Pinch analysis for energy and carbon footprint reduction: user guide to process integration for the efficient use of energy
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States
Butterworth-Heinemann
2020
|
Ausgabe: | Third edition |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme, Pläne |
ISBN: | 9780081025376 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441856 | ||
003 | DE-604 | ||
005 | 20240219 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780081025376 |9 978-0-08-102537-6 | ||
035 | |a (ZDB-30-PQE)EBC6286670 | ||
035 | |a (ZDB-30-PAD)EBC6286670 | ||
035 | |a (ZDB-89-EBL)EBL6286670 | ||
035 | |a (OCoLC)1203962610 | ||
035 | |a (DE-599)BVBBV047441856 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 660.28 | |
084 | |a ERG 080 |2 stub | ||
084 | |a UMW 014 |2 stub | ||
084 | |a UMW 020 |2 stub | ||
100 | 1 | |a Kemp, Ian C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pinch analysis for energy and carbon footprint reduction |b user guide to process integration for the efficient use of energy |c Ian C. Kemp, Jeng Shiun Lim |
250 | |a Third edition | ||
264 | 1 | |a Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States |b Butterworth-Heinemann |c 2020 | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme, Pläne | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Pinch Analysis for Energy and Carbon Footprint Reduction: User Guide to Process Integration for the Efficient Use of Energy -- Copyright -- Contents -- Foreword to the first edition -- Foreword to the second edition -- Preface -- Acknowledgements -- Figure acknowledgements -- Abbreviations -- Chapter 1: Introduction -- 1.1. What is pinch analysis? -- 1.2. Historical development and industrial experience -- 1.3. Why does pinch analysis work? -- 1.4. The concept of process synthesis -- 1.5. Hierarchy of energy reduction -- 1.6. The role of thermodynamics in process design -- 1.6.1. How can we apply thermodynamics practically? -- 1.6.2. Capital and energy costs -- 1.7. Learning and applying the techniques -- 1.8. A note on terminology -- References -- Chapter 2: Carbon footprint and primary energy -- 2.1. Introduction -- 2.2. Definition of carbon footprint -- 2.3. Primary energy -- 2.4. Carbon dioxide emissions and carbon footprint -- 2.4.1. Carbon footprint of fuel and electricity -- 2.4.2. Lifecycle emissions -- 2.5. Components of carbon footprint -- 2.6. Carbon pinch and emissions targeting -- 2.7. Energy costs -- 2.8. Conclusions -- References -- Chapter 3: Key concepts of pinch analysis -- 3.1. Heat recovery and heat exchange -- 3.1.1. Basic concepts of heat exchange -- 3.1.2. The temperature-enthalpy diagram -- 3.1.3. Composite curves -- 3.1.4. A targeting procedure - the ''problem table ́́-- 3.1.5. The grand composite curve and shifted composite curves -- 3.2. The pinch and its significance -- 3.3. Heat exchanger network design -- 3.3.1. Network grid representation -- 3.3.2. A ''commonsense ́́network design -- 3.3.3. Design for maximum energy recovery -- 3.3.4. A word about design strategy -- 3.4. Choosing DeltaTmin: supertargeting -- 3.4.1. Further implications of the choice of DeltaTmin -- 3.5. Methodology of pinch analysis | |
505 | 8 | |a 3.5.1. The range of pinch analysis techniques -- 3.5.2. How to do a Pinch Study -- 3.6. Exercise -- References -- Chapter 4: Data extraction and energy targeting -- 4.1. Data extraction -- 4.1.1. Heat and mass balance -- 4.1.2. Stream data extraction -- 4.1.3. Calculating heat loads and heat capacities -- 4.1.4. Choosing streams -- 4.1.5. Mixing -- 4.1.6. Heat losses -- 4.1.7. Summary guidelines -- 4.2. Case study - organics distillation plant -- 4.2.1. Process description -- 4.2.2. Heat and mass balance -- 4.2.3. Stream data extraction -- 4.2.4. Cost data -- 4.3. Energy targeting -- 4.3.1. DeltaTmin contributions for individual streams -- 4.3.2. Threshold problems -- 4.4. Multiple utilities -- 4.4.1. Types of utility -- 4.4.2. The Appropriate Placement principle -- 4.4.3. Constant temperature utilities -- 4.4.4. Utility pinches -- 4.4.5. Variable temperature utilities -- 4.4.5.1. Once-through streams -- 4.4.5.2. Recirculating systems -- 4.4.6. Balanced composite and grand composite curves -- 4.4.7. Choice of multiple utility levels -- 4.4.8. Relationship of utilities to furnaces -- 4.5. More advanced energy targeting -- 4.5.1. Zonal targeting -- 4.5.2. Pressure drop targeting -- 4.6. Targeting heat exchange units, area and shells -- 4.6.1. Targeting for number of units -- 4.6.2. Targeting for the minimum number of units -- 4.6.3. Area targeting -- 4.6.4. Deviations from pure countercurrent flow -- 4.6.5. Number of shells targeting -- 4.6.6. Performance of existing systems -- 4.6.7. Topology traps -- 4.7. Supertargeting -- cost targeting for optimal DeltaTmin -- 4.7.1. Trade-offs in choosing DeltaTmin -- 4.7.2. Illustration for two-stream example -- 4.7.3. Factors affecting the optimal DeltaTmin -- 4.7.4. Approximate estimation of ideal DeltaTmin -- 4.8. Targeting for organics distillation plant case study -- 4.8.1. Energy targeting | |
