R for political data science: a practical guide
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2021
|
Ausgabe: | First edition |
Schriftenreihe: | The R series
|
Schlagworte: | |
Online-Zugang: | FHD01 TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xix, 439 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000204476 9781003010623 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441956 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781000204476 |9 978-1-00-020447-6 | ||
020 | |a 9781003010623 |9 978-1-00-301062-3 | ||
035 | |a (ZDB-30-PQE)EBC6340974 | ||
035 | |a (ZDB-30-PAD)EBC6340974 | ||
035 | |a (ZDB-89-EBL)EBL6340974 | ||
035 | |a (OCoLC)1203584482 | ||
035 | |a (DE-599)BVBBV047441956 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-1050 | ||
082 | 0 | |a 519.502855133 | |
084 | |a MB 2520 |0 (DE-625)122287: |2 rvk | ||
084 | |a DAT 368 |2 stub | ||
084 | |a POL 050 |2 stub | ||
245 | 1 | 0 | |a R for political data science |b a practical guide |c edited by Francisco Urdinez, Andrés Cruz |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2021 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xix, 439 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The R series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Who will find this book useful? -- About the book -- What to expect from the book -- Book structure -- Prerequisites -- How to use the textbook in a methods course? -- Contributors -- Part I: Introduction to R -- 1. Basic R -- 1.1 Installation -- 1.2 Console -- 1.3 Script -- 1.4 Objects (and functions) -- 2. Data Management -- 2.1 Introduction to data management -- 2.2 Describing a dataset -- 2.3 Basic operations -- 2.4 Chain commands -- 2.5 Recode values -- 3. Data Visualization -- 3.1 Why visualize my data? -- 3.2 First steps -- 3.3 Applied example: Local elections and data visualization -- 3.4 To continue learning -- 4. Data Loading -- 4.1 Introduction -- 4.2 Different dataset formats -- 4.3 Files separated by delimiters (.csv and .tsv) -- 4.4 Large tabular datasets -- Part II: Models -- 5. Linear Models -- 5.1 OLS in R -- 5.2 Bivariate model: simple linear regression -- 5.3 Multivariate model: multiple regression -- 5.4 Model adjustment -- 5.5 Inference in multiple linear models -- 5.6 Testing OLS assumptions -- 6. Case Selection Based on Regressions -- 6.1 Which case study should I select for qualitative research? -- 6.2 The importance of combining methods -- 7. Panel Data -- 7.1 Introduction -- 7.2 Describing your panel dataset -- 7.3 Modelling group-level variation -- 7.4 Fixed vs. random effects -- 7.5 Testing for unit roots -- 7.6 Robust and panel-corrected standard errors -- 8. Logistic Models -- 8.1 Introduction -- 8.2 Use of logistic models -- 8.3 How are probabilities estimated? -- 8.4 Model estimation -- 8.5 Creating tables -- 8.6 Visual representation of results -- 8.7 Measures to evaluate the fit of the models -- 9. Survival Models -- 9.1 Introduction -- 9.2 How do we interpret hazard rates? -- 9.3 Cox's model of proportional hazards | |
505 | 8 | |a 9.4 Estimating Cox Models in R -- 9.5 Tools to interpret and present hazard ratios -- 10. Causal inference -- 10.1 Introduction -- 10.2 Causation and causal graphs -- 10.3 Measuring causal effects -- 10.4 DAGs and statistical associations -- 10.5 Backdoors and -- 10.6 Drawing and analyzing DAGs -- 10.7 Making adjustments -- 10.8 Caveats -- Part III: Applications -- 11. Advanced Political Data Management -- 11.1 Introduction -- 11.2 Merging datasets -- 11.3 Fuzzy or inexact join of data -- 11.4 Missing values' management -- 11.5 Imputation of missing values -- 12. Web Mining -- 12.1 Introduction -- 12.2 Ways to do web scraping -- 12.3 Web scraping in R -- 12.4 Using APIs and extracting data from Twitter -- 13. Quantitative Analysis of Political Texts -- 13.1 Analysis of political hashtags -- 13.2 Wordfish -- 13.3 Structural Topic Modeling -- 14. Networks -- 14.1 Introduction -- 14.2 Basic concepts in a network -- 14.3 Network datasets -- 14.4 Graphic presentation of a network -- 14.5 Measures of centrality -- 15. Principal Component Analysis -- 15.1 Introduction -- 15.2 How PCA works -- 15.3 Basic notions in R -- 15.4 Dimensionality of the concept -- 15.5 Variation of the concept -- 16. Maps and Spatial Data -- 16.1 Introduction -- 16.2 Spatial Data in R -- 16.3 Spatial Data Management -- 16.4 Mapping in R -- 16.5 Inference from Spatial Data -- IV Bibliography and Index -- Bibliography -- Index | |
