Spatial analysis with R: statistics, visualization, and computational methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
[2021]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xix, 333 Seiten) Illustrationen, Karten |
ISBN: | 9781000173451 9781003021643 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441910 | ||
003 | DE-604 | ||
005 | 20211214 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781000173451 |9 978-1-00-017345-1 | ||
020 | |a 9781003021643 |9 978-1-003-02164-3 | ||
035 | |a (ZDB-30-PQE)EBC6317218 | ||
035 | |a (ZDB-30-PAD)EBC6317218 | ||
035 | |a (ZDB-89-EBL)EBL6317218 | ||
035 | |a (OCoLC)1190857072 | ||
035 | |a (DE-599)BVBBV047441910 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 519.5 | |
084 | |a RB 10104 |0 (DE-625)142220:12617 |2 rvk | ||
100 | 1 | |a Oyana, Tonny J. |e Verfasser |0 (DE-588)1082383678 |4 aut | |
245 | 1 | 0 | |a Spatial analysis with R |b statistics, visualization, and computational methods |c Tonny J. Oyana |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xix, 333 Seiten) |b Illustrationen, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion | |
505 | 8 | |a Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables | |
505 | 8 | |a Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation | |
505 | 8 | |a Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics | |
505 | 8 | |a Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index | |
650 | 4 | |a Spatial analysis (Statistics) | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Räumliche Statistik |0 (DE-588)4386767-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geoinformationssystem |0 (DE-588)4261642-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raumdaten |0 (DE-588)4206012-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geoinformationssystem |0 (DE-588)4261642-6 |D s |
689 | 0 | 1 | |a Raumdaten |0 (DE-588)4206012-6 |D s |
689 | 0 | 2 | |a Räumliche Statistik |0 (DE-588)4386767-4 |D s |
689 | 0 | 3 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 4 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Oyana, Tonny J. |t Spatial Analysis with R |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-367-86085-1 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844062 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6317218 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734703165440 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Oyana, Tonny J. |
author_GND | (DE-588)1082383678 |
author_facet | Oyana, Tonny J. |
author_role | aut |
author_sort | Oyana, Tonny J. |
author_variant | t j o tj tjo |
building | Verbundindex |
bvnumber | BV047441910 |
classification_rvk | RB 10104 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6317218 (ZDB-30-PAD)EBC6317218 (ZDB-89-EBL)EBL6317218 (OCoLC)1190857072 (DE-599)BVBBV047441910 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Geographie |
discipline_str_mv | Mathematik Geographie |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09995nmm a2200601zc 4500</leader><controlfield tag="001">BV047441910</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000173451</subfield><subfield code="9">978-1-00-017345-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003021643</subfield><subfield code="9">978-1-003-02164-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6317218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6317218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6317218</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1190857072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441910</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10104</subfield><subfield code="0">(DE-625)142220:12617</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oyana, Tonny J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082383678</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial analysis with R</subfield><subfield code="b">statistics, visualization, and computational methods</subfield><subfield code="c">Tonny J. Oyana</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 333 Seiten)</subfield><subfield code="b">Illustrationen, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial analysis (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Räumliche Statistik</subfield><subfield code="0">(DE-588)4386767-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geoinformationssystem</subfield><subfield code="0">(DE-588)4261642-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geoinformationssystem</subfield><subfield code="0">(DE-588)4261642-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Räumliche Statistik</subfield><subfield code="0">(DE-588)4386767-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Oyana, Tonny J.</subfield><subfield code="t">Spatial Analysis with R</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-86085-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844062</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6317218</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441910 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9781000173451 9781003021643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844062 |
