Ar·NO+ -- 2.5.3.3 H2He+ -- 2.5.3.4 H2·CO -- 2.5.4 Stationary-State Computations Serving Dynamical Studies -- 2.6 Summary and Outlook -- References -- 3 2D Strong-Field Spectroscopy to Elucidate Impulsive and Adiabatic Ultrafast Electronic Control Schemes in Molecules -- 3.1 Introduction -- 3.2 Control of Coupled Electron-Nuclear Dynamics in the Potassium Molecule</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.1 The Model System K2 -- 3.2.2 Experimental Two-Color Setup -- 3.2.3 Molecular Dynamics Simulations -- 3.2.3.1 Calculation of the Induced Dipole Moment -- 3.2.3.2 Intensity and Orientation Averaging -- 3.2.4 Coherent Control of Coupled Electron-Nuclear Dynamics -- 3.2.4.1 Experimental Results -- 3.2.4.1.1 Intensity Dependence. -- 3.2.4.1.2 Phase Control. -- 3.2.4.2 Physical Mechanism for Ultrafast Electronic Switching -- 3.2.4.3 Target State Wave Packet Dynamics -- 3.2.5 Summary and Conclusion -- 3.3 Adiabatic Control Scenarios in Molecules -- 3.3.1 Chirped Airy Pulses -- 3.3.2 Adiabatic Control Scenarios -- 3.3.3 Interaction of Chirped Airy Pulses With Porphyrazine Molecules -- 3.3.4 Interaction of Chirped Airy Pulses With Potassium Molecules -- 3.3.4.1 Evaluation of Spectra -- 3.3.4.2 Experimental Results -- 3.3.4.3 Wave Packet Dynamics Analysis -- 3.3.4.4 Discussion -- 3.3.5 Conclusion and Outlook -- 3.4 Summary -- References -- 4 Attosecond Molecular Dynamics and Spectroscopy -- 4.1 Introduction -- 4.2 Theoretical Description of Strong-Field Phenomena -- 4.2.1 Overview of the Basic Terminology -- 4.2.2 Electric-Dipole Approximation and Gauge Invariance -- 4.2.3 The Three-Step Model of High-Harmonic Generation -- 4.2.4 High-Harmonic Generation Within the Strong-Field Approximation -- 4.3 Attosecond Technology -- 4.3.1 Chirped-Pulse Ampli cation -- 4.3.2 Carrier-Envelope Phase Stabilization -- 4.3.3 Pulse Postcompression Techniques -- 4.3.4 Attosecond Sources in the Mid-Infrared -- 4.3.5 Generation of Isolated Attosecond Pulses -- 4.3.6 Attosecond Spectroscopic Techniques -- 4.3.6.1 Reconstruction of Attosecond Beating by Interference of Two-Photon Transitions -- 4.3.6.2 Attosecond Streaking -- 4.3.6.3 Photoelectron and Photoion Spectroscopy -- 4.4 Attosecond Electron/Ion Imaging Spectroscopy</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 Attosecond Electron Spectroscopy in Biorelevant Molecules -- 4.6 High-Harmonic Spectroscopy -- 4.6.1 Observation of Sub-Fs Nuclear Dynamics Using High-Harmonic Spectroscopy -- 4.6.2 Observation of Laser-Induced Modi cation of the Electronic Structure -- 4.6.3 Measurement and Laser Control of Charge Migration in Ionized Iodoacetylene -- 4.7 Attosecond Time Delays in Molecular Photoionization -- 4.7.1 Phase-Resolved Near-Threshold Photoionization of Molecular Nitrogen -- 4.7.2 Attosecond Photoionization Delays in the Nitrous Oxide and Water Molecules -- 4.7.3 Stereo-Wigner Time Delays in Molecular Photoionization of Carbon Monoxide -- 4.7.4 Phase-Resolved Two-Color Multiphoton Ionization of Chiral Molecules -- 4.8 Attosecond Transient Absorption Spectroscopy -- 4.8.1 Dynamics of Rydberg and Valence States in Molecular Nitrogen Probed by ATAS -- 4.8.2 Time-Resolved X-Ray Absorption Spectroscopy Using a Table-Top High-Harmonic Source -- References -- 5 Electronic Decay Cascades in Chemical Environment -- 5.1 Introduction -- 5.2 Interatomic Decay Processes -- 5.2.1 Interatomic