650 | 4 | |a R (Computer program language) | |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Politische Wissenschaft |0 (DE-588)4076229-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Politische Wissenschaft |0 (DE-588)4076229-4 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Urdinez, Francisco |0 (DE-588)1191293564 |4 edt | |
700 | 1 | |a Cruz, Andrés |0 (DE-588)1233721437 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Urdinez, Francisco |t R for Political Data Science |d Milton : CRC Press LLC,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-367-81889-0 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844108 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6340974 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6340974 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734737768448 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Urdinez, Francisco Cruz, Andrés |
author2_role | edt edt |
author2_variant | f u fu a c ac |
author_GND | (DE-588)1191293564 (DE-588)1233721437 |
author_facet | Urdinez, Francisco Cruz, Andrés |
building | Verbundindex |
bvnumber | BV047441956 |
classification_rvk | MB 2520 |
classification_tum | DAT 368 POL 050 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Who will find this book useful? -- About the book -- What to expect from the book -- Book structure -- Prerequisites -- How to use the textbook in a methods course? -- Contributors -- Part I: Introduction to R -- 1. Basic R -- 1.1 Installation -- 1.2 Console -- 1.3 Script -- 1.4 Objects (and functions) -- 2. Data Management -- 2.1 Introduction to data management -- 2.2 Describing a dataset -- 2.3 Basic operations -- 2.4 Chain commands -- 2.5 Recode values -- 3. Data Visualization -- 3.1 Why visualize my data? -- 3.2 First steps -- 3.3 Applied example: Local elections and data visualization -- 3.4 To continue learning -- 4. Data Loading -- 4.1 Introduction -- 4.2 Different dataset formats -- 4.3 Files separated by delimiters (.csv and .tsv) -- 4.4 Large tabular datasets -- Part II: Models -- 5. Linear Models -- 5.1 OLS in R -- 5.2 Bivariate model: simple linear regression -- 5.3 Multivariate model: multiple regression -- 5.4 Model adjustment -- 5.5 Inference in multiple linear models -- 5.6 Testing OLS assumptions -- 6. Case Selection Based on Regressions -- 6.1 Which case study should I select for qualitative research? -- 6.2 The importance of combining methods -- 7. Panel Data -- 7.1 Introduction -- 7.2 Describing your panel dataset -- 7.3 Modelling group-level variation -- 7.4 Fixed vs. random effects -- 7.5 Testing for unit roots -- 7.6 Robust and panel-corrected standard errors -- 8. Logistic Models -- 8.1 Introduction -- 8.2 Use of logistic models -- 8.3 How are probabilities estimated? -- 8.4 Model estimation -- 8.5 Creating tables -- 8.6 Visual representation of results -- 8.7 Measures to evaluate the fit of the models -- 9. Survival Models -- 9.1 Introduction -- 9.2 How do we interpret hazard rates? -- 9.3 Cox's model of proportional hazards 9.4 Estimating Cox Models in R -- 9.5 Tools to interpret and present hazard ratios -- 10. Causal inference -- 10.1 Introduction -- 10.2 Causation and causal graphs -- 10.3 Measuring causal effects -- 10.4 DAGs and statistical associations -- 10.5 Backdoors and -- 10.6 Drawing and analyzing DAGs -- 10.7 Making adjustments -- 10.8 Caveats -- Part III: Applications -- 11. Advanced Political Data Management -- 11.1 Introduction -- 11.2 Merging datasets -- 11.3 