Electromagnetic fields: theory and applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2021
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9781000168556 9781003046134 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441975 | ||
003 | DE-604 | ||
005 | 20220103 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781000168556 |9 978-1-00-016855-6 | ||
020 | |a 9781003046134 |9 978-1-003-04613-4 | ||
035 | |a (ZDB-30-PQE)EBC6350391 | ||
035 | |a (ZDB-30-PAD)EBC6350391 | ||
035 | |a (ZDB-89-EBL)EBL6350391 | ||
035 | |a (OCoLC)1196254138 | ||
035 | |a (DE-599)BVBBV047441975 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 530.14099999999996 | |
100 | 1 | |a Khan, Ahmad Shahid |e Verfasser |0 (DE-588)1067160523 |4 aut | |
245 | 1 | 0 | |a Electromagnetic fields |b theory and applications |c Ahmad Shahid Khan and Saurabh Kumar Mukerji |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2021 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Authors -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Historical Perspective -- 1.2.1 Conceptual Stage -- 1.2.2 Era of Basic Laws -- 1.2.3 Era of Inventions -- 1.3 Sphere of Electromagnetics -- 1.3.1 Tiny Charged Particles -- 1.3.2 Behaviour of Tiny Charged Particles -- 1.3.3 Role of Maxwell Equations -- 1.4 Teaching of Electromagnetics -- 1.4.1 Importance of Electromagnetics -- 1.4.2 Acceptability of the Subject -- 1.4.3 Present Scenario -- 1.4.4 Features of the Present Text -- Descriptive Questions -- Further Reading -- Chapter 2 Field Applications -- 2.1 Introduction -- 2.2 Classification of Fields -- 2.2.1 Electrostatic Field -- 2.2.2 Magnetostatic Field -- 2.2.3 Electromagnetic Field -- 2.3 Applications of an Electrostatic Field -- 2.3.1 Electrostatic Generators -- 2.3.2 Electrostatic Filters -- 2.3.3 Photocopiers -- 2.3.4 Electrostatic Separators -- 2.3.5 Production of Ions -- 2.3.6 Two- or Four-Point Probe Instruments -- 2.4 Applications of a Magnetostatic Field -- 2.4.1 Non-Destructive Testing -- 2.4.2 Magnetic Levitation -- 2.4.3 Magnetic Separator -- 2.4.4 Magnetic Storage -- 2.4.5 MHD Generator -- 2.5 Field Applications of Electromagnetic Fields -- 2.5.1 Electrical Machines -- 2.5.2 Transformers -- 2.5.3 Transmission Lines -- 2.5.4 Circuit Theory -- 2.5.5 Power Electronics -- 2.5.6 Electron Tubes -- 2.5.7 Semiconductor Devices -- 2.5.8 Signal Processing -- 2.5.9 Antennas -- 2.5.10 Wave Propagation -- 2.5.11 Radar Systems -- 2.5.12 Navigation -- 2.5.13 Space Exploration -- 2.5.14 Wireless Technology -- 2.5.15 High-Frequency Devices -- 2.5.16 Integrated Circuits -- 2.5.17 Computers -- 2.5.18 Digital Subscriber Lines -- 2.5.19 Optical Fibers -- 2.5.20 Optical Communication -- 2.5.20.1 Light Generation -- 2.5.20.2 Light Modulation | |
505 | 8 | |a 2.5.20.3 Light Propagation -- 2.5.20.4 Light Detection -- 2.5.21 Biomedical Optical Imaging -- 2.5.22 Magnetic Resonance Imaging -- 2.5.23 Nanotechnology -- 2.6 Conclusion -- Descriptive Questions -- Further Reading -- Chapter 3 Coordinate Systems and Vector Algebra -- 3.1 Introduction -- 3.2 Coordinate Systems -- 3.2.1 Types of Coordinate Systems -- 3.2.1.1 Two-Dimensional Coordinate Systems -- 3.2.1.2 Three-Dimensional Coordinate Systems -- 3.2.2 Orthogonal Coordinate Systems -- 3.2.2.1 Commonly Used Orthogonal Systems -- 3.2.2.2 Right- and Left-Handed Systems -- 3.2.3 Cartesian Coordinate System -- 3.2.3.1 Elemental Volume -- 3.2.3.2 Shapes of Constant Coordinate Surfaces -- 3.2.3.3 Applications -- 3.2.4 Cylindrical Coordinates System -- 3.2.4.1 Elemental Volume -- 3.2.4.2 Shapes of Constant Coordinate Surfaces -- 3.2.4.3 Applications -- 3.2.5 Spherical Coordinates System -- 3.2.5.1 Elemental Volume -- 3.2.5.2 Shapes of Constant Coordinate Surfaces -- 3.2.5.3 Applications -- 3.3 Scalars and Vectors -- 3.3.1 Vector Representation -- 3.3.2 Vector Algebra -- 3.3.2.1 Vector Addition -- 3.3.2.2 Vector Subtraction -- 3.3.2.3 Multiplication of Vectors -- 3.4 Treatment of Vectors in Different Coordinate Systems -- 3.4.1 Cartesian Coordinate System -- 3.4.1.1 Differential (Vector) Length -- 3.4.1.2 Differential (Vector) Surfaces -- 3.4.1.3 Vector Representation -- 3.4.1.4 Dot Product of Two Vectors -- 3.4.1.5 Cross-Product of Two Vectors -- 3.4.2 Cylindrical Coordinates System -- 3.4.2.1 Differential (Vector) Length -- 3.4.2.2 Differential (Vector) Surfaces -- 3.4.2.3 Vector Representation -- 3.4.2.4 Dot Product of Two Vectors -- 3.4.2.5 Cross-Product of Two Vectors -- 3.4.3 Spherical Coordinates System -- 3.4.3.1 Differential (Vector) Length -- 3.4.3.2 Differential (Vector) Surfaces -- 3.4.3.3 Vector Representation -- 3.4.3.4 Dot Product of Two Vectors | |
505 | 8 | |a 3.4.3.5 Cross-Product of Two Vectors -- 3.5 Coordinate Transformation -- 3.5.1 Relation between Coordinates -- 3.5.1.1 Cartesian and Cylindrical -- 3.5.1.2 Cartesian and Spherical -- 3.5.2 Transformation between Rectangular and Cylindrical Coordinates -- 3.5.3 Transformation between Rectangular and Spherical Coordinates -- 3.5.4 Problems Involving Complex Geometries -- 3.5.4.1 Division of Configuration into Regions -- 3.5.4.2 Use of More than One Coordinate System -- Descriptive Questions -- Chapter 4 Vector Calculus -- 4.1 Introduction -- 4.2 Gradient Operation -- 4.2.1 Physical Description -- 4.2.2 Mathematical Formulation -- 4.2.3 Information Imparted by the Gradient Relation -- 4.2.4 Gradient Expressions in Different Coordinate Systems -- 4.2.5 Vector Differential Operator Del -- 4.2.6 Applications -- 4.3 Divergence Operation -- 4.3.1 Physical Description -- 4.3.2 Mathematical Formulation -- 4.3.2.1 Field Configuration -- 4.3.2.2 Vector Surfaces -- 4.3.2.3 Flux Densities at Different Surfaces -- 4.3.2.4 Flux Crossing through Different Surfaces -- 4.3.2.5 Total Flux -- 4.3.2.6 Mathematical Expressions -- 4.3.2.7 Physical Interpretation of Mathematical Relation -- 4.3.3 Solenoidal Field -- 4.3.4 Divergence Expressions in Different Coordinates -- 4.3.5 Applications -- 4.4 Curl Operation -- 4.4.1 Physical Description -- 4.4.2 Mathematical Formulation -- 4.4.2.1 Values of F at Different Loop Segments -- 4.4.2.2 Lengths of Different Loop Segments -- 4.4.2.3 Contour Integration of F -- 4.4.2.4 Definition of Curl -- 4.4.2.5 Some Salient Features of Curl -- 4.4.3 Rotational Field -- 4.4.4 Curl Expressions in Different Coordinate Systems -- 4.4.5 Applications -- 4.5 Laplacian Operator and Its Applications -- 4.5.1 Laplacian Operator -- 4.5.1.1 Laplacian for Scalar Operand -- 4.5.1.2 Laplacian for Vector Operand | |