Coulombic Decay (ICD) -- 5.2.2 Electron-Transfer Mediated Decay -- 5.2.3 Radiative Charge Transfer and Charge Transfer Through Curve Crossing -- 5.3 Decay Cascades in Weakly Bound Atomic and Molecular Systems -- 5.3.1 Auger-ICD Cascades -- 5.3.2 Resonant Auger-ICD Cascades -- 5.3.3 Auger-ETMD Cascade -- 5.3.4 Electronic Decay Cascades in Microsolvated Clusters -- 5.3.5 Interatomic Coulombic Decay Cascades in Multiply Excited Clusters -- 5.4 Concluding Remarks -- Acknowledgments -- References -- 6 Ab Initio Semiclassical Evaluation of Vibrationally Resolved Electronic Spectra With Thawed Gaussians -- 6.1 Introduction -- 6.1.1 Notation -- 6.1.2 List of Acronyms -- 6.2 Molecular Quantum Dynamics Induced by the Interaction With Electromagnetic Field</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.1 Exact Dynamics, Electric Dipole Approximation, and Quasiresonant Condition -- 6.2.2 Perturbation Theory, Zero-Temperature and Condon Approximations -- 6.3 Semiclassical Approximation to Quantum Dynamics -- 6.4 Thawed Gaussian Approximation -- 6.4.1 Thawed Gaussian Approximation -- 6.4.2 Parameter Propagation of the Thawed Gaussian Wavepacket -- 6.4.3 Extended Thawed Gaussian Approximation (ETGA) -- 6.4.4 Multiple Thawed Gaussians (n-TGA) -- 6.4.5 (Non)Conservation of Norm, Inner Product, and Energy -- 6.5 Time-Dependent Approach to Electronic Spectroscopy -- 6.5.1 Linear Absorption Spectra -- 6.5.2 Condon Approximation -- 6.5.3 Connection to Fidelity Amplitude -- 6.5.4 Herzberg-Teller Approximation -- 6.5.5 Rotational Averaging of the Spectrum -- 6.5.6 Time-Resolved Electronic Spectra -- 6.6 "Standard Models" of Electronic Spectroscopy -- 6.6.1 Several Few-Dimensional Examples -- 6.7 On-the-Fly Ab Initio Implementation of the Thawed Gaussian Approximation -- 6.8 Examples of on-the-Fly Ab Initio Calculations of Electronic Spectra -- 6.8.1 Absorption and Photoelectron Spectra of Ammonia -- 6.8.2 Absorption Spectra Beyond Condon Approximation -- 6.8.3 Emission Spectra of Large Systems: Quinquethiophene -- 6.8.4 Vibrationally Resolved Pump-Probe Spectra -- 6.9 Conclusion and Outlook -- References -- 7 Atomic and Molecular Tunneling Processes in Chemistry -- 7.1 Introduction -- 7.1.1 Aim and Overview of the Article -- 7.1.2 The Quantum Mechanical Tunneling Process for "Heavy" Particles (Atoms and Molecules): a Tour d'Horizon -- 7.1.3 A Brief History of the Discovery of the Tunnel Effect and Further Developments -- 7.2 Tunneling and Parity Violation in Chiral Molecules -- 7.2.1 Exact and Approximate Studies of Tunneling in Prototypical Molecules: Hydrogen Peroxide and Ammonia Isotopomers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2.2 Tunneling in Chiral Molecules Where Parity Violation Dominates Over Tunneling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular spectroscopy..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marquardt, Roberto</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quack, Martin</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)1014940516</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Marquardt, Roberto</subfield><subfield code="t">Molecular Spectroscopy and Quantum Dynamics</subfield><subfield code="d">San Diego : Elsevier,c2020</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-817234-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844147</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6353381</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441995 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9780128172353 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844147 |