Fuzzy or inexact join of data -- 11.4 Missing values' management -- 11.5 Imputation of missing values -- 12. Web Mining -- 12.1 Introduction -- 12.2 Ways to do web scraping -- 12.3 Web scraping in R -- 12.4 Using APIs and extracting data from Twitter -- 13. Quantitative Analysis of Political Texts -- 13.1 Analysis of political hashtags -- 13.2 Wordfish -- 13.3 Structural Topic Modeling -- 14. Networks -- 14.1 Introduction -- 14.2 Basic concepts in a network -- 14.3 Network datasets -- 14.4 Graphic presentation of a network -- 14.5 Measures of centrality -- 15. Principal Component Analysis -- 15.1 Introduction -- 15.2 How PCA works -- 15.3 Basic notions in R -- 15.4 Dimensionality of the concept -- 15.5 Variation of the concept -- 16. Maps and Spatial Data -- 16.1 Introduction -- 16.2 Spatial Data in R -- 16.3 Spatial Data Management -- 16.4 Mapping in R -- 16.5 Inference from Spatial Data -- IV Bibliography and Index -- Bibliography -- Index |
ctrlnum | (ZDB-30-PQE)EBC6340974 (ZDB-30-PAD)EBC6340974 (ZDB-89-EBL)EBL6340974 (OCoLC)1203584482 (DE-599)BVBBV047441956 |
dewey-full | 519.502855133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.502855133 |
dewey-search | 519.502855133 |
dewey-sort | 3519.502855133 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Politologie Mathematik |
discipline_str_mv | Informatik Politologie Mathematik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05668nmm a2200589zc 4500</leader><controlfield tag="001">BV047441956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000204476</subfield><subfield code="9">978-1-00-020447-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003010623</subfield><subfield code="9">978-1-00-301062-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6340974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6340974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6340974</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1203584482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.502855133</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MB 2520</subfield><subfield code="0">(DE-625)122287:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 368</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">POL 050</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">R for political data science</subfield><subfield code="b">a practical guide</subfield><subfield code="c">edited by Francisco Urdinez, Andrés Cruz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 439 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The R series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Who will find this book useful? -- About the book -- What to expect from the book -- Book structure -- Prerequisites -- How to use the textbook in a methods course? -- Contributors -- Part I: Introduction to R -- 1. Basic R -- 1.1 Installation -- 1.2 Console -- 1.3 Script -- 1.4 Objects (and functions) -- 2. Data Management -- 2.1 Introduction to data management -- 2.2 Describing a dataset -- 2.3 Basic operations -- 2.4 Chain commands -- 2.5 Recode values -- 3. Data Visualization -- 3.1 Why visualize my data? -- 3.2 First steps -- 3.3 Applied example: Local elections and data visualization -- 3.4 To continue learning -- 4. Data Loading -- 4.1 Introduction -- 4.2 Different dataset formats -- 4.3 Files separated by delimiters (.csv and .tsv) -- 4.4 Large tabular datasets -- Part II: Models -- 5. Linear Models -- 5.1 OLS in R -- 5.2 Bivariate model: simple linear regression -- 5.3 Multivariate model: multiple regression -- 5.4 Model adjustment -- 5.5 Inference in multiple linear models -- 5.6 Testing OLS assumptions -- 6. Case Selection Based on Regressions -- 6.1 Which case study should I select for qualitative research? -- 6.2 The importance of combining methods -- 7. Panel Data -- 7.1 Introduction -- 7.2 Describing your panel dataset -- 7.3 Modelling group-level variation -- 7.4 Fixed vs. random effects -- 7.5 Testing for unit roots -- 7.6 Robust and panel-corrected