505 | 8 | |a 4.8.2. Area targeting -- 4.8.3. Cost targeting -- 4.8.4. Zonal targeting -- 4.8.5. Furnace efficiency and cost calculations -- 4.8.6. Translating hot utility targets to furnace fuel use -- 4.8.7. Targeting with utility streams included -- 4.9. Exercises -- 4.10. Appendix - Algorithms for Problem Table and composite curves -- 4.10.1. Problem Table and Grand Composite Curve -- 4.10.2. Composite Curves -- References -- Chapter 5: Heat exchanger network design -- 5.1. Introduction -- 5.2. Heat exchange equipment -- 5.2.1. Types of heat exchanger -- 5.2.2. Shell-and-tube exchangers -- 5.2.2.1. Implications for network design -- 5.2.2.2. True temperature driving forces in matches -- 5.2.3. Plate exchangers -- 5.2.4. Recuperative exchangers -- 5.2.5. Heat recovery to and from solids -- 5.2.6. Multistream heat exchangers -- 5.3. Stream splitting and cyclic matching -- 5.3.1. Stream splitting -- 5.3.2. Cyclic matching -- 5.3.3. Design away from the pinch -- 5.4. Network relaxation -- 5.4.1. Using loops and paths -- 5.4.2. Network and exchanger temperature differences -- 5.4.3. Alternative network design and relaxation strategy -- 5.5. More complex designs -- 5.5.1. Threshold problems -- 5.5.2. Constraints -- 5.5.2.1. Forbidden matches -- 5.5.2.2. Imposed matches and Remaining Problem Analysis -- 5.6. Multiple pinches and near-pinches -- 5.6.1. Definition -- 5.6.2. Network design with multiple pinches -- 5.7. Retrofit design -- 5.7.1. Alternative strategies for process revamp -- 5.7.2. Network optimisation -- 5.7.3. The network pinch -- 5.7.4. Example retrofit network design -- 5.7.5. Automated network design -- 5.8. Operability -- multiple base case design -- 5.9. Network design for organics distillation case study -- 5.9.1. Units separate -- 5.9.2. Units integrated -- 5.9.3. Including utility streams -- 5.9.4. Multiple utilities -- 5.10. Conclusions | |
505 | 8 | |a 5.11. Exercises -- References -- Chapter 6: Utilities, heat and power systems -- 6.1. Concepts -- 6.1.1. Introduction -- 6.1.2. Types of heat and power systems -- 6.1.3. Basic principles of heat engines and heat pumps -- 6.1.4. Appropriate Placement for heat engines and heat pumps -- 6.2. Combined Heat and Power systems -- 6.2.1. Practical heat engines -- 6.2.2. Selection of a CHP system -- 6.2.3. Refinements to site heat and power systems -- 6.2.3.1. Optimising a steam Rankine cycle -- 6.2.3.2. Sizing a gas turbine system -- 6.2.3.3. Combined cycle power generation -- 6.2.3.4. Gas and diesel engines -- 6.2.3.5. Distributed heating and power generation -- 6.2.4. Economic Evaluation -- 6.2.4.1. CHP and process heat recovery -- 6.2.4.2. Electricity tariff structures -- 6.2.4.3. Exporting power -- 6.2.4.4. Fuel value -- 6.2.4.5. Marginal cost of process heating -- 6.2.4.6. Example - economics for a gas turbine project -- 6.2.5. Organic Rankine cycles -- 6.2.6. Alternative fuels and carbon footprint effects -- 6.2.6.1. Alternative fuels and biomass -- 6.2.6.2. Energy choices -- 6.2.6.3. Energy storage -- 6.3. Heat pumps and refrigeration systems -- 6.3.1. Heat pump cycles -- 6.3.1.1. Operating temperature -- 6.3.1.2. Ratio of absorbed and released heat loads -- 6.3.1.3. Economics -- 6.3.2. Refrigeration systems -- 6.3.3. Shaft work analysis -- 6.3.4. Cooling water systems -- 6.3.5. Summary -- 6.4. Total Site Analysis -- 6.4.1. Energy targeting for the overall site -- 6.4.2. Total Site Profiles -- 6.4.3. Practical heat recovery through the site steam system -- 6.4.4. Total Site Problem Table Algorithm -- 6.4.5. Indirect heat transfer -- 6.4.6. Estimation of cogeneration targets -- 6.4.7. Emissions Targeting and Acid Rain -- 6.5. Worked example - organics distillation unit -- 6.6. Worked Case Study and Example for Total Site Problem Table Algorithm | |
505 | 8 | |a 6.7. Case studies and examples -- 6.7.1. Whisky distillery -- 6.7.2. CHP with geothermal district heating -- 6.7.3. Beet sugar refinery -- 6.7.4. Tropical power generation and desalination -- 6.7.5. Hospital site -- 6.8. Exercises -- References -- Chapter 7: Process change and evolution -- 7.1. Concepts -- 7.2. General principles -- 7.2.1. The basic objective -- 7.2.2. The plus-minus principle -- 7.2.3. Appropriate Placement applied to unit operations -- 7.3. Reactor systems -- 7.4. Distillation columns -- 7.4.1. Overview of basic analysis method -- 7.4.2. Refinements to the analysis -- 7.4.2.1. Sensible and latent heat loads -- 7.4.2.2. Unequal reboiler and condenser loads -- 7.4.3. Multiple columns -- 7.4.4. Distillation column profiles -- 7.4.5. Distillation column sequencing -- 7.4.5.1. Complex columns and side strippers -- 7.5. Evaporator systems -- 7.5.1.1. Analysis by pinch methods -- 7.6. Flash systems -- 7.7. Solids drying -- 7.8. Other separation methods -- 7.9. Application to the organics distillation process case study -- 7.9.1. Identifying potential process changes -- 7.9.2. Eliminating bottoms rundown - detailed analysis -- 7.9.3. Economic assessment -- 7.10. Summary and conclusions -- 7.11. Exercise -- References -- Chapter 8: Batch and time-dependent processes -- 8.1. Introduction -- 8.2. Concepts -- 8.3. Types of streams in batch processes -- 8.4. Time intervals -- 8.5. Calculating energy targets -- 8.5.1. Formation of stream data -- 8.5.2. Time average model -- 8.5.3. Time slice model -- 8.5.4. Heat storage possibilities -- 8.6. Heat exchanger network design -- 8.6.1. Networks based on continuous or averaged process -- 8.6.2. Networks based on individual time intervals -- 8.7. Rescheduling -- 8.7.1. Definition -- 8.7.2. Classification of rescheduling types -- 8.7.3. Methodology -- 8.8. Debottlenecking | |