oclc_num | 1198236331 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xvii, 355 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Elsevier |
record_format | marc |
spelling | Molecular spectroscopy and quantum dynamics edited by Roberto Marquardt, Martin Quack St. Louis, Missouri Elsevier 2021 ©2021 1 Online-Ressource (xvii, 355 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Front Cover -- Molecular Spectroscopy and Quantum Dynamics -- Copyright -- Contents -- List of Contributors -- Preface -- 1 Foundations of Time Dependent Quantum Dynamics of Molecules Under Isolation and in Coherent Electromagnetic Fields -- 1.1 Introduction -- 1.2 Foundations of Molecular Quantum Dynamics Between High Energy Physics, Chemistry and Molecular Biology -- 1.2.1 The Standard Model of Particle Physics (SMPP) as a Theory of Microscopic Matter Including the Low Energy Range of Atomic and Molecular Quantum Dynamics -- 1.2.2 Classical Mechanics and Quantum Mechanics -- 1.2.3 Time Evolution Operator Formulation of Quantum Dynamics -- 1.2.4 Further Approaches to Quantum Mechanics and Molecular Dynamics -- 1.2.5 Time-Dependent Quantum Statistical Dynamics -- 1.3 Methods for Solving the Time-Dependent Schrödinger Equation -- 1.3.1 Spectral Decomposition Method -- 1.3.2 Linearization -- 1.3.3 The "Chebychev" Method -- 1.3.4 "Short-Iterative" Lanczos Method -- 1.3.5 "Split-Operator" Technique -- 1.3.6 The "Multicon gurational Time-Dependent Hartree" Method -- 1.3.7 Speci c Methods for the Electronic Motion -- 1.4 Hamiltonians -- 1.5 Coordinates -- 1.6 Quantum Dynamics Under Excitation With Coherent Monochromatic Radiation -- 1.6.1 Introductory Remarks -- 1.6.2 General Aspects of Atomic and Molecular Systems in Electromagnetic Field -- 1.6.3 Time-Dependent Quantum Dynamics in an Oscillatory Electromagnetic Field -- 1.6.4 Floquet Solution for Hamiltonians With Strict Periodicity -- 1.6.5 Weak-Field Quasiresonant Approximation (WF-QRA) for Coherent Monochromatic Excitation -- 1.6.6 Coherent Monochromatic Excitation Between Two Quantum States -- 1.7 Concluding Remarks -- 1.7.1 Time-Dependent Quantum Motion, Spectroscopy and Atomic and Molecular Clocks 1.7.2 Hierarchy of Interactions and Hierarchy of Timescales for the Successive Breaking of Approximate Dynamical Symmetries in Intramolecular Primary Processes -- Acknowledgments -- References -- 2 Exact Numerical Methods for Stationary-State-Based Quantum Dynamics of Complex Polyatomic Molecules -- 2.1 Introduction -- 2.2 Molecular Hamiltonians -- 2.2.1 Coordinate Systems -- 2.2.2 Formulation of the Classical Hamiltonian in Generalized Internal Coordinates -- 2.2.3 Formulation of the Quantum-Mechanical Hamiltonian in Generalized Internal Coordinates -- 2.2.4 Body-Fixed Frame Embeddings -- 2.2.5 Potential Energy Hypersurfaces -- 2.2.6 Basis Sets and Representations -- 2.2.7 Determination of Eigenstates -- 2.3 Computation of Bound Rovibrational States -- 2.3.1 On the Variational Solution -- 2.3.2 Symmetry in Nuclear-Motion Computations -- 2.3.3 Nuclear Spin Statistics -- 2.3.4 Wavefunction Analysis Tools Via Projection Techniques -- 2.4 Computation of Rovibrational Resonances -- 2.4.1 The