505 | 8 | |a 4.5.2 Defined and Undefined Vector Operations -- 4.5.3 Vector Identities -- 4.6 Integrals -- 4.6.1 Line Integral -- 4.6.1.1 Line Integral in Different Coordinates -- 4.6.1.2 Evaluation of Line Integrals -- 4.6.1.3 Applications -- 4.6.2 Surface Integral -- 4.6.2.1 Surface and Its Types -- 4.6.2.2 Evaluation of Surface Integral -- 4.6.2.3 Applications -- 4.7 Theorems -- 4.7.1 Divergence Theorem -- 4.7.1.1 Statement of the Theorem -- 4.7.1.2 Mathematical Form -- 4.7.2 Stokes' Theorem -- 4.7.2.1 Statement of the Theorem -- 4.7.2.2 Mathematical Form -- 4.7.3 Green's Theorems -- 4.7.3.1 First Form of Green's Theorem -- 4.7.3.2 Second Form of Green's Theorem -- 4.8 Other Useful Tools -- Descriptive Questions -- Further Reading -- Chapter 5 Electric Field Intensity -- 5.1 Introduction -- 5.2 Coulomb's Law and Electric Field Intensity -- 5.2.1 Coulomb's Law -- 5.2.2 Coulomb's Constant -- 5.2.3 Validity of Coulomb's Law -- 5.2.4 Similarity between Electric and Gravitational Forces -- 5.2.5 Coulomb's Force in Vector Form -- 5.2.6 Charge Accumulation -- 5.2.7 Computation of Force -- 5.2.8 Magnitude of Force -- 5.2.9 Electric Flux (or Force) Lines -- 5.2.10 Electric Field Intensity -- 5.3 Field due to Point Charges -- 5.3.1 Field due to a Single Point Charge -- 5.3.2 Field due to Discrete Charges -- 5.3.3 Analogy between Gravitational and Electric Fields -- 5.4 Field due to Line Charge -- 5.4.1 Forms of Line Charge Distribution -- 5.4.2 Line Charge Density and the Total Charge -- 5.4.3 Field Configurations due to Different Types of Line Charges -- 5.4.3.1 Field due to an Infinite Line Charge -- 5.4.3.2 Field due to a Finite Line Charge -- 5.4.4 E Field due to Different Line Charge Distributions -- 5.4.4.1 Field due to Uniform Line Charge at Point P on y-Axis -- 5.4.4.2 Field due to Uniform Line Charge at Point P (ρ,φ,z) | |
505 | 8 | |a 5.4.4.3 Field due to Finite and Asymmetrical Line Charges -- 5.4.4.4 Field due to an Infinite Line Charge Lying in the x-y Plane -- 5.4.4.5 Field due to Two Infinite Line Charges in the x-y Plane -- 5.5 Surface Charge Distribution -- 5.5.1 Forms of Surface Charge Distribution -- 5.5.2 Surface Charge Density and the Total Charge -- 5.5.3 Field Configurations for Different Surface Charge Distributions -- 5.5.3.1 Field due to Uniform Surface Charge -- 5.5.3.2 Field due to Non-Uniform Surface Charge -- 5.5.4 Field due to Different Sheets of Charges -- 5.5.4.1 Field due to a Single Sheet -- 5.5.4.2 Fields due to Multiple Sheets -- 5.6 Volume Charge Distribution -- 5.6.1 Forms of Volume Charge Distribution -- 5.6.2 Volume Charge Density and the Total Charge -- 5.6.3 Field due to a Finite Volume Charge Distribution -- Descriptive Questions -- Further Reading -- Chapter 6 Electric Flux Density -- 6.1 Introduction -- 6.2 Gauss' Law -- 6.2.1 Flux and Its Dependence -- 6.2.2 Faraday's Experiment -- 6.3 Flux Density -- 6.3.1 Relation between Flux Density and Field Intensity -- 6.3.2 Estimation of Electric Flux -- 6.3.2.1 Electric Flux and Oriented Surfaces -- 6.3.2.2 Electric Flux and a Cubical Configuration -- 6.4 The Gaussian Surface -- 6.4.1 Gaussian Surface for a Point Charge -- 6.4.2 Gaussian Surface for a Line Charge -- 6.4.3 Gaussian Surface for a Coaxial Cable -- 6.5 Asymmetrical Field Distributions -- 6.5.1 First Maxwell's Equation -- 6.5.2 Expressions of Divergence in Different Coordinate Systems -- 6.5.3 Divergence Theorem -- Descriptive Questions -- Further Reading -- Chapter 7 Potential and Potential Energy -- 7.1 Introduction -- 7.2 Electrostatic Fields -- 7.2.1 Genesis of the Electrostatic Fields -- 7.2.2 Scalar Electric Potential -- 7.2.3 Potential Energy of Charged Particles -- 7.3 Scalar Electric Potential Due to Different Sources | |
505 | 8 | |a 7.3.1 Potential Due to Point Charges | |
650 | 4 | |a Electromagnetic fields-Textbooks | |
700 | 1 | |a Mukerji, Saurabh Kumar |e Verfasser |0 (DE-588)1075055687 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Khan, Ahmad Shahid |t Electromagnetic Fields |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-367-49430-8 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844127 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6350391 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734752448512 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Khan, Ahmad Shahid Mukerji, Saurabh Kumar |
author_GND | (DE-588)1067160523 (DE-588)1075055687 |
author_facet | Khan, Ahmad Shahid Mukerji, Saurabh Kumar |
author_role | aut aut |
author_sort | Khan, Ahmad Shahid |
author_variant | a s k as ask s k m sk skm |
building | Verbundindex |
bvnumber | BV047441975 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Authors -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Historical Perspective -- 1.2.1 Conceptual Stage -- 1.2.2 Era of Basic Laws -- 1.2.3 Era of Inventions -- 1.3 Sphere of Electromagnetics -- 1.3.1 Tiny Charged Particles -- 1.3.2 Behaviour of Tiny Charged Particles -- 1.3.3 Role of Maxwell Equations -- 1.4 Teaching of Electromagnetics -- 1.4.1 Importance of Electromagnetics -- 1.4.2 Acceptability of the Subject -- 1.4.3 Present Scenario -- 1.4.4 Features of the Present Text -- Descriptive Questions -- Further Reading -- Chapter 2 Field Applications -- 2.1 Introduction -- 2.2 Classification of Fields -- 2.2.1 Electrostatic Field -- 2.2.2 Magnetostatic Field -- 2.2.3 Electromagnetic Field -- 2.3 Applications of an Electrostatic Field -- 2.3.1 Electrostatic Generators -- 2.3.2 Electrostatic Filters -- 2.3.3 Photocopiers -- 2.3.4 Electrostatic Separators -- 2.3.5 Production of Ions -- 2.3.6 Two- or Four-Point Probe Instruments -- 2.4 Applications of a Magnetostatic Field -- 2.4.1 Non-Destructive Testing -- 2.4.2 Magnetic Levitation -- 2.4.3 Magnetic Separator -- 2.4.4 Magnetic Storage -- 2.4.5 MHD Generator -- 2.5 Field Applications of Electromagnetic Fields -- 2.5.1 Electrical Machines -- 2.5.2 Transformers -- 2.5.3 Transmission Lines -- 2.5.4 Circuit Theory -- 2.5.5 Power Electronics -- 2.5.6 Electron Tubes -- 2.5.7 Semiconductor Devices -- 2.5.8 Signal Processing -- 2.5.9 Antennas -- 2.5.10 Wave Propagation -- 2.5.11 Radar Systems -- 2.5.12 Navigation -- 2.5.13 Space Exploration -- 2.5.14 Wireless Technology -- 2.5.15 High-Frequency Devices -- 2.5.16 Integrated Circuits -- 2.5.17 Computers -- 2.5.18 Digital Subscriber Lines -- 2.5.19 Optical Fibers -- 2.5.20 Optical Communication -- 2.5.20.1 Light Generation -- 2.5.20.2 Light Modulation 2.5.20.3 Light Propagation -- 2.5.20.4 Light Detection -- 2.5.21 Biomedical Optical Imaging -- 2.5.22 Magnetic Resonance Imaging -- 2.5.23 Nanotechnology -- 2.6 Conclusion -- Descriptive Questions -- Further Reading -- Chapter 3 Coordinate Systems and Vector Algebra -- 3.1 Introduction -- 3.2 Coordinate Systems -- 3.2.1 Types of Coordinate Systems -- 3.2.1.1 Two-Dimensional Coordinate Systems -- 3.2.1.2 Three-Dimensional Coordinate Systems -- 3.2.2 Orthogonal Coordinate Systems -- 3.2.2.1 Commonly Used Orthogonal Systems -- 3.2.2.2 Right- and Left-Handed Systems -- 3.2.3 Cartesian Coordinate System -- 3.2.3.1 Elemental Volume -- 3.2.3.2 Shapes of Constant Coordinate Surfaces -- 3.2.3.3 Applications -- 3.2.4 Cylindrical Coordinates System -- 3.2.4.1 Elemental Volume -- 3.2.4.2 Shapes of Constant Coordinate Surfaces -- 3.2.4.3 Applications -- 3.2.5 Spherical Coordinates System -- 3.2.5.1 Elemental Volume -- 3.2.5.2 Shapes of Constant Coordinate Surfaces -- 3.2.5.3 Applications -- 3.3 Scalars and Vectors -- 3.3.1 Vector Representation -- 3.3.2 Vector Algebra -- 3.3.2.1 Vector Addition -- 3.3.2.2 Vector Subtraction -- 3.3.2.3 Multiplication of Vectors -- 3.4 Treatment of Vectors in Different Coordinate Systems -- 3.4.1 Cartesian Coordinate System -- 3.4.1.1 Differential (Vector) Length -- 3.4.1.2 Differential (Vector) Surfaces -- 3.4.1.3 Vector Representation -- 3.4.1.4 Dot Product of Two Vectors -- 3.4.1.5 Cross-Product of Two Vectors -- 3.4.2 Cylindrical Coordinates System -- 3.4.2.1 Differential (Vector) Length -- 3.4.2.2 Differential (Vector) Surfaces -- 3.4.2.3 Vector Representation -- 3.4.2.4 Dot Product of Two Vectors -- 3.4.2.5 Cross-Product of Two Vectors -- 3.4.3 Spherical Coordinates System -- 3.4.3.1 Differential (Vector) Length -- 3.4.3.2 Differential (Vector) Surfaces -- 3.4.3.3 Vector Representation -- 3.4.3.4 Dot Product of Two Vectors 3.4.3.5 Cross-Product of Two Vectors -- 3.5 Coordinate Transformation -- 3.5.1 Relation between Coordinates -- 3.5.1.1 Cartesian and Cylindrical -- 3.5.1.2 Cartesian and Spherical -- 3.5.2 Transformation between Rectangular and Cylindrical Coordinates -- 3.5.3 Transformation between Rectangular and Spherical Coordinates -- 3.5.4 Problems Involving Complex Geometries -- 3.5.4.1 Division of Configuration into Regions -- 3.5.4.2 Use of More than One Coordinate System -- Descriptive Questions -- Chapter 4 Vector Calculus -- 4.1 Introduction -- 4.2 Gradient Operation -- 4.2.1 Physical Description -- 4.2.2 Mathematical Formulation -- 4.2.3 Information Imparted by the Gradient Relation -- 4.2.4 Gradient Expressions in Different Coordinate Systems -- 4.2.5 Vector Differential Operator Del -- 4.2.6 Applications -- 4.3 Divergence Operation -- 4.3.1 Physical Description -- 4.3.2 Mathematical Formulation -- 4.3.2.1 Field Configuration -- 4.3.2.2 Vector Surfaces -- 4.3.2.3 Flux Densities at Different Surfaces -- 4.3.2.4 Flux Crossing through Different Surfaces -- 4.3.2.5 Total Flux -- 4.3.2.6 Mathematical Expressions -- 4.3.2.7 Physical Interpretation of Mathematical Relation -- 4.3.3 Solenoidal Field -- 4.3.4 Divergence Expressions in Different Coordinates -- 4.3.5 Applications -- 4.4 Curl Operation -- 4.4.1 Physical Description -- 4.4.2 Mathematical Formulation -- 4.4.2.1 Values of F at Different Loop Segments -- 4.4.2.2 Lengths of Different Loop Segments -- 4.4.2.3 Contour Integration of F -- 4.4.2.4 Definition of Curl -- 4.4.2.5 Some Salient Features of Curl -- 4.4.3 Rotational Field -- 4.4.4 Curl Expressions in Different Coordinate Systems -- 4.4.5 Applications -- 4.5 Laplacian Operator and Its Applications -- 4.5.1 Laplacian Operator -- 4.5.1.1 Laplacian for Scalar Operand -- 4.5.1.2 Laplacian for Vector Operand 4.5.2 Defined and Undefined Vector Operations -- 4.5.3 Vector Identities -- 4.6 Integrals -- 4.6.1 Line Integral -- 4.6.1.1 Line Integral in Different Coordinates -- 4.6.1.2 Evaluation of Line Integrals -- 4.6.1.3 Applications -- 4.6.2 Surface Integral -- 4.6.2.1 Surface and Its Types -- 4.6.2.2 Evaluation of Surface Integral -- 4.6.2.3 Applications -- 4.7 Theorems -- 4.7.1 Divergence Theorem -- 4.7.1.1 Statement of the Theorem -- 4.7.1.2 Mathematical Form -- 4.7.2 Stokes' Theorem -- 4.7.2.1 Statement of the Theorem -- 4.7.2.2 Mathematical Form -- 4.7.3 Green's Theorems -- 4.7.3.1 First Form of Green's Theorem -- 4.7.3.2 Second Form of Green's Theorem -- 4.8 Other Useful Tools -- Descriptive Questions -- Further Reading -- Chapter 5 Electric Field Intensity -- 5.1 Introduction -- 5.2 Coulomb's Law and Electric Field Intensity -- 5.2.1 Coulomb's Law -- 5.2.2 Coulomb's Constant -- 5.2.3 Validity of Coulomb's Law -- 5.2.4 Similarity between Electric and Gravitational Forces -- 5.2.5 Coulomb's Force in Vector Form -- 5.2.6 Charge Accumulation -- 5.2.7 Computation of Force -- 5.2.8 Magnitude of Force -- 5.2.9 Electric Flux (or Force) Lines -- 5.2.10 Electric Field Intensity -- 5.3 Field due to Point Charges -- 5.3.1 Field due to a Single Point Charge -- 5.3.2 Field due to Discrete Charges -- 5.3.3 Analogy between Gravitational and Electric Fields -- 5.4 Field due to Line Charge -- 5.4.1 Forms of Line Charge Distribution -- 5.4.2 Line Charge Density and the Total Charge -- 5.4.3 Field Configurations due to Different Types of Line Charges -- 5.4.3.1 Field due to an Infinite Line Charge -- 5.4.3.2 Field due to a Finite Line Charge -- 5.4.4 E Field due to Different Line Charge Distributions -- 5.4.4.1 Field due to Uniform Line Charge at Point P on y-Axis -- 5.4.4.2 Field due to Uniform Line Charge at Point P (ρ,φ,z) 5.4.4.3 Field due to Finite and Asymmetrical Line Charges -- 5.4.4.4 Field due to an Infinite Line Charge Lying in the x-y Plane -- 5.4.4.5 Field due to Two Infinite Line Charges in the x-y Plane -- 5.5 Surface Charge Distribution -- 5.5.1 Forms of Surface Charge Distribution -- 5.5.2 Surface Charge Density and the Total Charge -- 5.5.3 Field Configurations for Different Surface Charge Distributions -- 5.5.3.1 Field due to Uniform Surface Charge -- 5.5.3.2 Field due to Non-Uniform Surface Charge -- 5.5.4 Field due to Different Sheets of Charges -- 5.5.4.1 Field due to a Single Sheet -- 5.5.4.2 Fields due to Multiple Sheets -- 5.6 Volume Charge Distribution -- 5.6.1 Forms of Volume Charge Distribution -- 5.6.2 Volume Charge Density and the Total Charge -- 5.6.3 Field due to a Finite Volume Charge Distribution -- Descriptive Questions -- Further Reading -- Chapter 6 Electric Flux Density -- 6.1 Introduction -- 6.2 Gauss' Law -- 6.2.1 Flux and Its Dependence -- 6.2.2 Faraday's Experiment -- 6.3 Flux Density -- 6.3.1 Relation between Flux Density and Field Intensity -- 6.3.2 Estimation of Electric Flux -- 6.3.2.1 Electric Flux and Oriented Surfaces -- 6.3.2.2 Electric Flux and a Cubical Configuration -- 6.4 The Gaussian Surface -- 6.4.1 Gaussian Surface for a Point Charge -- 6.4.2 Gaussian Surface for a Line Charge -- 6.4.3 Gaussian Surface for a Coaxial Cable -- 6.5 Asymmetrical Field Distributions -- 6.5.1 First Maxwell's Equation -- 6.5.2 Expressions of Divergence in Different Coordinate Systems -- 6.5.3 Divergence Theorem -- Descriptive Questions -- Further Reading -- Chapter 7 Potential and Potential Energy -- 7.1 Introduction -- 7.2 Electrostatic Fields -- 7.2.1 Genesis of the Electrostatic Fields -- 7.2.2 Scalar Electric Potential -- 7.2.3 Potential Energy of Charged Particles -- 7.3 Scalar Electric Potential Due to Different Sources 7.3.1 Potential Due to Point Charges |