505 | 8 | |a 8.9. Other time-dependent applications | |
700 | 1 | |a Lim, Jeng Shiun |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Kemp, Ian C. |t Pinch Analysis for Energy and Carbon Footprint Reduction |d San Diego : Elsevier Science & Technology,c2020 |n Druck-Ausgabe |z 978-0-08-102536-9 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032844008 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6286670 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734621376512 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kemp, Ian C. Lim, Jeng Shiun |
author_facet | Kemp, Ian C. Lim, Jeng Shiun |
author_role | aut aut |
author_sort | Kemp, Ian C. |
author_variant | i c k ic ick j s l js jsl |
building | Verbundindex |
bvnumber | BV047441856 |
classification_tum | ERG 080 UMW 014 UMW 020 |
collection | ZDB-30-PQE |
contents | Intro -- Pinch Analysis for Energy and Carbon Footprint Reduction: User Guide to Process Integration for the Efficient Use of Energy -- Copyright -- Contents -- Foreword to the first edition -- Foreword to the second edition -- Preface -- Acknowledgements -- Figure acknowledgements -- Abbreviations -- Chapter 1: Introduction -- 1.1. What is pinch analysis? -- 1.2. Historical development and industrial experience -- 1.3. Why does pinch analysis work? -- 1.4. The concept of process synthesis -- 1.5. Hierarchy of energy reduction -- 1.6. The role of thermodynamics in process design -- 1.6.1. How can we apply thermodynamics practically? -- 1.6.2. Capital and energy costs -- 1.7. Learning and applying the techniques -- 1.8. A note on terminology -- References -- Chapter 2: Carbon footprint and primary energy -- 2.1. Introduction -- 2.2. Definition of carbon footprint -- 2.3. Primary energy -- 2.4. Carbon dioxide emissions and carbon footprint -- 2.4.1. Carbon footprint of fuel and electricity -- 2.4.2. Lifecycle emissions -- 2.5. Components of carbon footprint -- 2.6. Carbon pinch and emissions targeting -- 2.7. Energy costs -- 2.8. Conclusions -- References -- Chapter 3: Key concepts of pinch analysis -- 3.1. Heat recovery and heat exchange -- 3.1.1. Basic concepts of heat exchange -- 3.1.2. The temperature-enthalpy diagram -- 3.1.3. Composite curves -- 3.1.4. A targeting procedure - the ''problem table ́́-- 3.1.5. The grand composite curve and shifted composite curves -- 3.2. The pinch and its significance -- 3.3. Heat exchanger network design -- 3.3.1. Network grid representation -- 3.3.2. A ''commonsense ́́network design -- 3.3.3. Design for maximum energy recovery -- 3.3.4. A word about design strategy -- 3.4. Choosing DeltaTmin: supertargeting -- 3.4.1. Further implications of the choice of DeltaTmin -- 3.5. Methodology of pinch analysis 3.5.1. The range of pinch analysis techniques -- 3.5.2. How to do a Pinch Study -- 3.6. Exercise -- References -- Chapter 4: Data extraction and energy targeting -- 4.1. Data extraction -- 4.1.1. Heat and mass balance -- 4.1.2. Stream data extraction -- 4.1.3. Calculating heat loads and heat capacities -- 4.1.4. Choosing streams -- 4.1.5. Mixing -- 4.1.6. Heat losses -- 4.1.7. Summary guidelines -- 4.2. Case study - organics distillation plant -- 4.2.1. Process description -- 4.2.2. Heat and mass balance -- 4.2.3. Stream data extraction -- 4.2.4. Cost data -- 4.3. Energy targeting -- 4.3.1. DeltaTmin contributions for individual streams -- 4.3.2. Threshold problems -- 4.4. Multiple utilities -- 4.4.1. Types of utility -- 4.4.2. The Appropriate Placement principle -- 4.4.3. Constant temperature utilities -- 4.4.4. Utility pinches -- 4.4.5. Variable temperature utilities -- 4.4.5.1. Once-through streams -- 4.4.5.2. Recirculating systems -- 4.4.6. Balanced composite and grand composite curves -- 4.4.7. Choice of multiple utility levels -- 4.4.8. Relationship of utilities to furnaces -- 4.5. More advanced energy targeting -- 4.5.1. Zonal targeting -- 4.5.2. Pressure drop targeting -- 4.6. Targeting heat exchange units, area and shells -- 4.6.1. Targeting for number of units -- 4.6.2. Targeting for the minimum number of units -- 4.6.3. Area targeting -- 4.6.4. Deviations from pure countercurrent flow -- 4.6.5. Number of shells targeting -- 4.6.6. Performance of existing systems -- 4.6.7. Topology traps -- 4.7. Supertargeting -- cost targeting for optimal DeltaTmin -- 4.7.1. Trade-offs in choosing DeltaTmin -- 4.7.2. Illustration for two-stream example -- 4.7.3. Factors affecting the optimal DeltaTmin -- 4.7.4. Approximate estimation of ideal DeltaTmin -- 