Stabilization Method -- 2.4.2 The Technique of Complex Coordinate Scaling (CCS) -- 2.4.3 Complex Absorbing Potentials (CAP) -- 2.4.4 Wavefunction Analysis Tools -- 2.5 Applications -- 2.5.1 Computation of All the Bound (Ro)Vibrational Eigenstates -- 2.5.1.1 H216O and Its Isotopologues -- 2.5.1.2 H3+ and Its Deuterated Isotopologues -- 2.5.2 Rovibrational Computations on Quasistructural Molecules -- 2.5.2.1 H5+ -- 2.5.2.2 CH5+ -- 2.5.3 Computation of Rovibrational Resonances -- 2.5.3.1 H2O -- 2.5.3.2 Ar·NO+ -- 2.5.3.3 H2He+ -- 2.5.3.4 H2·CO -- 2.5.4 Stationary-State Computations Serving Dynamical Studies -- 2.6 Summary and Outlook -- References -- 3 2D Strong-Field Spectroscopy to Elucidate Impulsive and Adiabatic Ultrafast Electronic Control Schemes in Molecules -- 3.1 Introduction -- 3.2 Control of Coupled Electron-Nuclear Dynamics in the Potassium Molecule 3.2.1 The Model System K2 -- 3.2.2 Experimental Two-Color Setup -- 3.2.3 Molecular Dynamics Simulations -- 3.2.3.1 Calculation of the Induced Dipole Moment -- 3.2.3.2 Intensity and Orientation Averaging -- 3.2.4 Coherent Control of Coupled Electron-Nuclear Dynamics -- 3.2.4.1 Experimental Results -- 3.2.4.1.1 Intensity Dependence. -- 3.2.4.1.2 Phase Control. -- 3.2.4.2 Physical Mechanism for Ultrafast Electronic Switching -- 3.2.4.3 Target State Wave Packet Dynamics -- 3.2.5 Summary and Conclusion -- 3.3 Adiabatic Control Scenarios in Molecules -- 3.3.1 Chirped Airy Pulses -- 3.3.2 Adiabatic Control Scenarios -- 3.3.3 Interaction of Chirped Airy Pulses With Porphyrazine Molecules -- 3.3.4 Interaction of Chirped Airy Pulses With Potassium Molecules -- 3.3.4.1 Evaluation of Spectra -- 3.3.4.2 Experimental Results -- 3.3.4.3 Wave Packet Dynamics Analysis -- 3.3.4.4 Discussion -- 3.3.5 Conclusion and Outlook -- 3.4 Summary -- References -- 4 Attosecond Molecular Dynamics and Spectroscopy -- 4.1 Introduction -- 4.2 Theoretical Description of Strong-Field Phenomena -- 4.2.1 Overview of the Basic Terminology -- 4.2.2 Electric-Dipole Approximation and Gauge Invariance -- 4.2.3 The Three-Step Model of High-Harmonic Generation -- 4.2.4 High-Harmonic Generation Within the Strong-Field Approximation -- 4.3 Attosecond Technology -- 4.3.1 Chirped-Pulse Ampli cation -- 4.3.2 Carrier-Envelope Phase Stabilization -- 4.3.3 Pulse Postcompression Techniques -- 4.3.4 Attosecond Sources in the Mid-Infrared -- 4.3.5 Generation of Isolated Attosecond Pulses -- 4.3.6 Attosecond Spectroscopic Techniques -- 4.3.6.1 Reconstruction of Attosecond Beating by Interference of Two-Photon Transitions -- 4.3.6.2 Attosecond Streaking -- 4.3.6.3 Photoelectron and Photoion Spectroscopy -- 4.4 Attosecond Electron/Ion Imaging Spectroscopy 4.5 Attosecond Electron Spectroscopy in Biorelevant Molecules -- 4.6 High-Harmonic Spectroscopy -- 4.6.1 Observation of Sub-Fs Nuclear Dynamics Using High-Harmonic Spectroscopy -- 4.6.2 Observation of Laser-Induced Modi cation of the Electronic Structure -- 4.6.3 Measurement and Laser Control of Charge Migration in Ionized Iodoacetylene -- 4.7 Attosecond Time Delays in Molecular Photoionization -- 4.7.1 Phase-Resolved Near-Threshold Photoionization of Molecular Nitrogen -- 4.7.2 Attosecond Photoionization Delays in the Nitrous Oxide and Water Molecules -- 4.7.3 Stereo-Wigner Time Delays in Molecular Photoionization of Carbon Monoxide -- 4.7.4 Phase-Resolved Two-Color Multiphoton Ionization