standard errors -- 8. Logistic Models -- 8.1 Introduction -- 8.2 Use of logistic models -- 8.3 How are probabilities estimated? -- 8.4 Model estimation -- 8.5 Creating tables -- 8.6 Visual representation of results -- 8.7 Measures to evaluate the fit of the models -- 9. Survival Models -- 9.1 Introduction -- 9.2 How do we interpret hazard rates? -- 9.3 Cox's model of proportional hazards</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.4 Estimating Cox Models in R -- 9.5 Tools to interpret and present hazard ratios -- 10. Causal inference -- 10.1 Introduction -- 10.2 Causation and causal graphs -- 10.3 Measuring causal effects -- 10.4 DAGs and statistical associations -- 10.5 Backdoors and -- 10.6 Drawing and analyzing DAGs -- 10.7 Making adjustments -- 10.8 Caveats -- Part III: Applications -- 11. Advanced Political Data Management -- 11.1 Introduction -- 11.2 Merging datasets -- 11.3 Fuzzy or inexact join of data -- 11.4 Missing values' management -- 11.5 Imputation of missing values -- 12. Web Mining -- 12.1 Introduction -- 12.2 Ways to do web scraping -- 12.3 Web scraping in R -- 12.4 Using APIs and extracting data from Twitter -- 13. Quantitative Analysis of Political Texts -- 13.1 Analysis of political hashtags -- 13.2 Wordfish -- 13.3 Structural Topic Modeling -- 14. Networks -- 14.1 Introduction -- 14.2 Basic concepts in a network -- 14.3 Network datasets -- 14.4 Graphic presentation of a network -- 14.5 Measures of centrality -- 15. Principal Component Analysis -- 15.1 Introduction -- 15.2 How PCA works -- 15.3 Basic notions in R -- 15.4 Dimensionality of the concept -- 15.5 Variation of the concept -- 16. Maps and Spatial Data -- 16.1 Introduction -- 16.2 Spatial Data in R -- 16.3 Spatial Data Management -- 16.4 Mapping in R -- 16.5 Inference from Spatial Data -- IV Bibliography and Index -- Bibliography -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Politische Wissenschaft</subfield><subfield code="0">(DE-588)4076229-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Politische Wissenschaft</subfield><subfield code="0">(DE-588)4076229-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urdinez, Francisco</subfield><subfield code="0">(DE-588)1191293564</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cruz, Andrés</subfield><subfield code="0">(DE-588)1233721437</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Urdinez, Francisco</subfield><subfield code="t">R for Political Data Science</subfield><subfield code="d">Milton : CRC Press LLC,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-81889-0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844108</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6340974</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6340974</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV047441956 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781000204476 9781003010623 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844108 |
oclc_num | 1203584482 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-1050 |
owner_facet | DE-91 DE-BY-TUM DE-1050 |
physical | 1 Online-Ressource (xix, 439 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
series2 | The R series |
spelling | R for political data science a practical guide edited by Francisco Urdinez, Andrés Cruz First edition Boca Raton ; London ; New York CRC Press 2021 © 2021 1 Online-Ressource (xix, 439 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier The R series Description based on publisher supplied metadata and other sources Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Who will find this book useful? -- About the book -- What to expect from the book -- Book structure -- Prerequisites -- How to use the textbook in a methods course? -- Contributors -- Part I: Introduction to R -- 1. Basic R -- 1.1 Installation -- 1.2 Console -- 1.3 Script -- 1.4 Objects (and functions) -- 2. Data Management -- 2.1 Introduction to data management -- 2.2 Describing a dataset -- 2.3 