4.8. Targeting for organics distillation plant case study -- 4.8.1. Energy targeting 4.8.2. Area targeting -- 4.8.3. Cost targeting -- 4.8.4. Zonal targeting -- 4.8.5. Furnace efficiency and cost calculations -- 4.8.6. Translating hot utility targets to furnace fuel use -- 4.8.7. Targeting with utility streams included -- 4.9. Exercises -- 4.10. Appendix - Algorithms for Problem Table and composite curves -- 4.10.1. Problem Table and Grand Composite Curve -- 4.10.2. Composite Curves -- References -- Chapter 5: Heat exchanger network design -- 5.1. Introduction -- 5.2. Heat exchange equipment -- 5.2.1. Types of heat exchanger -- 5.2.2. Shell-and-tube exchangers -- 5.2.2.1. Implications for network design -- 5.2.2.2. True temperature driving forces in matches -- 5.2.3. Plate exchangers -- 5.2.4. Recuperative exchangers -- 5.2.5. Heat recovery to and from solids -- 5.2.6. Multistream heat exchangers -- 5.3. Stream splitting and cyclic matching -- 5.3.1. Stream splitting -- 5.3.2. Cyclic matching -- 5.3.3. Design away from the pinch -- 5.4. Network relaxation -- 5.4.1. Using loops and paths -- 5.4.2. Network and exchanger temperature differences -- 5.4.3. Alternative network design and relaxation strategy -- 5.5. More complex designs -- 5.5.1. Threshold problems -- 5.5.2. Constraints -- 5.5.2.1. Forbidden matches -- 5.5.2.2. Imposed matches and Remaining Problem Analysis -- 5.6. Multiple pinches and near-pinches -- 5.6.1. Definition -- 5.6.2. Network design with multiple pinches -- 5.7. Retrofit design -- 5.7.1. Alternative strategies for process revamp -- 5.7.2. Network optimisation -- 5.7.3. The network pinch -- 5.7.4. Example retrofit network design -- 5.7.5. Automated network design -- 5.8. Operability -- multiple base case design -- 5.9. Network design for organics distillation case study -- 5.9.1. Units separate -- 5.9.2. Units integrated -- 5.9.3. Including utility streams -- 5.9.4. Multiple utilities -- 5.10. Conclusions 5.11. Exercises -- References -- Chapter 6: Utilities, heat and power systems -- 6.1. Concepts -- 6.1.1. Introduction -- 6.1.2. Types of heat and power systems -- 6.1.3. Basic principles of heat engines and heat pumps -- 6.1.4. Appropriate Placement for heat engines and heat pumps -- 6.2. Combined Heat and Power systems -- 6.2.1. Practical heat engines -- 6.2.2. Selection of a CHP system -- 6.2.3. Refinements to site heat and power systems -- 6.2.3.1. Optimising a steam Rankine cycle -- 6.2.3.2. Sizing a gas turbine system -- 6.2.3.3. Combined cycle power generation -- 6.2.3.4. Gas and diesel engines -- 6.2.3.5. Distributed heating and power generation -- 6.2.4. Economic Evaluation -- 6.2.4.1. CHP and process heat recovery -- 6.2.4.2. Electricity tariff structures -- 6.2.4.3. Exporting power -- 6.2.4.4. Fuel value -- 6.2.4.5. Marginal cost of process heating -- 6.2.4.6. Example - economics for a gas turbine project -- 6.2.5. Organic Rankine cycles -- 6.2.6. Alternative fuels and carbon footprint effects -- 6.2.6.1. Alternative fuels and biomass -- 6.2.6.2. Energy choices -- 6.2.6.3. Energy storage -- 6.3. Heat pumps and refrigeration systems -- 6.3.1. Heat pump cycles -- 6.3.1.1. Operating temperature -- 6.3.1.2. Ratio of absorbed and released heat loads -- 6.3.1.3. Economics -- 6.3.2. Refrigeration systems -- 6.3.3. Shaft work analysis -- 6.3.4. Cooling water systems -- 6.3.5. Summary -- 6.4. Total Site Analysis -- 6.4.1. Energy targeting for the overall site -- 6.4.2. Total Site Profiles -- 6.4.3. Practical heat recovery through the site steam system -- 6.4.4. Total Site Problem Table Algorithm -- 6.4.5. Indirect heat transfer -- 6.4.6. Estimation of cogeneration targets -- 6.4.7. Emissions Targeting and Acid Rain -- 6.5. Worked example - organics distillation unit -- 6.6. Worked Case Study and Example for Total Site Problem Table Algorithm 6.7. Case studies and examples -- 6.7.1. Whisky distillery -- 6.7.2. CHP with geothermal district heating -- 6.7.3. Beet sugar refinery -- 6.7.4. Tropical power generation and desalination -- 6.7.5. Hospital site -- 6.8. Exercises -- References -- Chapter 7: Process change and evolution -- 7.1. Concepts -- 7.2. General principles -- 7.2.1. The basic objective -- 7.2.2. The plus-minus principle -- 7.2.3. Appropriate Placement applied to unit operations -- 7.3. Reactor systems -- 7.4. Distillation columns -- 7.4.1. Overview of basic analysis method -- 7.4.2. Refinements to the analysis -- 7.4.2.1. Sensible and latent heat loads -- 7.4.2.2. Unequal reboiler and condenser loads -- 7.4.3. Multiple columns -- 7.4.4. Distillation column profiles -- 7.4.5. Distillation column sequencing -- 7.4.5.1. Complex columns and side strippers -- 7.5. Evaporator systems -- 7.5.1.1. Analysis by pinch methods -- 7.6. Flash systems -- 7.7. Solids drying -- 7.8. Other separation methods -- 7.9. Application to the organics distillation process case study -- 7.9.1. Identifying potential process changes -- 7.9.2. Eliminating bottoms rundown - detailed analysis -- 7.9.3. Economic assessment -- 7.10. Summary and conclusions -- 7.11. Exercise -- References -- Chapter 8: Batch and time-dependent processes -- 8.1. Introduction -- 8.2. Concepts -- 8.3. Types of streams in batch processes -- 8.4. Time intervals -- 8.5. Calculating energy targets -- 8.5.1. Formation of stream data -- 8.5.2. Time average model -- 8.5.3. Time slice model -- 8.5.4. Heat storage possibilities -- 8.6. Heat exchanger network design -- 8.6.1. Networks based on continuous or averaged process -- 8.6.2. Networks based on individual time intervals -- 8.7. Rescheduling -- 8.7.1. Definition -- 8.7.2. Classification of rescheduling types -- 8.7.3. Methodology -- 8.8. Debottlenecking 8.9. Other time-dependent applications |