of Chiral Molecules -- 4.8 Attosecond Transient Absorption Spectroscopy -- 4.8.1 Dynamics of Rydberg and Valence States in Molecular Nitrogen Probed by ATAS -- 4.8.2 Time-Resolved X-Ray Absorption Spectroscopy Using a Table-Top High-Harmonic Source -- References -- 5 Electronic Decay Cascades in Chemical Environment -- 5.1 Introduction -- 5.2 Interatomic Decay Processes -- 5.2.1 Interatomic Coulombic Decay (ICD) -- 5.2.2 Electron-Transfer Mediated Decay -- 5.2.3 Radiative Charge Transfer and Charge Transfer Through Curve Crossing -- 5.3 Decay Cascades in Weakly Bound Atomic and Molecular Systems -- 5.3.1 Auger-ICD Cascades -- 5.3.2 Resonant Auger-ICD Cascades -- 5.3.3 Auger-ETMD Cascade -- 5.3.4 Electronic Decay Cascades in Microsolvated Clusters -- 5.3.5 Interatomic Coulombic Decay Cascades in Multiply Excited Clusters -- 5.4 Concluding Remarks -- Acknowledgments -- References -- 6 Ab Initio Semiclassical Evaluation of Vibrationally Resolved Electronic Spectra With Thawed Gaussians -- 6.1 Introduction -- 6.1.1 Notation -- 6.1.2 List of Acronyms -- 6.2 Molecular Quantum Dynamics Induced by the Interaction With Electromagnetic Field 6.2.1 Exact Dynamics, Electric Dipole Approximation, and Quasiresonant Condition -- 6.2.2 Perturbation Theory, Zero-Temperature and Condon Approximations -- 6.3 Semiclassical Approximation to Quantum Dynamics -- 6.4 Thawed Gaussian Approximation -- 6.4.1 Thawed Gaussian Approximation -- 6.4.2 Parameter Propagation of the Thawed Gaussian Wavepacket -- 6.4.3 Extended Thawed Gaussian Approximation (ETGA) -- 6.4.4 Multiple Thawed Gaussians (n-TGA) -- 6.4.5 (Non)Conservation of Norm, Inner Product, and Energy -- 6.5 Time-Dependent Approach to Electronic Spectroscopy -- 6.5.1 Linear Absorption Spectra -- 6.5.2 Condon Approximation -- 6.5.3 Connection to Fidelity Amplitude -- 6.5.4 Herzberg-Teller Approximation -- 6.5.5 Rotational Averaging of the Spectrum -- 6.5.6 Time-Resolved Electronic Spectra -- 6.6 "Standard Models" of Electronic Spectroscopy -- 6.6.1 Several Few-Dimensional Examples -- 6.7 On-the-Fly Ab Initio Implementation of the Thawed Gaussian Approximation -- 6.8 Examples of on-the-Fly Ab Initio Calculations of Electronic Spectra -- 6.8.1 Absorption and Photoelectron Spectra of Ammonia -- 6.8.2 Absorption Spectra Beyond Condon Approximation -- 6.8.3 Emission Spectra of Large Systems: Quinquethiophene -- 6.8.4 Vibrationally Resolved Pump-Probe Spectra -- 6.9 Conclusion and Outlook -- References -- 7 Atomic and Molecular Tunneling Processes in Chemistry -- 7.1 Introduction -- 7.1.1 Aim and Overview of the Article -- 7.1.2 The Quantum Mechanical Tunneling Process for "Heavy" Particles (Atoms and Molecules): a Tour d'Horizon -- 7.1.3 A Brief History of the Discovery of the Tunnel Effect and Further Developments -- 7.2 Tunneling and Parity Violation in Chiral Molecules -- 7.2.1 Exact and Approximate Studies of Tunneling in Prototypical Molecules: Hydrogen Peroxide and Ammonia Isotopomers 7.2.2 Tunneling in Chiral Molecules Where Parity Violation Dominates Over Tunneling Molecular spectroscopy.. Quantum theory Marquardt, Roberto edt Quack, Martin 1948- (DE-588)1014940516 edt Erscheint auch als Marquardt, Roberto Molecular Spectroscopy and Quantum Dynamics San Diego : Elsevier,c2020 Druck-Ausgabe 978-0-12-817234-6 |