ctrlnum | (ZDB-30-PQE)EBC6350391 (ZDB-30-PAD)EBC6350391 (ZDB-89-EBL)EBL6350391 (OCoLC)1196254138 (DE-599)BVBBV047441975 |
dewey-full | 530.14099999999996 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14099999999996 |
dewey-search | 530.14099999999996 |
dewey-sort | 3530.14099999999996 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11052nmm a2200481zc 4500</leader><controlfield tag="001">BV047441975</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220103 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000168556</subfield><subfield code="9">978-1-00-016855-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003046134</subfield><subfield code="9">978-1-003-04613-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6350391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6350391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6350391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1196254138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441975</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14099999999996</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khan, Ahmad Shahid</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1067160523</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electromagnetic fields</subfield><subfield code="b">theory and applications</subfield><subfield code="c">Ahmad Shahid Khan and Saurabh Kumar Mukerji</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Authors -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Historical Perspective -- 1.2.1 Conceptual Stage -- 1.2.2 Era of Basic Laws -- 1.2.3 Era of Inventions -- 1.3 Sphere of Electromagnetics -- 1.3.1 Tiny Charged Particles -- 1.3.2 Behaviour of Tiny Charged Particles -- 1.3.3 Role of Maxwell Equations -- 1.4 Teaching of Electromagnetics -- 1.4.1 Importance of Electromagnetics -- 1.4.2 Acceptability of the Subject -- 1.4.3 Present Scenario -- 1.4.4 Features of the Present Text -- Descriptive Questions -- Further Reading -- Chapter 2 Field Applications -- 2.1 Introduction -- 2.2 Classification of Fields -- 2.2.1 Electrostatic Field -- 2.2.2 Magnetostatic Field -- 2.2.3 Electromagnetic Field -- 2.3 Applications of an Electrostatic Field -- 2.3.1 Electrostatic Generators -- 2.3.2 Electrostatic Filters -- 2.3.3 Photocopiers -- 2.3.4 Electrostatic Separators -- 2.3.5 Production of Ions -- 2.3.6 Two- or Four-Point Probe Instruments -- 2.4 Applications of a Magnetostatic Field -- 2.4.1 Non-Destructive Testing -- 2.4.2 Magnetic Levitation -- 2.4.3 Magnetic Separator -- 2.4.4 Magnetic Storage -- 2.4.5 MHD Generator -- 2.5 Field Applications of Electromagnetic Fields -- 2.5.1 Electrical Machines -- 2.5.2 Transformers -- 2.5.3 Transmission Lines -- 2.5.4 Circuit Theory -- 2.5.5 Power Electronics -- 2.5.6 Electron Tubes -- 2.5.7 Semiconductor Devices -- 2.5.8 Signal Processing -- 2.5.9 Antennas -- 2.5.10 Wave Propagation -- 2.5.11 Radar Systems -- 2.5.12 Navigation -- 2.5.13 Space Exploration -- 2.5.14 Wireless Technology -- 2.5.15 High-Frequency Devices -- 2.5.16 Integrated Circuits -- 2.5.17 Computers -- 2.5.18 Digital Subscriber Lines -- 2.5.19 Optical Fibers -- 2.5.20 Optical Communication -- 2.5.20.1 Light Generation -- 2.5.20.2 Light Modulation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5.20.3 Light Propagation -- 2.5.20.4 Light Detection -- 2.5.21 Biomedical Optical Imaging -- 2.5.22 Magnetic Resonance Imaging -- 2.5.23 Nanotechnology -- 2.6 Conclusion -- Descriptive Questions -- Further Reading -- Chapter 3 Coordinate Systems and Vector Algebra -- 3.1 Introduction -- 3.2 Coordinate Systems -- 3.2.1 Types of Coordinate Systems -- 3.2.1.1 Two-Dimensional Coordinate Systems -- 3.2.1.2 Three-Dimensional Coordinate Systems -- 3.2.2 Orthogonal Coordinate Systems -- 3.2.2.1 Commonly Used Orthogonal Systems -- 3.2.2.2 Right- and Left-Handed Systems -- 3.2.3 Cartesian Coordinate System -- 3.2.3.1 Elemental Volume -- 3.2.3.2 Shapes of Constant Coordinate Surfaces -- 3.2.3.3 Applications -- 3.2.4 Cylindrical Coordinates System -- 3.2.4.1 Elemental Volume -- 3.2.4.2 Shapes of Constant Coordinate Surfaces -- 3.2.4.3 Applications -- 3.2.5 Spherical Coordinates System -- 3.2.5.1 Elemental Volume -- 3.2.5.2 Shapes of Constant Coordinate Surfaces -- 3.2.5.3 Applications -- 3.3 Scalars and Vectors -- 3.3.1 Vector Representation -- 3.3.2 Vector Algebra -- 3.3.2.1 Vector Addition -- 3.3.2.2 Vector Subtraction -- 3.3.2.3 Multiplication of Vectors -- 3.4 Treatment of Vectors in Different Coordinate Systems -- 3.4.1 Cartesian Coordinate System -- 3.4.1.1 Differential (Vector) Length -- 3.4.1.2 Differential (Vector) Surfaces -- 3.4.1.3 Vector Representation -- 3.4.1.4 Dot Product of Two Vectors -- 3.4.1.5 Cross-Product of Two Vectors -- 3.4.2 Cylindrical Coordinates System -- 3.4.2.1 Differential (Vector) Length -- 3.4.2.2 Differential (Vector) Surfaces -- 3.4.2.3 Vector Representation -- 3.4.2.4 Dot Product of Two Vectors -- 3.4.2.5 Cross-Product of Two Vectors -- 3.4.3 Spherical Coordinates System -- 3.4.3.1 Differential (Vector) Length -- 3.4.3.2 Differential (Vector) Surfaces -- 3.4.3.3 Vector Representation -- 3.4.3.4 Dot Product of Two Vectors</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.3.5 Cross-Product of Two Vectors -- 3.5 Coordinate Transformation -- 3.5.1 Relation between Coordinates -- 3.5.1.1 Cartesian and Cylindrical -- 3.5.1.2 Cartesian and Spherical -- 3.5.2 Transformation between Rectangular and Cylindrical Coordinates -- 3.5.3 Transformation between Rectangular and Spherical Coordinates -- 3.5.4 Problems Involving Complex Geometries -- 3.5.4.1 Division of Configuration into Regions -- 3.5.4.2 Use of More than One Coordinate System -- Descriptive Questions -- Chapter 4 Vector Calculus -- 4.1 Introduction -- 4.2 Gradient Operation -- 4.2.1 Physical Description -- 4.2.2 Mathematical Formulation -- 4.2.3 Information Imparted by the Gradient Relation -- 4.2.4 Gradient Expressions in Different Coordinate Systems -- 4.2.5 Vector Differential Operator Del -- 4.2.6 Applications -- 4.3 Divergence Operation -- 4.3.1 Physical Description -- 4.3.2 Mathematical Formulation -- 4.3.2.1 Field Configuration -- 4.3.2.2 Vector Surfaces -- 4.3.2.3 Flux Densities at Different Surfaces -- 4.3.2.4 Flux Crossing through Different Surfaces -- 4.3.2.5 Total Flux -- 4.3.2.6 Mathematical Expressions -- 4.3.2.7 Physical Interpretation of Mathematical Relation -- 4.3.3 Solenoidal Field -- 4.3.4 Divergence Expressions in Different Coordinates -- 4.3.5 Applications -- 4.4 Curl Operation -- 4.4.1 Physical Description -- 4.4.2 Mathematical Formulation -- 4.4.2.1 Values of F at Different Loop Segments -- 4.4.2.2 Lengths of Different Loop Segments -- 4.4.2.3 Contour Integration of F -- 4.4.2.4 Definition of Curl -- 4.4.2.5 Some Salient Features of Curl -- 4.4.3 Rotational Field -- 4.4.4 Curl Expressions in Different Coordinate Systems -- 4.4.5 Applications -- 4.5 Laplacian Operator and Its Applications -- 4.5.1 Laplacian Operator -- 4.5.1.1 Laplacian for Scalar Operand -- 4.5.1.2 Laplacian for Vector Operand</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5.2 Defined and Undefined Vector Operations -- 4.5.3 Vector Identities -- 4.6 Integrals -- 4.6.1 Line Integral -- 4.6.1.1 Line Integral in Different Coordinates -- 4.6.1.2 Evaluation of Line Integrals -- 4.6.1.3 Applications -- 4.6.2 Surface Integral -- 4.6.2.1 Surface and Its Types -- 4.6.2.2 Evaluation of Surface Integral -- 4.6.2.3 Applications -- 4.7 Theorems -- 4.7.1 Divergence Theorem -- 4.7.1.1 Statement of the Theorem -- 4.7.1.2 Mathematical Form -- 4.7.2 Stokes' Theorem -- 4.7.2.1 Statement of the Theorem -- 4.7.2.2 Mathematical Form -- 4.7.3 Green's Theorems -- 4.7.3.1 First Form of Green's Theorem -- 4.7.3.2 Second Form of Green's Theorem -- 4.8 Other Useful Tools -- Descriptive Questions -- Further Reading -- Chapter 5 Electric Field Intensity -- 5.1 Introduction -- 5.2 Coulomb's Law and Electric Field Intensity -- 5.2.1 Coulomb's Law -- 5.2.2 Coulomb's Constant -- 5.2.3 Validity of Coulomb's Law -- 5.2.4 Similarity between Electric and Gravitational Forces -- 5.2.5 Coulomb's Force in Vector Form -- 5.2.6 Charge Accumulation -- 5.2.7 Computation of Force -- 5.2.8 Magnitude of Force -- 5.2.9 Electric Flux (or Force) Lines -- 5.2.10 Electric Field Intensity -- 5.3 Field due to Point Charges -- 5.3.1 Field due to a Single Point Charge -- 5.3.2 Field due to Discrete Charges -- 5.3.3 Analogy between Gravitational and Electric Fields -- 5.4 Field due to Line Charge -- 5.4.1 Forms of Line Charge Distribution -- 5.4.2 Line Charge Density and the Total Charge -- 5.4.3 Field Configurations due to Different Types of Line Charges -- 5.4.3.1 Field due to an Infinite Line Charge -- 5.4.3.2 Field due to a Finite Line Charge -- 5.4.4 E Field due to Different Line Charge Distributions -- 5.4.4.1 Field due to Uniform Line Charge at Point P on y-Axis -- 5.4.4.2 Field due to Uniform Line Charge at Point P (ρ,φ,z)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.4.3 Field due to Finite and Asymmetrical Line Charges -- 5.4.4.4 Field due to an Infinite Line Charge Lying in the x-y Plane -- 5.4.4.5 Field due to Two Infinite Line Charges in the x-y Plane -- 5.5 Surface Charge Distribution -- 5.5.1 Forms of Surface Charge Distribution -- 5.5.2 Surface Charge Density and the Total Charge -- 5.5.3 Field Configurations for Different Surface Charge Distributions -- 5.5.3.1 Field due to Uniform Surface Charge -- 5.5.3.2 Field due to Non-Uniform Surface Charge -- 5.5.4 Field due to Different Sheets of Charges -- 5.5.4.1 Field due to a Single Sheet -- 5.5.4.2 Fields due to Multiple Sheets -- 5.6 Volume Charge Distribution -- 5.6.1 Forms of Volume Charge Distribution -- 5.6.2 Volume Charge Density and the Total Charge -- 5.6.3 Field due to a Finite Volume Charge Distribution -- Descriptive Questions -- Further Reading -- Chapter 6 Electric Flux Density -- 6.1 Introduction -- 6.2 Gauss' Law -- 6.2.1 Flux and Its Dependence -- 6.2.2 Faraday's Experiment -- 6.3 Flux Density -- 6.3.1 Relation between Flux Density and Field Intensity -- 6.3.2 Estimation of Electric Flux -- 6.3.2.1 Electric Flux and Oriented Surfaces -- 6.3.2.2 Electric Flux and a Cubical Configuration -- 6.4 The Gaussian Surface -- 6.4.1 Gaussian Surface for a Point Charge -- 6.4.2 Gaussian Surface for a Line Charge -- 6.4.3 Gaussian Surface for a Coaxial Cable -- 6.5 Asymmetrical Field Distributions -- 6.5.1 First Maxwell's Equation -- 6.5.2 Expressions of Divergence in Different Coordinate Systems -- 6.5.3 Divergence Theorem -- Descriptive Questions -- Further Reading -- Chapter 7 Potential and Potential Energy -- 7.1 Introduction -- 7.2 Electrostatic Fields -- 7.2.1 Genesis of the Electrostatic Fields -- 7.2.2 Scalar Electric Potential -- 7.2.3 Potential Energy of Charged Particles -- 7.3 Scalar Electric Potential Due to Different Sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.3.1 Potential Due to Point Charges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic fields-Textbooks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukerji, Saurabh Kumar</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1075055687</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Khan, Ahmad Shahid</subfield><subfield code="t">Electromagnetic Fields</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-49430-8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844127</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6350391</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441975 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:24Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781000168556 9781003046134 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844127 |
oclc_num | 1196254138 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