oclc_num | 1190857072 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xix, 333 Seiten) Illustrationen, Karten |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
spelling | Oyana, Tonny J. Verfasser (DE-588)1082383678 aut Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana Second edition Boca Raton ; London ; New York CRC Press [2021] © 2021 1 Online-Ressource (xix, 333 Seiten) Illustrationen, Karten txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index Spatial analysis (Statistics) Datenanalyse (DE-588)4123037-1 gnd rswk-swf Räumliche Statistik (DE-588)4386767-4 gnd rswk-swf Geoinformationssystem (DE-588)4261642-6 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Raumdaten (DE-588)4206012-6 gnd rswk-swf Geoinformationssystem (DE-588)4261642-6 s Raumdaten (DE-588)4206012-6 s Räumliche Statistik (DE-588)4386767-4 s Datenanalyse (DE-588)4123037-1 s R Programm (DE-588)4705956-4 s DE-604 Erscheint auch als Oyana, Tonny J. Spatial Analysis with R Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-0-367-86085-1 |
spellingShingle | Oyana, Tonny J. Spatial analysis with R statistics, visualization, and computational methods Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- Author -- 1. Understanding the Context and Relevance of Spatial Analysis -- Learning Objectives -- Introduction -- From Data to Information, to Knowledge, and Wisdom -- Spatial Analysis Using a GIS Timeline -- Spatial Analysis in the Post-1990s Period -- Data Science, GIS, and Artificial Intelligence -- Geographic Data: Properties, Strengths, and Analytical Challenges -- Concept of Scale -- Concept of Spatial Dependency -- Concept of Spatial Proximity -- Modifiable Areal Unit Problem -- Concept of Spatial Autocorrelation -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Working with R -- Getting Started -- Working with Spatial Data -- Tips for Working with R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 2. Making Scientific Observations and Measurements in Spatial Analysis -- Learning Objectives -- Introduction -- Scales of Measurement -- Nominal Scale -- Ordinal Scale -- Interval Scale -- Ratio Scale -- Two Main Approaches for Data Collection That Involve Deductive and Inductive Reasoning -- Population and Sample -- Spatial Sampling -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Step I. View Data Structure -- Step II. Basic Data Summaries -- Step III. Exploring the Spatial Data -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 3. Using Statistical Measures to Analyze Data Distributions -- Learning Objectives -- Introduction -- Descriptive Statistics -- Measures of Central Tendency -- Deriving a Weighted Mean Using the Frequency Distributions in a Set of Observations -- Measures of Dispersion Spatial Statistics: Measures for Describing Basic Characteristics of Spatial Data -- Spatial Measures of Central Tendency -- Spatial Measures of Dispersion -- Random Variables and Probability Distribution -- Random Variable -- Probability and Theoretical Data Distributions -- Concepts and Applications -- Binomial Distribution -- Poisson Distribution -- Normal Distribution -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Exploring Z-Score to Assess the Relative Position in Data Distributions Using R -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 4. Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing -- Learning Objectives -- Introduction -- Exploratory Data Analysis, Geovisualization, and Data Visualization Methods -- Data Visualization -- Geographic Visualization -- New Stunning Visualization Tools and Infographics -- Exploratory Approaches for Visualizing Spatial Datasets -- Visualizing Multidimensional Datasets: An Illustration Based on U.S. Educational Achievements Rates, 1970-2012 -- Hypothesis Testing, Confidence Intervals, and .p.-Values -- Computation -- Statistical Conclusion -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Generating Graphical Data Summaries -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 5. Understanding Spatial Statistical Relationships -- Learning Objectives -- Engaging in Correlation Analysis -- Ordinary Least Squares and Geographically Weighted Regression Methods -- Procedures in Developing a Spatial Regression Model -- Examining Relationships between Regression Variables Examining the Strength of Association and Direction of All Paired Variables Using a Scatterplot Matrix -- Fitting the Ordinary Least Squares Regression Model -- Primary Model -- Examining Variance Inflation Factor Results -- Reduced Model -- Best Model -- Examining Residual Changes in Ordinary Least Squares Regression Models -- Fitting the