spellingShingle | Molecular spectroscopy and quantum dynamics Front Cover -- Molecular Spectroscopy and Quantum Dynamics -- Copyright -- Contents -- List of Contributors -- Preface -- 1 Foundations of Time Dependent Quantum Dynamics of Molecules Under Isolation and in Coherent Electromagnetic Fields -- 1.1 Introduction -- 1.2 Foundations of Molecular Quantum Dynamics Between High Energy Physics, Chemistry and Molecular Biology -- 1.2.1 The Standard Model of Particle Physics (SMPP) as a Theory of Microscopic Matter Including the Low Energy Range of Atomic and Molecular Quantum Dynamics -- 1.2.2 Classical Mechanics and Quantum Mechanics -- 1.2.3 Time Evolution Operator Formulation of Quantum Dynamics -- 1.2.4 Further Approaches to Quantum Mechanics and Molecular Dynamics -- 1.2.5 Time-Dependent Quantum Statistical Dynamics -- 1.3 Methods for Solving the Time-Dependent Schrödinger Equation -- 1.3.1 Spectral Decomposition Method -- 1.3.2 Linearization -- 1.3.3 The "Chebychev" Method -- 1.3.4 "Short-Iterative" Lanczos Method -- 1.3.5 "Split-Operator" Technique -- 1.3.6 The "Multicon gurational Time-Dependent Hartree" Method -- 1.3.7 Speci c Methods for the Electronic Motion -- 1.4 Hamiltonians -- 1.5 Coordinates -- 1.6 Quantum Dynamics Under Excitation With Coherent Monochromatic Radiation -- 1.6.1 Introductory Remarks -- 1.6.2 General Aspects of Atomic and Molecular Systems in Electromagnetic Field -- 1.6.3 Time-Dependent Quantum Dynamics in an Oscillatory Electromagnetic Field -- 1.6.4 Floquet Solution for Hamiltonians With Strict Periodicity -- 1.6.5 Weak-Field Quasiresonant Approximation (WF-QRA) for Coherent Monochromatic Excitation -- 1.6.6 Coherent Monochromatic Excitation Between Two Quantum States -- 1.7 Concluding Remarks -- 1.7.1 Time-Dependent Quantum Motion, Spectroscopy and Atomic and Molecular Clocks 1.7.2 Hierarchy of Interactions and Hierarchy of Timescales for the Successive Breaking of Approximate Dynamical Symmetries in Intramolecular Primary Processes -- Acknowledgments -- References -- 2 Exact Numerical Methods for Stationary-State-Based Quantum Dynamics of Complex Polyatomic Molecules -- 2.1 Introduction -- 2.2 Molecular Hamiltonians -- 2.2.1 Coordinate Systems -- 2.2.2 Formulation of the Classical Hamiltonian in Generalized Internal Coordinates -- 2.2.3 Formulation of the Quantum-Mechanical Hamiltonian in Generalized Internal Coordinates -- 2.2.4 Body-Fixed Frame Embeddings -- 2.2.5 Potential Energy Hypersurfaces -- 2.2.6 Basis Sets and Representations -- 2.2.7 Determination of Eigenstates -- 2.3 Computation of Bound Rovibrational States -- 2.3.1 On the Variational Solution -- 2.3.2 Symmetry in Nuclear-Motion Computations -- 2.3.3 Nuclear Spin Statistics -- 2.3.4 Wavefunction Analysis Tools Via Projection Techniques -- 2.4 Computation of Rovibrational Resonances -- 2.4.1 The Stabilization Method -- 2.4.2 The Technique of Complex Coordinate Scaling (CCS) -- 2.4.3 Complex Absorbing Potentials (CAP) -- 2.4.4 Wavefunction Analysis Tools -- 2.5 Applications -- 2.5.1 Computation of All the Bound (Ro)Vibrational Eigenstates -- 2.5.1.1 H216O and Its Isotopologues -- 2.5.1.2 H3+ and Its Deuterated Isotopologues -- 2.5.2 Rovibrational Computations on Quasistructural Molecules -- 2.5.2.1 H5+ -- 2.5.2.2 CH5+ -- 2.5.3 Computation of Rovibrational Resonances -- 2.5.3.1 H2O -- 2.5.3.2 Ar·NO+ -- 2.5.3.3 H2He+ -- 2.5.3.4 H2·CO -- 2.5.4 Stationary-State Computations Serving Dynamical Studies -- 2.6 Summary and Outlook -- References -- 3 2D Strong-Field Spectroscopy to Elucidate Impulsive and Adiabatic Ultrafast Electronic Control Schemes in Molecules -- 3.1 Introduction -- 3.2 Control of Coupled Electron-Nuclear Dynamics in the Potassium Molecule 3.2.1 The Model System K2 -- 3.2.2 Experimental Two-Color Setup -- 3.2.3 Molecular Dynamics Simulations -- 3.2.3.1 Calculation of the Induced Dipole Moment -- 3.2.3.2 Intensity and Orientation Averaging -- 3.2.4 Coherent Control of Coupled Electron-Nuclear Dynamics -- 3.2.4.1 Experimental Results -- 3.2.4.1.1 Intensity Dependence. -- 3.2.4.1.2 Phase Control. -- 3.2.4.2 Physical Mechanism for Ultrafast Electronic Switching -- 3.2.4.3 Target State Wave Packet Dynamics -- 3.2.5 Summary and Conclusion -- 3.3 Adiabatic Control Scenarios in Molecules -- 3.3.1 Chirped Airy Pulses -- 3.3.2 Adiabatic Control Scenarios -- 3.3.3 Interaction of Chirped Airy Pulses With Porphyrazine Molecules -- 3.3.4 Interaction of Chirped Airy Pulses With Potassium Molecules -- 3.3.4.1 Evaluation of Spectra -- 3.3.4.2 Experimental Results -- 3.3.4.3 Wave Packet Dynamics Analysis -- 3.3.4.4 Discussion -- 3.3.5 Conclusion and Outlook -- 3.4 Summary -- References -- 4 Attosecond Molecular Dynamics and Spectroscopy -- 4.1 Introduction -- 4.2 Theoretical Description of Strong-Field Phenomena -- 4.2.1 Overview of the Basic Terminology -- 4.2.2 Electric-Dipole Approximation and Gauge Invariance -- 4.2.3 The Three-Step Model of High-Harmonic Generation -- 4.2.4 High-Harmonic Generation Within the Strong-Field Approximation -- 4.3 Attosecond Technology -- 4.3.1 Chirped-Pulse Ampli cation -- 4.3.2 Carrier-Envelope Phase Stabilization -- 4.3.3 Pulse Postcompression Techniques -- 4.3.4 Attosecond Sources in the Mid-Infrared -- 4.3.5 Generation of Isolated Attosecond Pulses -- 4.3.6 Attosecond Spectroscopic Techniques -- 4.3.6.1 Reconstruction of Attosecond Beating by Interference of Two-Photon Transitions -- 4.3.6.2 Attosecond Streaking -- 4.3.6.3 Photoelectron and Photoion Spectroscopy -- 4.4 Attosecond Electron/Ion Imaging Spectroscopy 4.5 Attosecond Electron Spectroscopy in Biorelevant Molecules -- 4.6 High-Harmonic Spectroscopy -- 4.6.1 Observation of Sub-Fs Nuclear Dynamics Using High-Harmonic Spectroscopy -- 4.6.2 Observation of Laser-Induced Modi cation of the Electronic Structure -- 4.6.3 Measurement and Laser Control of Charge Migration in Ionized Iodoacetylene -- 4.7 Attosecond Time Delays in Molecular Photoionization -- 4.7.1 Phase-Resolved Near-Threshold Photoionization of Molecular Nitrogen -- 4.7.2 Attosecond Photoionization Delays in the Nitrous Oxide and Water Molecules -- 4.7.3 Stereo-Wigner Time Delays in Molecular Photoionization of Carbon Monoxide -- 4.7.4 Phase-Resolved Two-Color Multiphoton Ionization of Chiral Molecules -- 4.8 Attosecond Transient Absorption Spectroscopy -- 4.8.1 Dynamics of Rydberg and Valence States in Molecular Nitrogen Probed by ATAS -- 4.8.2 Time-Resolved X-Ray Absorption Spectroscopy Using a Table-Top High-Harmonic Source -- References -- 5 Electronic Decay Cascades in Chemical Environment -- 5.1 Introduction -- 5.2 Interatomic Decay Processes -- 5.2.1 Interatomic Coulombic Decay (ICD) -- 5.2.2 Electron-Transfer Mediated Decay -- 5.2.3 Radiative Charge Transfer and Charge Transfer Through Curve Crossing -- 5.3 Decay Cascades in Weakly Bound Atomic and Molecular Systems -- 5.3.1 Auger-ICD Cascades -- 5.3.2 Resonant Auger-ICD Cascades -- 5.3.3 Auger-ETMD Cascade -- 5.3.4 Electronic Decay Cascades in Microsolvated Clusters -- 5.3.5 Interatomic Coulombic Decay Cascades in Multiply Excited Clusters -- 5.4 Concluding Remarks -- Acknowledgments -- References -- 6 Ab Initio Semiclassical Evaluation of Vibrationally Resolved Electronic Spectra With Thawed Gaussians -- 6.1 Introduction -- 6.1.1 Notation -- 6.1.2 List of Acronyms -- 6.2 Molecular Quantum Dynamics Induced by the Interaction With Electromagnetic Field 6.2.1 Exact Dynamics, Electric Dipole Approximation, and Quasiresonant Condition -- 6.2.2 Perturbation Theory, Zero-Temperature and Condon Approximations -- 6.3 Semiclassical Approximation to Quantum Dynamics -- 6.4 Thawed Gaussian Approximation -- 6.4.1 Thawed Gaussian Approximation -- 6.4.2 Parameter Propagation of the Thawed Gaussian Wavepacket -- 6.4.3 Extended Thawed Gaussian Approximation (ETGA) -- 6.4.4 Multiple Thawed Gaussians (n-TGA) -- 6.4.5 (Non)Conservation of Norm, Inner Product, and Energy -- 6.5 Time-Dependent Approach to Electronic Spectroscopy -- 6.5.1 Linear Absorption Spectra -- 6.5.2 Condon Approximation -- 6.5.3 Connection to Fidelity Amplitude -- 6.5.4 Herzberg-Teller Approximation -- 6.5.5 Rotational Averaging of the Spectrum -- 6.5.6 Time-Resolved Electronic Spectra -- 6.6 "Standard Models" of Electronic Spectroscopy -- 6.6.1 Several Few-Dimensional Examples -- 6.7 On-the-Fly Ab Initio Implementation of the Thawed Gaussian Approximation -- 6.8 Examples of on-the-Fly Ab Initio Calculations of Electronic Spectra -- 6.8.1 Absorption and Photoelectron Spectra of Ammonia -- 6.8.2 Absorption Spectra Beyond Condon Approximation -- 6.8.3 Emission Spectra of Large Systems: Quinquethiophene -- 6.8.4 Vibrationally Resolved Pump-Probe Spectra -- 6.9 Conclusion and Outlook -- References -- 7 Atomic and Molecular Tunneling Processes in Chemistry -- 7.1 Introduction -- 7.1.1 Aim and Overview of the Article -- 7.1.2 The Quantum Mechanical Tunneling Process for "Heavy" Particles (Atoms and Molecules): a Tour d'Horizon -- 7.1.3 A Brief History of the Discovery of the Tunnel Effect and Further Developments -- 7.2 Tunneling and Parity Violation in Chiral Molecules -- 7.2.1 Exact and Approximate Studies of Tunneling in Prototypical Molecules: Hydrogen Peroxide and Ammonia Isotopomers 7.2.2 Tunneling in Chiral Molecules Where Parity Violation Dominates Over Tunneling Molecular spectroscopy.. Quantum theory |
title | Molecular spectroscopy and quantum dynamics |
title_auth | Molecular spectroscopy and quantum dynamics |
title_exact_search | Molecular spectroscopy and quantum dynamics |
title_exact_search_txtP | Molecular spectroscopy and quantum dynamics |
title_full | Molecular spectroscopy and quantum dynamics edited by Roberto Marquardt, Martin Quack |
title_fullStr | Molecular spectroscopy and quantum dynamics edited by Roberto Marquardt, Martin Quack |
title_full_unstemmed | Molecular spectroscopy and quantum dynamics edited by Roberto Marquardt, Martin Quack |
title_short | Molecular spectroscopy and quantum dynamics |
title_sort | molecular spectroscopy and quantum dynamics |
topic | Molecular spectroscopy.. Quantum theory |
topic_facet | Molecular spectroscopy.. Quantum theory |
work_keys_str_mv | AT marquardtroberto molecularspectroscopyandquantumdynamics AT quackmartin molecularspectroscopyandquantumdynamics |