spelling | Khan, Ahmad Shahid Verfasser (DE-588)1067160523 aut Electromagnetic fields theory and applications Ahmad Shahid Khan and Saurabh Kumar Mukerji First edition Boca Raton ; London ; New York CRC Press 2021 © 2021 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Authors -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Historical Perspective -- 1.2.1 Conceptual Stage -- 1.2.2 Era of Basic Laws -- 1.2.3 Era of Inventions -- 1.3 Sphere of Electromagnetics -- 1.3.1 Tiny Charged Particles -- 1.3.2 Behaviour of Tiny Charged Particles -- 1.3.3 Role of Maxwell Equations -- 1.4 Teaching of Electromagnetics -- 1.4.1 Importance of Electromagnetics -- 1.4.2 Acceptability of the Subject -- 1.4.3 Present Scenario -- 1.4.4 Features of the Present Text -- Descriptive Questions -- Further Reading -- Chapter 2 Field Applications -- 2.1 Introduction -- 2.2 Classification of Fields -- 2.2.1 Electrostatic Field -- 2.2.2 Magnetostatic Field -- 2.2.3 Electromagnetic Field -- 2.3 Applications of an Electrostatic Field -- 2.3.1 Electrostatic Generators -- 2.3.2 Electrostatic Filters -- 2.3.3 Photocopiers -- 2.3.4 Electrostatic Separators -- 2.3.5 Production of Ions -- 2.3.6 Two- or Four-Point Probe Instruments -- 2.4 Applications of a Magnetostatic Field -- 2.4.1 Non-Destructive Testing -- 2.4.2 Magnetic Levitation -- 2.4.3 Magnetic Separator -- 2.4.4 Magnetic Storage -- 2.4.5 MHD Generator -- 2.5 Field Applications of Electromagnetic Fields -- 2.5.1 Electrical Machines -- 2.5.2 Transformers -- 2.5.3 Transmission Lines -- 2.5.4 Circuit Theory -- 2.5.5 Power Electronics -- 2.5.6 Electron Tubes -- 2.5.7 Semiconductor Devices -- 2.5.8 Signal Processing -- 2.5.9 Antennas -- 2.5.10 Wave Propagation -- 2.5.11 Radar Systems -- 2.5.12 Navigation -- 2.5.13 Space Exploration -- 2.5.14 Wireless Technology -- 2.5.15 High-Frequency Devices -- 2.5.16 Integrated Circuits -- 2.5.17 Computers -- 2.5.18 Digital Subscriber Lines -- 2.5.19 Optical Fibers -- 2.5.20 Optical Communication -- 2.5.20.1 Light Generation -- 2.5.20.2 Light Modulation 2.5.20.3 Light Propagation -- 2.5.20.4 Light Detection -- 2.5.21 Biomedical Optical Imaging -- 2.5.22 Magnetic Resonance Imaging -- 2.5.23 Nanotechnology -- 2.6 Conclusion -- Descriptive Questions -- Further Reading -- Chapter 3 Coordinate Systems and Vector Algebra -- 3.1 Introduction -- 3.2 Coordinate Systems -- 3.2.1 Types of Coordinate Systems -- 3.2.1.1 Two-Dimensional Coordinate Systems -- 3.2.1.2 Three-Dimensional Coordinate Systems -- 3.2.2 Orthogonal Coordinate Systems -- 3.2.2.1 Commonly Used Orthogonal Systems -- 3.2.2.2 Right- and Left-Handed Systems -- 3.2.3 Cartesian Coordinate System -- 3.2.3.1 Elemental Volume -- 3.2.3.2 Shapes of Constant Coordinate Surfaces -- 3.2.3.3 Applications -- 3.2.4 Cylindrical Coordinates System -- 3.2.4.1 Elemental Volume -- 3.2.4.2 Shapes of Constant Coordinate Surfaces -- 3.2.4.3 Applications -- 3.2.5 Spherical Coordinates System -- 3.2.5.1 Elemental Volume -- 3.2.5.2 Shapes of Constant Coordinate Surfaces -- 3.2.5.3 Applications -- 3.3 Scalars and Vectors -- 3.3.1 Vector Representation -- 3.3.2 Vector Algebra -- 3.3.2.1 Vector Addition -- 3.3.2.2 Vector Subtraction -- 3.3.2.3 Multiplication of Vectors -- 3.4 Treatment of Vectors in Different Coordinate Systems -- 3.4.1 Cartesian Coordinate System -- 3.4.1.1 Differential (Vector) Length -- 3.4.1.2 Differential (Vector) Surfaces -- 3.4.1.3 Vector Representation -- 3.4.1.4 Dot Product of Two Vectors -- 3.4.1.5 Cross-Product of Two Vectors -- 3.4.2 Cylindrical Coordinates System -- 3.4.2.1 Differential (Vector) Length -- 3.4.2.2 Differential (Vector) Surfaces -- 3.4.2.3 Vector Representation -- 3.4.2.4 Dot Product of Two Vectors -- 3.4.2.5 Cross-Product of Two Vectors -- 3.4.3 Spherical Coordinates System -- 3.4.3.1 Differential (Vector) Length -- 3.4.3.2 Differential (Vector) Surfaces -- 3.4.3.3 Vector Representation -- 3.4.3.4 Dot Product of Two Vectors 3.4.3.5 Cross-Product of Two Vectors -- 3.5 Coordinate Transformation -- 3.5.1 Relation between Coordinates -- 3.5.1.1 Cartesian and Cylindrical -- 3.5.1.2 Cartesian and Spherical -- 3.5.2 Transformation between Rectangular and Cylindrical Coordinates -- 3.5.3 Transformation between Rectangular and Spherical Coordinates -- 3.5.4 Problems Involving Complex Geometries -- 3.5.4.1 Division of Configuration into Regions -- 3.5.4.2 Use of More than One Coordinate System -- Descriptive Questions -- Chapter 4 Vector Calculus -- 4.1 Introduction -- 4.2 Gradient Operation -- 4.2.1 Physical Description -- 4.2.2 Mathematical Formulation -- 4.2.3 Information Imparted by the Gradient Relation -- 4.2.4 Gradient Expressions in Different Coordinate Systems -- 4.2.5 Vector Differential Operator Del -- 4.2.6 Applications -- 4.3 Divergence Operation -- 4.3.1 Physical Description -- 4.3.2 Mathematical Formulation -- 4.3.2.1 Field Configuration -- 4.3.2.2 Vector Surfaces -- 4.3.2.3 Flux Densities at Different Surfaces -- 4.3.2.4 Flux Crossing through Different Surfaces -- 4.3.2.5 Total Flux -- 4.3.2.6 Mathematical Expressions -- 4.3.2.7 Physical Interpretation of Mathematical Relation -- 4.3.3 Solenoidal Field -- 4.3.4 Divergence Expressions in Different Coordinates -- 4.3.5 Applications -- 4.4 Curl Operation -- 4.4.1 Physical Description -- 4.4.2 Mathematical Formulation -- 4.4.2.1 Values of F at Different Loop Segments -- 4.4.2.2 Lengths of Different Loop Segments -- 4.4.2.3 Contour Integration of F -- 4.4.2.4 Definition of Curl -- 4.4.2.5 Some Salient Features of Curl -- 4.4.3 Rotational Field -- 4.4.4 Curl Expressions in Different Coordinate Systems -- 4.4.5 Applications -- 4.5 Laplacian Operator and Its Applications -- 4.5.1 Laplacian Operator -- 4.5.1.1 Laplacian for Scalar Operand -- 4.5.1.2 Laplacian for Vector Operand 4.5.2 Defined and Undefined Vector Operations -- 4.5.3 Vector Identities -- 4.6 Integrals -- 4.6.1 Line Integral -- 4.6.1.1 Line Integral in Different Coordinates -- 4.6.1.2 Evaluation of Line Integrals -- 4.6.1.3 Applications -- 4.6.2 Surface Integral -- 4.6.2.1 Surface and Its Types -- 4.6.2.2 Evaluation of Surface Integral -- 4.6.2.3 Applications -- 4.7 Theorems -- 4.7.1 Divergence Theorem -- 4.7.1.1 Statement of the Theorem -- 4.7.1.2 Mathematical Form -- 4.7.2 Stokes' Theorem -- 4.7.2.1 Statement of the Theorem -- 4.7.2.2 Mathematical Form -- 4.7.3 Green's Theorems -- 4.7.3.1 First Form of Green's Theorem -- 4.7.3.2 Second Form of Green's Theorem -- 4.8 Other Useful Tools -- Descriptive Questions -- Further Reading -- Chapter 5 Electric Field Intensity -- 5.1 Introduction -- 5.2 Coulomb's Law and Electric Field Intensity -- 5.2.1 Coulomb's Law -- 5.2.2 Coulomb's Constant -- 5.2.3 Validity of Coulomb's Law -- 5.2.4 Similarity between Electric and Gravitational Forces -- 5.2.5 Coulomb's Force in Vector Form -- 5.2.6 Charge Accumulation -- 5.2.7 Computation of Force -- 5.2.8 Magnitude of Force -- 5.2.9 Electric Flux (or Force) Lines -- 5.2.10 Electric Field Intensity -- 5.3 Field due to Point Charges -- 5.3.1 Field due to a Single Point Charge -- 5.3.2 Field