ctrlnum | (ZDB-30-PQE)EBC6286670 (ZDB-30-PAD)EBC6286670 (ZDB-89-EBL)EBL6286670 (OCoLC)1203962610 (DE-599)BVBBV047441856 |
dewey-full | 660.28 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.28 |
dewey-search | 660.28 |
dewey-sort | 3660.28 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Energietechnik, Energiewirtschaft Umwelt |
discipline_str_mv | Chemie / Pharmazie Energietechnik, Energiewirtschaft Umwelt |
edition | Third edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11174nmm a2200493zc 4500</leader><controlfield tag="001">BV047441856</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240219 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081025376</subfield><subfield code="9">978-0-08-102537-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6286670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6286670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6286670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1203962610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441856</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.28</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 080</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 014</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 020</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kemp, Ian C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pinch analysis for energy and carbon footprint reduction</subfield><subfield code="b">user guide to process integration for the efficient use of energy</subfield><subfield code="c">Ian C. Kemp, Jeng Shiun Lim</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States</subfield><subfield code="b">Butterworth-Heinemann</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme, Pläne</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Pinch Analysis for Energy and Carbon Footprint Reduction: User Guide to Process Integration for the Efficient Use of Energy -- Copyright -- Contents -- Foreword to the first edition -- Foreword to the second edition -- Preface -- Acknowledgements -- Figure acknowledgements -- Abbreviations -- Chapter 1: Introduction -- 1.1. What is pinch analysis? -- 1.2. Historical development and industrial experience -- 1.3. Why does pinch analysis work? -- 1.4. The concept of process synthesis -- 1.5. Hierarchy of energy reduction -- 1.6. The role of thermodynamics in process design -- 1.6.1. How can we apply thermodynamics practically? -- 1.6.2. Capital and energy costs -- 1.7. Learning and applying the techniques -- 1.8. A note on terminology -- References -- Chapter 2: Carbon footprint and primary energy -- 2.1. Introduction -- 2.2. Definition of carbon footprint -- 2.3. Primary energy -- 2.4. Carbon dioxide emissions and carbon footprint -- 2.4.1. Carbon footprint of fuel and electricity -- 2.4.2. Lifecycle emissions -- 2.5. Components of carbon footprint -- 2.6. Carbon pinch and emissions targeting -- 2.7. Energy costs -- 2.8. Conclusions -- References -- Chapter 3: Key concepts of pinch analysis -- 3.1. Heat recovery and heat exchange -- 3.1.1. Basic concepts of heat exchange -- 3.1.2. The temperature-enthalpy diagram -- 3.1.3. Composite curves -- 3.1.4. A targeting procedure - the ''problem table ́́-- 3.1.5. The grand composite curve and shifted composite curves -- 3.2. The pinch and its significance -- 3.3. Heat exchanger network design -- 3.3.1. Network grid representation -- 3.3.2. A ''commonsense ́́network design -- 3.3.3. Design for maximum energy recovery -- 3.3.4. A word about design strategy -- 3.4. Choosing DeltaTmin: supertargeting -- 3.4.1. Further implications of the choice of DeltaTmin -- 3.5. Methodology of pinch analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5.1. The range of pinch analysis techniques -- 3.5.2. How to do a Pinch Study -- 3.6. Exercise -- References -- Chapter 4: Data extraction and energy targeting -- 4.1. Data extraction -- 4.1.1. Heat and mass balance -- 4.1.2. Stream data extraction -- 4.1.3. Calculating heat loads and heat capacities -- 4.1.4. Choosing streams -- 4.1.5. Mixing -- 4.1.6. Heat losses -- 4.1.7. Summary guidelines -- 4.2. Case study - organics distillation plant -- 4.2.1. Process description -- 4.2.2. Heat and mass balance -- 4.2.3. Stream data extraction -- 4.2.4. Cost data -- 4.3. Energy targeting -- 4.3.1. DeltaTmin contributions for individual streams -- 4.3.2. Threshold problems -- 4.4. Multiple utilities -- 4.4.1. Types of utility -- 4.4.2. The Appropriate Placement principle -- 4.4.3. Constant temperature utilities -- 4.4.4. Utility pinches -- 4.4.5. Variable temperature utilities -- 4.4.5.1. Once-through streams -- 4.4.5.2. Recirculating systems -- 4.4.6. Balanced composite and grand composite curves -- 4.4.7. Choice of multiple utility levels -- 4.4.8. Relationship of utilities to furnaces -- 4.5. More advanced energy targeting -- 4.5.1. Zonal targeting -- 4.5.2. Pressure drop targeting -- 4.6. Targeting heat exchange units, area and shells -- 4.6.1. Targeting for number of units -- 4.6.2. Targeting for the minimum number of units -- 4.6.3. Area targeting -- 4.6.4. Deviations from pure countercurrent flow -- 4.6.5. Number of shells targeting -- 4.6.6. Performance of existing systems -- 4.6.7. Topology traps -- 4.7. Supertargeting -- cost targeting for optimal DeltaTmin -- 4.7.1. Trade-offs in choosing DeltaTmin -- 4.7.2. Illustration for two-stream example -- 4.7.3. Factors affecting the optimal DeltaTmin -- 4.7.4. Approximate estimation of ideal DeltaTmin -- 4.8. Targeting for organics distillation plant case study -- 4.8.1. Energy targeting</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.8.2. Area targeting -- 4.8.3. Cost targeting -- 4.8.4. Zonal targeting -- 4.8.5. Furnace efficiency and cost calculations -- 4.8.6. Translating hot utility targets to furnace fuel use -- 4.8.7. Targeting with utility streams included -- 4.9. Exercises -- 4.10. Appendix - Algorithms for Problem Table and composite curves -- 4.10.1. Problem Table and Grand Composite Curve -- 4.10.2. Composite Curves -- References -- Chapter 5: Heat exchanger network design -- 5.1. Introduction -- 5.2. Heat exchange equipment -- 5.2.1. Types of heat exchanger -- 5.2.2. Shell-and-tube exchangers -- 5.2.2.1. Implications for network design -- 5.2.2.2. True temperature driving forces in matches -- 5.2.3. Plate exchangers -- 5.2.4. Recuperative exchangers -- 5.2.5. Heat recovery to and from solids -- 5.2.6. Multistream heat exchangers -- 5.3. Stream splitting and cyclic matching -- 5.3.1. Stream splitting -- 5.3.2. Cyclic matching -- 5.3.3. Design away from the pinch -- 5.4. Network relaxation -- 5.4.1. Using loops and paths -- 5.4.2. Network and exchanger temperature differences -- 5.4.3. Alternative network design and relaxation strategy -- 5.5. More complex designs -- 5.5.1. Threshold problems -- 5.5.2. Constraints -- 5.5.2.1. Forbidden matches -- 5.5.2.2. Imposed matches and Remaining Problem Analysis -- 5.6. Multiple pinches and near-pinches -- 5.6.1. Definition -- 5.6.2. Network design with multiple pinches -- 5.7. Retrofit design -- 5.7.1. Alternative strategies for process revamp -- 5.7.2. Network optimisation -- 5.7.3. The network pinch -- 5.7.4. Example retrofit network design -- 5.7.5. Automated network design -- 5.8. Operability -- multiple base case design -- 5.9. Network design for organics distillation case study -- 5.9.1. Units separate -- 5.9.2. Units integrated -- 5.9.3. Including utility streams -- 5.9.4. Multiple utilities -- 5.10. Conclusions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.11. Exercises -- References -- Chapter 6: Utilities, heat and power systems -- 6.1. Concepts -- 6.1.1. Introduction -- 6.1.2. Types of heat and power systems -- 6.1.3. Basic principles of heat engines and heat pumps -- 6.1.4. Appropriate Placement for heat engines and heat pumps -- 6.2. Combined Heat and Power systems -- 6.2.1. Practical heat engines -- 6.2.2. Selection of a CHP system -- 6.2.3. Refinements to site heat and power systems -- 6.2.3.1. Optimising a steam Rankine cycle -- 6.2.3.2. Sizing a gas turbine system -- 6.2.3.3. Combined cycle power generation -- 6.2.3.4. Gas and diesel engines -- 6.2.3.5. Distributed heating and power generation -- 6.2.4. Economic Evaluation -- 6.2.4.1. CHP and process heat recovery -- 6.2.4.2. Electricity tariff structures -- 6.2.4.3. Exporting power -- 6.2.4.4. Fuel value -- 6.2.4.5. Marginal cost of process heating -- 6.2.4.6. Example - economics for a gas turbine project -- 6.2.5. Organic Rankine cycles -- 6.2.6. Alternative fuels and carbon footprint effects -- 6.2.6.1. Alternative fuels and biomass -- 6.2.6.2. Energy choices -- 6.2.6.3. Energy storage -- 6.3. Heat pumps and refrigeration systems -- 6.3.1. Heat pump cycles -- 6.3.1.1. Operating temperature -- 6.3.1.2. Ratio of absorbed and released heat loads -- 6.3.1.3. Economics -- 6.3.2. Refrigeration systems -- 6.3.3. Shaft work analysis -- 6.3.4. Cooling water systems -- 6.3.5. Summary -- 6.4. Total Site Analysis -- 6.4.1. Energy targeting for the overall site -- 6.4.2. Total Site Profiles -- 6.4.3. Practical heat recovery through the site steam system -- 6.4.4. Total Site Problem Table Algorithm -- 6.4.5. Indirect heat transfer -- 6.4.6. Estimation of cogeneration targets -- 6.4.7. Emissions Targeting and Acid Rain -- 6.5. Worked example - organics distillation unit -- 6.6. Worked Case Study and Example for Total Site Problem Table Algorithm</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.7. Case