Basic operations -- 2.4 Chain commands -- 2.5 Recode values -- 3. Data Visualization -- 3.1 Why visualize my data? -- 3.2 First steps -- 3.3 Applied example: Local elections and data visualization -- 3.4 To continue learning -- 4. Data Loading -- 4.1 Introduction -- 4.2 Different dataset formats -- 4.3 Files separated by delimiters (.csv and .tsv) -- 4.4 Large tabular datasets -- Part II: Models -- 5. Linear Models -- 5.1 OLS in R -- 5.2 Bivariate model: simple linear regression -- 5.3 Multivariate model: multiple regression -- 5.4 Model adjustment -- 5.5 Inference in multiple linear models -- 5.6 Testing OLS assumptions -- 6. Case Selection Based on Regressions -- 6.1 Which case study should I select for qualitative research? -- 6.2 The importance of combining methods -- 7. Panel Data -- 7.1 Introduction -- 7.2 Describing your panel dataset -- 7.3 Modelling group-level variation -- 7.4 Fixed vs. random effects -- 7.5 Testing for unit roots -- 7.6 Robust and panel-corrected standard errors -- 8. Logistic Models -- 8.1 Introduction -- 8.2 Use of logistic models -- 8.3 How are probabilities estimated? -- 8.4 Model estimation -- 8.5 Creating tables -- 8.6 Visual representation of results -- 8.7 Measures to evaluate the fit of the models -- 9. Survival Models -- 9.1 Introduction -- 9.2 How do we interpret hazard rates? -- 9.3 Cox's model of proportional hazards 9.4 Estimating Cox Models in R -- 9.5 Tools to interpret and present hazard ratios -- 10. Causal inference -- 10.1 Introduction -- 10.2 Causation and causal graphs -- 10.3 Measuring causal effects -- 10.4 DAGs and statistical associations -- 10.5 Backdoors and -- 10.6 Drawing and analyzing DAGs -- 10.7 Making adjustments -- 10.8 Caveats -- Part III: Applications -- 11. Advanced Political Data Management -- 11.1 Introduction -- 11.2 Merging datasets -- 11.3 Fuzzy or inexact join of data -- 11.4 Missing values' management -- 11.5 Imputation of missing values -- 12. Web Mining -- 12.1 Introduction -- 12.2 Ways to do web scraping -- 12.3 Web scraping in R -- 12.4 Using APIs and extracting data from Twitter -- 13. Quantitative Analysis of Political Texts -- 13.1 Analysis of political hashtags -- 13.2 Wordfish -- 13.3 Structural Topic Modeling -- 14. Networks -- 14.1 Introduction -- 14.2 Basic concepts in a network -- 14.3 Network datasets -- 14.4 Graphic presentation of a network -- 14.5 Measures of centrality -- 15. Principal Component Analysis -- 15.1 Introduction -- 15.2 How PCA works -- 15.3 Basic notions in R -- 15.4 Dimensionality of the concept -- 15.5 Variation of the concept -- 16. Maps and Spatial Data -- 16.1 Introduction -- 16.2 Spatial Data in R -- 16.3 Spatial Data Management -- 16.4 Mapping in R -- 16.5 Inference from Spatial Data -- IV Bibliography and Index -- Bibliography -- Index R (Computer program language) R Programm (DE-588)4705956-4 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Politische Wissenschaft (DE-588)4076229-4 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Politische Wissenschaft (DE-588)4076229-4 s Datenanalyse (DE-588)4123037-1 s R Programm (DE-588)4705956-4 s DE-604 Urdinez, Francisco (DE-588)1191293564 edt Cruz, Andrés (DE-588)1233721437 edt Erscheint auch als Urdinez, Francisco R for Political Data Science Milton : CRC Press LLC,c2020 Druck-Ausgabe, Hardcover 978-0-367-81889-0 |
spellingShingle | R for political data science a practical guide Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Who will find this book useful? -- About the book -- What to expect from the book -- Book structure -- Prerequisites -- How to use the textbook in a methods course? -- Contributors -- Part I: Introduction to R -- 1. Basic R -- 1.1 Installation -- 1.2 Console -- 1.3 Script -- 1.4 Objects (and functions) -- 2. Data Management -- 2.1 Introduction to data management -- 2.2 Describing a dataset -- 2.3 Basic operations -- 2.4 Chain commands -- 2.5 Recode values -- 3. Data Visualization -- 3.1 Why visualize my data? -- 3.2 First steps -- 3.3 