due to Discrete Charges -- 5.3.3 Analogy between Gravitational and Electric Fields -- 5.4 Field due to Line Charge -- 5.4.1 Forms of Line Charge Distribution -- 5.4.2 Line Charge Density and the Total Charge -- 5.4.3 Field Configurations due to Different Types of Line Charges -- 5.4.3.1 Field due to an Infinite Line Charge -- 5.4.3.2 Field due to a Finite Line Charge -- 5.4.4 E Field due to Different Line Charge Distributions -- 5.4.4.1 Field due to Uniform Line Charge at Point P on y-Axis -- 5.4.4.2 Field due to Uniform Line Charge at Point P (ρ,φ,z) 5.4.4.3 Field due to Finite and Asymmetrical Line Charges -- 5.4.4.4 Field due to an Infinite Line Charge Lying in the x-y Plane -- 5.4.4.5 Field due to Two Infinite Line Charges in the x-y Plane -- 5.5 Surface Charge Distribution -- 5.5.1 Forms of Surface Charge Distribution -- 5.5.2 Surface Charge Density and the Total Charge -- 5.5.3 Field Configurations for Different Surface Charge Distributions -- 5.5.3.1 Field due to Uniform Surface Charge -- 5.5.3.2 Field due to Non-Uniform Surface Charge -- 5.5.4 Field due to Different Sheets of Charges -- 5.5.4.1 Field due to a Single Sheet -- 5.5.4.2 Fields due to Multiple Sheets -- 5.6 Volume Charge Distribution -- 5.6.1 Forms of Volume Charge Distribution -- 5.6.2 Volume Charge Density and the Total Charge -- 5.6.3 Field due to a Finite Volume Charge Distribution -- Descriptive Questions -- Further Reading -- Chapter 6 Electric Flux Density -- 6.1 Introduction -- 6.2 Gauss' Law -- 6.2.1 Flux and Its Dependence -- 6.2.2 Faraday's Experiment -- 6.3 Flux Density -- 6.3.1 Relation between Flux Density and Field Intensity -- 6.3.2 Estimation of Electric Flux -- 6.3.2.1 Electric Flux and Oriented Surfaces -- 6.3.2.2 Electric Flux and a Cubical Configuration -- 6.4 The Gaussian Surface -- 6.4.1 Gaussian Surface for a Point Charge -- 6.4.2 Gaussian Surface for a Line Charge -- 6.4.3 Gaussian Surface for a Coaxial Cable -- 6.5 Asymmetrical Field Distributions -- 6.5.1 First Maxwell's Equation -- 6.5.2 Expressions of Divergence in Different Coordinate Systems -- 6.5.3 Divergence Theorem -- Descriptive Questions -- Further Reading -- Chapter 7 Potential and Potential Energy -- 7.1 Introduction -- 7.2 Electrostatic Fields -- 7.2.1 Genesis of the Electrostatic Fields -- 7.2.2 Scalar Electric Potential -- 7.2.3 Potential Energy of Charged Particles -- 7.3 Scalar Electric Potential Due to Different Sources 7.3.1 Potential Due to Point Charges Electromagnetic fields-Textbooks Mukerji, Saurabh Kumar Verfasser (DE-588)1075055687 aut Erscheint auch als Khan, Ahmad Shahid Electromagnetic Fields Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-0-367-49430-8 |
spellingShingle | Khan, Ahmad Shahid Mukerji, Saurabh Kumar Electromagnetic fields theory and applications Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Authors -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Historical Perspective -- 1.2.1 Conceptual Stage -- 1.2.2 Era of Basic Laws -- 1.2.3 Era of Inventions -- 1.3 Sphere of Electromagnetics -- 1.3.1 Tiny Charged Particles -- 1.3.2 Behaviour of Tiny Charged Particles -- 1.3.3 Role of Maxwell Equations -- 1.4 Teaching of Electromagnetics -- 1.4.1 Importance of Electromagnetics -- 1.4.2 Acceptability of the Subject -- 1.4.3 Present Scenario -- 1.4.4 Features of the Present Text -- Descriptive Questions -- Further Reading -- Chapter 2 Field Applications -- 2.1 Introduction -- 2.2 Classification of Fields -- 2.2.1 Electrostatic Field -- 2.2.2 Magnetostatic Field -- 2.2.3 Electromagnetic Field -- 2.3 Applications of an Electrostatic Field -- 2.3.1 Electrostatic Generators -- 2.3.2 Electrostatic Filters -- 2.3.3 Photocopiers -- 2.3.4 Electrostatic Separators -- 2.3.5 Production of Ions -- 2.3.6 Two- or Four-Point Probe Instruments -- 2.4 Applications of a Magnetostatic Field -- 2.4.1 Non-Destructive Testing -- 2.4.2 Magnetic Levitation -- 2.4.3 Magnetic Separator -- 2.4.4 Magnetic Storage -- 2.4.5 MHD Generator -- 2.5 Field Applications of Electromagnetic Fields -- 2.5.1 Electrical Machines -- 2.5.2 Transformers -- 2.5.3 Transmission Lines -- 2.5.4 Circuit Theory -- 2.5.5 Power Electronics -- 2.5.6 Electron Tubes -- 2.5.7 Semiconductor Devices -- 2.5.8 Signal Processing -- 2.5.9 Antennas -- 2.5.10 Wave Propagation -- 2.5.11 Radar Systems -- 2.5.12 Navigation -- 2.5.13 Space Exploration -- 2.5.14 Wireless Technology -- 2.5.15 High-Frequency Devices -- 2.5.16 Integrated Circuits -- 2.5.17 Computers -- 2.5.18 Digital Subscriber Lines -- 2.5.19 Optical Fibers -- 2.5.20 Optical Communication -- 2.5.20.1 Light Generation -- 2.5.20.2 Light Modulation 2.5.20.3 Light Propagation -- 2.5.20.4 Light Detection -- 2.5.21 Biomedical Optical Imaging -- 2.5.22 Magnetic Resonance Imaging -- 2.5.23 Nanotechnology -- 2.6 Conclusion -- Descriptive Questions -- Further Reading -- Chapter 3 Coordinate Systems and Vector Algebra -- 3.1 Introduction -- 3.2 Coordinate Systems -- 3.2.1 Types of Coordinate Systems -- 3.2.1.1 Two-Dimensional Coordinate Systems -- 3.2.1.2 Three-Dimensional Coordinate Systems -- 3.2.2 Orthogonal Coordinate Systems -- 3.2.2.1 Commonly Used Orthogonal Systems -- 3.2.2.2 Right- and Left-Handed Systems -- 3.2.3 Cartesian Coordinate System -- 3.2.3.1 Elemental Volume -- 3.2.3.2 Shapes of Constant Coordinate Surfaces -- 3.2.3.3 Applications -- 3.2.4 Cylindrical Coordinates System -- 3.2.4.1 Elemental Volume -- 3.2.4.2 Shapes of Constant Coordinate Surfaces -- 3.2.4.3 Applications -- 3.2.5 Spherical Coordinates System -- 3.2.5.1 Elemental Volume -- 3.2.5.2 Shapes of Constant Coordinate Surfaces -- 3.2.5.3 Applications -- 3.3 Scalars and Vectors -- 3.3.1 Vector Representation -- 3.3.2 Vector Algebra -- 3.3.2.1 Vector Addition -- 3.3.2.2 Vector Subtraction -- 3.3.2.3 Multiplication of Vectors -- 3.4 Treatment of Vectors in Different Coordinate Systems -- 3.4.1 Cartesian Coordinate System -- 3.4.1.1 Differential (Vector) Length -- 3.4.1.2 Differential (Vector) Surfaces -- 3.4.1.3 Vector Representation -- 3.4.1.4 Dot Product of Two Vectors -- 3.4.1.5 Cross-Product of Two Vectors -- 3.4.2 Cylindrical Coordinates System -- 3.4.2.1 Differential (Vector) Length -- 3.4.2.2 Differential (Vector) Surfaces -- 3.4.2.3 Vector Representation -- 3.4.2.4 Dot Product of Two Vectors -- 3.4.2.5 Cross-Product of Two Vectors -- 3.4.3 Spherical Coordinates System -- 3.4.3.1 Differential (Vector) Length -- 3.4.3.2 Differential (Vector) Surfaces -- 3.4.3.3 Vector Representation -- 3.4.3.4 Dot Product of Two Vectors 3.4.3.5 Cross-Product of Two Vectors -- 3.5 