Geographically Weighted Regression Model -- Examining Residual Change and Effects of Predictor Variables on Local Areas -- Summary of Modeling Result -- Conclusion -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 6. Engaging in Point Pattern Analysis -- Learning Objectives -- Introduction -- Rationale for Studying Point Patterns and Distributions -- Exploring Patterns, Distributions, and Trends Associated with Point Features -- Quadrat Count -- Nearest Neighbor Approach -- K-Function Approach -- Kernel Estimation Approach -- Constructing a Voronoi Map from Point Features -- Exploring Space-Time Patterns -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Explore Potential Path Area and Activity Space Concepts -- Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 7. Engaging in Areal Pattern Analysis Using Global and Local Statistics -- Learning Objectives -- Rationale for Studying Areal Patterns -- The Notion of Spatial Relationships -- Quantifying Spatial Autocorrelation Effects in Areal Patterns -- Join Count Statistics -- Interpreting the Join Count Statistics and Methodological Flaws -- Global Moran's I Coefficient of Spatial Autocorrelation -- Interpreting Moran's I and Methodological Flaws -- Global Geary's C Coefficient of Spatial Autocorrelation Interpreting Geary's C and Methodological Flaws -- Getis-Ord G Statistics -- Interpretation of Getis-Ord G and Methodological Flaws -- Local Moran's I -- Local G-Statistic -- Local Geary -- Using Scatterplots to Synthesize and Interpret Local Indicators of Spatial Association Statistics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Quiz -- Review and Study Questions -- Glossary of Key Terms -- References -- 8. Engaging in Geostatistical Analysis -- Learning Objectives -- Introduction -- Rationale for Using Geostatistics to Study Complex Spatial Patterns -- Basic Interpolation Equations -- Spatial Structure Functions for Regionalized Variables -- Kriging Method and Its Theoretical Framework -- Simple Kriging -- Ordinary Kriging -- Universal Kriging -- Indicator Kriging -- Key Points to Note about the Geostatistical Estimation Using Kriging -- Exploratory Data Analysis -- Spatial Prediction and Modeling -- Uncertainty Analysis -- Conditional Geostatistical Simulation -- Inverse Distance Weighting -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- 9. Data Science: Understanding Computing Systems and Analytics for Big Data -- Learning Objectives -- Introduction to Data Science -- Rationale for a Big Geospatial Data Framework -- Data Management -- Data Warehousing -- Data Sources, Processing Tools, and the Extract-Transform-Load Process -- Data Integration and Storage -- Data-Mining Algorithms for Big Geospatial Data -- Tools, Algorithms, and Methods for Data Mining and Actionable Knowledge -- Business Intelligence, Spatial Online Analytical Processing, and Analytics -- Analytics and Strategies for Big Geospatial Data -- Spatiotemporal Data Analytics Classification Algorithms for Detecting Clusters in Big Geospatial Data -- Embedding Solutions/Algorithm with Topological Considerations -- Graph and Text Analytics -- Conclusions -- Worked Examples in R and Stay One Step Ahead with Challenge Assignments -- Review and Study Questions -- Glossary of Key Terms -- References -- Index Spatial analysis (Statistics) Datenanalyse (DE-588)4123037-1 gnd Räumliche Statistik (DE-588)4386767-4 gnd Geoinformationssystem (DE-588)4261642-6 gnd R Programm (DE-588)4705956-4 gnd Raumdaten (DE-588)4206012-6 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4386767-4 (DE-588)4261642-6 (DE-588)4705956-4 (DE-588)4206012-6 |
title | Spatial analysis with R statistics, visualization, and computational methods |
title_auth | Spatial analysis with R statistics, visualization, and computational methods |
title_exact_search | Spatial analysis with R statistics, visualization, and computational methods |
title_exact_search_txtP | Spatial analysis with R statistics, visualization, and computational methods |
title_full | Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana |
title_fullStr | Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana |
title_full_unstemmed | Spatial analysis with R statistics, visualization, and computational methods Tonny J. Oyana |
title_short | Spatial analysis with R |
title_sort | spatial analysis with r statistics visualization and computational methods |
title_sub | statistics, visualization, and computational methods |
topic | Spatial analysis (Statistics) Datenanalyse (DE-588)4123037-1 gnd Räumliche Statistik (DE-588)4386767-4 gnd Geoinformationssystem (DE-588)4261642-6 gnd R Programm (DE-588)4705956-4 gnd Raumdaten (DE-588)4206012-6 gnd |
topic_facet | Spatial analysis (Statistics) Datenanalyse Räumliche Statistik Geoinformationssystem R Programm Raumdaten |
work_keys_str_mv | AT oyanatonnyj spatialanalysiswithrstatisticsvisualizationandcomputationalmethods |