Applied example: Local elections and data visualization -- 3.4 To continue learning -- 4. Data Loading -- 4.1 Introduction -- 4.2 Different dataset formats -- 4.3 Files separated by delimiters (.csv and .tsv) -- 4.4 Large tabular datasets -- Part II: Models -- 5. Linear Models -- 5.1 OLS in R -- 5.2 Bivariate model: simple linear regression -- 5.3 Multivariate model: multiple regression -- 5.4 Model adjustment -- 5.5 Inference in multiple linear models -- 5.6 Testing OLS assumptions -- 6. Case Selection Based on Regressions -- 6.1 Which case study should I select for qualitative research? -- 6.2 The importance of combining methods -- 7. Panel Data -- 7.1 Introduction -- 7.2 Describing your panel dataset -- 7.3 Modelling group-level variation -- 7.4 Fixed vs. random effects -- 7.5 Testing for unit roots -- 7.6 Robust and panel-corrected standard errors -- 8. Logistic Models -- 8.1 Introduction -- 8.2 Use of logistic models -- 8.3 How are probabilities estimated? -- 8.4 Model estimation -- 8.5 Creating tables -- 8.6 Visual representation of results -- 8.7 Measures to evaluate the fit of the models -- 9. Survival Models -- 9.1 Introduction -- 9.2 How do we interpret hazard rates? -- 9.3 Cox's model of proportional hazards 9.4 Estimating Cox Models in R -- 9.5 Tools to interpret and present hazard ratios -- 10. Causal inference -- 10.1 Introduction -- 10.2 Causation and causal graphs -- 10.3 Measuring causal effects -- 10.4 DAGs and statistical associations -- 10.5 Backdoors and -- 10.6 Drawing and analyzing DAGs -- 10.7 Making adjustments -- 10.8 Caveats -- Part III: Applications -- 11. Advanced Political Data Management -- 11.1 Introduction -- 11.2 Merging datasets -- 11.3 Fuzzy or inexact join of data -- 11.4 Missing values' management -- 11.5 Imputation of missing values -- 12. Web Mining -- 12.1 Introduction -- 12.2 Ways to do web scraping -- 12.3 Web scraping in R -- 12.4 Using APIs and extracting data from Twitter -- 13. Quantitative Analysis of Political Texts -- 13.1 Analysis of political hashtags -- 13.2 Wordfish -- 13.3 Structural Topic Modeling -- 14. Networks -- 14.1 Introduction -- 14.2 Basic concepts in a network -- 14.3 Network datasets -- 14.4 Graphic presentation of a network -- 14.5 Measures of centrality -- 15. Principal Component Analysis -- 15.1 Introduction -- 15.2 How PCA works -- 15.3 Basic notions in R -- 15.4 Dimensionality of the concept -- 15.5 Variation of the concept -- 16. Maps and Spatial Data -- 16.1 Introduction -- 16.2 Spatial Data in R -- 16.3 Spatial Data Management -- 16.4 Mapping in R -- 16.5 Inference from Spatial Data -- IV Bibliography and Index -- Bibliography -- Index R (Computer program language) R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd Politische Wissenschaft (DE-588)4076229-4 gnd |
subject_GND | (DE-588)4705956-4 (DE-588)4123037-1 (DE-588)4076229-4 (DE-588)4151278-9 |
title | R for political data science a practical guide |
title_auth | R for political data science a practical guide |
title_exact_search | R for political data science a practical guide |
title_exact_search_txtP | R for political data science a practical guide |
title_full | R for political data science a practical guide edited by Francisco Urdinez, Andrés Cruz |
title_fullStr | R for political data science a practical guide edited by Francisco Urdinez, Andrés Cruz |
title_full_unstemmed | R for political data science a practical guide edited by Francisco Urdinez, Andrés Cruz |
title_short | R for political data science |
title_sort | r for political data science a practical guide |
title_sub | a practical guide |
topic | R (Computer program language) R Programm (DE-588)4705956-4 gnd Datenanalyse (DE-588)4123037-1 gnd Politische Wissenschaft (DE-588)4076229-4 gnd |
topic_facet | R (Computer program language) R Programm Datenanalyse Politische Wissenschaft Einführung |
work_keys_str_mv | AT urdinezfrancisco rforpoliticaldatascienceapracticalguide AT cruzandres rforpoliticaldatascienceapracticalguide |