Coordinate Transformation -- 3.5.1 Relation between Coordinates -- 3.5.1.1 Cartesian and Cylindrical -- 3.5.1.2 Cartesian and Spherical -- 3.5.2 Transformation between Rectangular and Cylindrical Coordinates -- 3.5.3 Transformation between Rectangular and Spherical Coordinates -- 3.5.4 Problems Involving Complex Geometries -- 3.5.4.1 Division of Configuration into Regions -- 3.5.4.2 Use of More than One Coordinate System -- Descriptive Questions -- Chapter 4 Vector Calculus -- 4.1 Introduction -- 4.2 Gradient Operation -- 4.2.1 Physical Description -- 4.2.2 Mathematical Formulation -- 4.2.3 Information Imparted by the Gradient Relation -- 4.2.4 Gradient Expressions in Different Coordinate Systems -- 4.2.5 Vector Differential Operator Del -- 4.2.6 Applications -- 4.3 Divergence Operation -- 4.3.1 Physical Description -- 4.3.2 Mathematical Formulation -- 4.3.2.1 Field Configuration -- 4.3.2.2 Vector Surfaces -- 4.3.2.3 Flux Densities at Different Surfaces -- 4.3.2.4 Flux Crossing through Different Surfaces -- 4.3.2.5 Total Flux -- 4.3.2.6 Mathematical Expressions -- 4.3.2.7 Physical Interpretation of Mathematical Relation -- 4.3.3 Solenoidal Field -- 4.3.4 Divergence Expressions in Different Coordinates -- 4.3.5 Applications -- 4.4 Curl Operation -- 4.4.1 Physical Description -- 4.4.2 Mathematical Formulation -- 4.4.2.1 Values of F at Different Loop Segments -- 4.4.2.2 Lengths of Different Loop Segments -- 4.4.2.3 Contour Integration of F -- 4.4.2.4 Definition of Curl -- 4.4.2.5 Some Salient Features of Curl -- 4.4.3 Rotational Field -- 4.4.4 Curl Expressions in Different Coordinate Systems -- 4.4.5 Applications -- 4.5 Laplacian Operator and Its Applications -- 4.5.1 Laplacian Operator -- 4.5.1.1 Laplacian for Scalar Operand -- 4.5.1.2 Laplacian for Vector Operand 4.5.2 Defined and Undefined Vector Operations -- 4.5.3 Vector Identities -- 4.6 Integrals -- 4.6.1 Line Integral -- 4.6.1.1 Line Integral in Different Coordinates -- 4.6.1.2 Evaluation of Line Integrals -- 4.6.1.3 Applications -- 4.6.2 Surface Integral -- 4.6.2.1 Surface and Its Types -- 4.6.2.2 Evaluation of Surface Integral -- 4.6.2.3 Applications -- 4.7 Theorems -- 4.7.1 Divergence Theorem -- 4.7.1.1 Statement of the Theorem -- 4.7.1.2 Mathematical Form -- 4.7.2 Stokes' Theorem -- 4.7.2.1 Statement of the Theorem -- 4.7.2.2 Mathematical Form -- 4.7.3 Green's Theorems -- 4.7.3.1 First Form of Green's Theorem -- 4.7.3.2 Second Form of Green's Theorem -- 4.8 Other Useful Tools -- Descriptive Questions -- Further Reading -- Chapter 5 Electric Field Intensity -- 5.1 Introduction -- 5.2 Coulomb's Law and Electric Field Intensity -- 5.2.1 Coulomb's Law -- 5.2.2 Coulomb's Constant -- 5.2.3 Validity of Coulomb's Law -- 5.2.4 Similarity between Electric and Gravitational Forces -- 5.2.5 Coulomb's Force in Vector Form -- 5.2.6 Charge Accumulation -- 5.2.7 Computation of Force -- 5.2.8 Magnitude of Force -- 5.2.9 Electric Flux (or Force) Lines -- 5.2.10 Electric Field Intensity -- 5.3 Field due to Point Charges -- 5.3.1 Field due to a Single Point Charge -- 5.3.2 Field due to Discrete Charges -- 5.3.3 Analogy between Gravitational and Electric Fields -- 5.4 Field due to Line Charge -- 5.4.1 Forms of Line Charge Distribution -- 5.4.2 Line Charge Density and the Total Charge -- 5.4.3 Field Configurations due to Different Types of Line Charges -- 5.4.3.1 Field due to an Infinite Line Charge -- 5.4.3.2 Field due to a Finite Line Charge -- 5.4.4 E Field due to Different Line Charge Distributions -- 5.4.4.1 Field due to Uniform Line Charge at Point P on y-Axis -- 5.4.4.2 Field due to Uniform Line Charge at Point P (ρ,φ,z) 5.4.4.3 Field due to Finite and Asymmetrical Line Charges -- 5.4.4.4 Field due to an Infinite Line Charge Lying in the x-y Plane -- 5.4.4.5 Field due to Two Infinite Line Charges in the x-y Plane -- 5.5 Surface Charge Distribution -- 5.5.1 Forms of Surface Charge Distribution -- 5.5.2 Surface Charge Density and the Total Charge -- 5.5.3 Field Configurations for Different Surface Charge Distributions -- 5.5.3.1 Field due to Uniform Surface Charge -- 5.5.3.2 Field due to Non-Uniform Surface Charge -- 5.5.4 Field due to Different Sheets of Charges -- 5.5.4.1 Field due to a Single Sheet -- 5.5.4.2 Fields due to Multiple Sheets -- 5.6 Volume Charge Distribution -- 5.6.1 Forms of Volume Charge Distribution -- 5.6.2 Volume Charge Density and the Total Charge -- 5.6.3 Field due to a Finite Volume Charge Distribution -- Descriptive Questions -- Further Reading -- Chapter 6 Electric Flux Density -- 6.1 Introduction -- 6.2 Gauss' Law -- 6.2.1 Flux and Its Dependence -- 6.2.2 Faraday's Experiment -- 6.3 Flux Density -- 6.3.1 Relation between Flux Density and Field Intensity -- 6.3.2 Estimation of Electric Flux -- 6.3.2.1 Electric Flux and Oriented Surfaces -- 6.3.2.2 Electric Flux and a Cubical Configuration -- 6.4 The Gaussian Surface -- 6.4.1 Gaussian Surface for a Point Charge -- 6.4.2 Gaussian Surface for a Line Charge -- 6.4.3 Gaussian Surface for a Coaxial Cable -- 6.5 Asymmetrical Field Distributions -- 6.5.1 First Maxwell's Equation -- 6.5.2 Expressions of Divergence in Different Coordinate Systems -- 6.5.3 Divergence Theorem -- Descriptive Questions -- Further Reading -- Chapter 7 Potential and Potential Energy -- 7.1 Introduction -- 7.2 Electrostatic Fields -- 7.2.1 Genesis of the Electrostatic Fields -- 7.2.2 Scalar Electric Potential -- 7.2.3 Potential Energy of Charged Particles -- 7.3 Scalar Electric Potential Due to Different Sources 7.3.1 Potential Due to Point Charges Electromagnetic fields-Textbooks |
title | Electromagnetic fields theory and applications |
title_auth | Electromagnetic fields theory and applications |
title_exact_search | Electromagnetic fields theory and applications |
title_exact_search_txtP | Electromagnetic fields theory and applications |
title_full | Electromagnetic fields theory and applications Ahmad Shahid Khan and Saurabh Kumar Mukerji |
title_fullStr | Electromagnetic fields theory and applications Ahmad Shahid Khan and Saurabh Kumar Mukerji |
title_full_unstemmed | Electromagnetic fields theory and applications Ahmad Shahid Khan and Saurabh Kumar Mukerji |
title_short | Electromagnetic fields |
title_sort | electromagnetic fields theory and applications |
title_sub | theory and applications |
topic | Electromagnetic fields-Textbooks |
topic_facet | Electromagnetic fields-Textbooks |
work_keys_str_mv | AT khanahmadshahid electromagneticfieldstheoryandapplications AT mukerjisaurabhkumar electromagneticfieldstheoryandapplications |