studies and examples -- 6.7.1. Whisky distillery -- 6.7.2. CHP with geothermal district heating -- 6.7.3. Beet sugar refinery -- 6.7.4. Tropical power generation and desalination -- 6.7.5. Hospital site -- 6.8. Exercises -- References -- Chapter 7: Process change and evolution -- 7.1. Concepts -- 7.2. General principles -- 7.2.1. The basic objective -- 7.2.2. The plus-minus principle -- 7.2.3. Appropriate Placement applied to unit operations -- 7.3. Reactor systems -- 7.4. Distillation columns -- 7.4.1. Overview of basic analysis method -- 7.4.2. Refinements to the analysis -- 7.4.2.1. Sensible and latent heat loads -- 7.4.2.2. Unequal reboiler and condenser loads -- 7.4.3. Multiple columns -- 7.4.4. Distillation column profiles -- 7.4.5. Distillation column sequencing -- 7.4.5.1. Complex columns and side strippers -- 7.5. Evaporator systems -- 7.5.1.1. Analysis by pinch methods -- 7.6. Flash systems -- 7.7. Solids drying -- 7.8. Other separation methods -- 7.9. Application to the organics distillation process case study -- 7.9.1. Identifying potential process changes -- 7.9.2. Eliminating bottoms rundown - detailed analysis -- 7.9.3. Economic assessment -- 7.10. Summary and conclusions -- 7.11. Exercise -- References -- Chapter 8: Batch and time-dependent processes -- 8.1. Introduction -- 8.2. Concepts -- 8.3. Types of streams in batch processes -- 8.4. Time intervals -- 8.5. Calculating energy targets -- 8.5.1. Formation of stream data -- 8.5.2. Time average model -- 8.5.3. Time slice model -- 8.5.4. Heat storage possibilities -- 8.6. Heat exchanger network design -- 8.6.1. Networks based on continuous or averaged process -- 8.6.2. Networks based on individual time intervals -- 8.7. Rescheduling -- 8.7.1. Definition -- 8.7.2. Classification of rescheduling types -- 8.7.3. Methodology -- 8.8. Debottlenecking</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.9. Other time-dependent applications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Jeng Shiun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Kemp, Ian C.</subfield><subfield code="t">Pinch Analysis for Energy and Carbon Footprint Reduction</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2020</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-08-102536-9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844008</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6286670</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441856 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9780081025376 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844008 |
oclc_num | 1203962610 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen, Diagramme, Pläne |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Butterworth-Heinemann |
record_format | marc |
spelling | Kemp, Ian C. Verfasser aut Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy Ian C. Kemp, Jeng Shiun Lim Third edition Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States Butterworth-Heinemann 2020 © 2020 1 Online-Ressource Illustrationen, Diagramme, Pläne txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Pinch Analysis for Energy and Carbon Footprint Reduction: User Guide to Process Integration for the Efficient Use of Energy -- Copyright -- Contents -- Foreword to the first edition -- Foreword to the second edition -- Preface -- Acknowledgements -- Figure acknowledgements -- Abbreviations -- Chapter 1: Introduction -- 1.1. What is pinch analysis? -- 1.2. Historical development and industrial experience -- 1.3. Why does pinch analysis work? -- 1.4. The concept of process synthesis -- 1.5. Hierarchy of energy reduction -- 1.6. The role of thermodynamics in process design -- 1.6.1. How can we apply thermodynamics practically? -- 1.6.2. Capital and energy costs -- 1.7. Learning and applying the techniques -- 1.8. A note on terminology -- References -- Chapter 2: Carbon footprint and primary energy -- 2.1. Introduction -- 2.2. Definition of carbon footprint -- 2.3. Primary energy -- 2.4. Carbon dioxide emissions and carbon footprint -- 2.4.1. Carbon footprint of fuel and electricity -- 2.4.2. Lifecycle emissions -- 2.5. Components of carbon footprint -- 2.6. Carbon pinch and emissions targeting -- 2.7. Energy costs -- 2.8. Conclusions -- References -- Chapter 3: Key concepts of pinch analysis -- 3.1. Heat recovery and heat exchange -- 3.1.1. Basic concepts of heat exchange -- 3.1.2. The temperature-enthalpy diagram -- 3.1.3. Composite curves -- 3.1.4. A targeting procedure - the ''problem table ́́-- 3.1.5. The grand composite curve and shifted composite curves -- 3.2. The pinch and its significance -- 3.3. Heat exchanger network design -- 3.3.1. Network grid representation -- 3.3.2. A ''commonsense ́́network design -- 3.3.3. Design for maximum energy recovery -- 3.3.4. A word about design strategy -- 3.4. Choosing DeltaTmin: supertargeting -- 3.4.1. Further implications of the choice of DeltaTmin -- 3.5. Methodology of pinch analysis 3.5.1. The range of pinch analysis techniques -- 3.5.2. How to do a Pinch Study -- 3.6. Exercise -- References -- Chapter 4: Data extraction and energy targeting -- 4.1. Data extraction -- 4.1.1. Heat and mass balance -- 4.1.2. Stream data extraction -- 4.1.3. Calculating heat loads and heat capacities -- 4.1.4. Choosing streams -- 4.1.5. Mixing -- 4.1.6. Heat losses -- 4.1.7. Summary guidelines -- 4.2. Case study - organics distillation plant -- 4.2.1. Process description -- 4.2.2. Heat and mass balance -- 4.2.3. Stream data extraction -- 4.2.4. Cost data -- 4.3. Energy targeting -- 4.3.1. DeltaTmin contributions for individual streams -- 4.3.2. Threshold problems -- 4.4. Multiple utilities -- 4.4.1. Types of utility -- 4.4.2. The Appropriate Placement principle -- 4.4.3. Constant temperature utilities -- 4.4.4. Utility pinches -- 4.4.5. Variable temperature utilities -- 4.4.5.1. Once-through streams -- 4.4.5.2. Recirculating systems -- 4.4.6. Balanced composite and grand composite curves -- 4.4.7. Choice of multiple utility levels -- 4.4.8. Relationship of utilities to furnaces -- 4.5. More advanced energy targeting -- 4.5.1. Zonal targeting -- 4.5.2. Pressure drop targeting -- 4.6. Targeting heat exchange units, area and shells -- 4.6.1. Targeting for number of units -- 4.6.2. Targeting for the minimum number of units -- 4.6.3. Area targeting -- 4.6.4. Deviations from pure countercurrent flow -- 4.6.5. Number of shells targeting -- 4.6.6. Performance of existing systems -- 4.6.7. Topology traps -- 4.7. Supertargeting -- cost targeting for optimal DeltaTmin -- 4.7.1. Trade-offs in choosing DeltaTmin -- 4.7.2. Illustration for two-stream example -- 4.7.3. Factors affecting the optimal DeltaTmin -- 4.7.4. Approximate estimation of ideal DeltaTmin -- 4.8. Targeting for organics distillation plant case study -- 4.8.1. Energy targeting 4.8.2. Area targeting -- 4.8.3. Cost targeting -- 4.8.4. Zonal targeting -- 4.8.5. Furnace efficiency and cost calculations -- 4.8.6. Translating hot utility targets to furnace fuel use -- 4.8.7. Targeting with utility streams included -- 4.9. Exercises -- 4.10. Appendix - Algorithms for Problem Table and composite curves -- 4.10.1. Problem Table and Grand Composite Curve -- 4.10.2. Composite Curves -- References -- Chapter 5: Heat exchanger network design -- 5.1. Introduction -- 5.2. Heat exchange equipment -- 5.2.1. Types of heat exchanger -- 5.2.2. Shell-and-tube exchangers -- 5.2.2.1. Implications for network design -- 5.2.2.2. True temperature driving forces in matches -- 5.2.3. Plate exchangers -- 5.2.4. Recuperative exchangers -- 5.2.5. Heat recovery to and from solids -- 5.2.6. Multistream heat exchangers -- 5.3. Stream splitting and cyclic matching -- 5.3.1. Stream splitting -- 5.3.2. Cyclic matching -- 5.3.3. Design away from the pinch -- 5.4. Network relaxation -- 5.4.1. Using loops and paths -- 5.4.2. Network and exchanger temperature differences -- 5.4.3. Alternative network design and relaxation strategy -- 5.5. More complex designs -- 5.5.1. Threshold problems -- 5.5.2. Constraints -- 5.5.2.1. Forbidden matches -- 5.5.2.2. Imposed matches and Remaining Problem Analysis -- 5.6. Multiple pinches and near-pinches -- 5.6.1. Definition -- 5.6.2. Network design with multiple pinches -- 5.7. Retrofit design -- 5.7.1. Alternative strategies for process revamp -- 5.7.2. Network optimisation -- 5.7.3. The network pinch -- 5.7.4. Example retrofit network design -- 5.7.5. Automated network design -- 5.8. Operability -- multiple base case design -- 5.9. Network design for organics distillation case study -- 5.9.1. Units separate -- 5.9.2. Units integrated -- 5.9.3. Including utility streams -- 5.9.4. Multiple utilities -- 5.10. Conclusions 5.11. Exercises -- References -- Chapter 6: Utilities, heat and power systems -- 6.1. Concepts -- 6.1.1. Introduction -- 6.1.2. Types of heat and power systems -- 6.1.3. Basic principles of heat engines and heat pumps -- 6.1.4. Appropriate Placement for heat engines and heat pumps -- 6.2. Combined Heat and Power systems -- 6.2.1. Practical heat engines -- 6.2.2. Selection of a CHP system -- 6.2.3. Refinements to site heat and power systems -- 6.2.3.1. Optimising a steam Rankine cycle -- 6.2.3.2. Sizing a gas turbine system -- 6.2.3.3. Combined cycle power generation -- 6.2.3.4. Gas and diesel engines -- 6.2.3.5. Distributed heating and power generation -- 6.2.4. Economic Evaluation -- 6.2.4.1. CHP and process heat recovery -- 6.2.4.2. Electricity tariff structures -- 6.2.4.3. Exporting power -- 6.2.4.4. Fuel value -- 6.2.4.5. Marginal cost of process heating -- 6.2.4.6. Example - economics for a gas turbine project -- 6.2.5. Organic Rankine cycles -- 6.2.6. Alternative fuels and carbon footprint effects -- 6.2.6.1. Alternative fuels and biomass -- 6.2.6.2. Energy choices -- 6.2.6.3. Energy storage -- 6.3. Heat pumps and refrigeration systems -- 6.3.1. Heat pump cycles -- 6.3.1.1. Operating temperature -- 6.3.1.2. Ratio of absorbed and released heat loads -- 6.3.1.3. Economics -- 6.3.2. Refrigeration systems -- 6.3.3. Shaft work analysis -- 6.3.4. Cooling water systems -- 6.3.5. Summary -- 6.4. Total Site Analysis -- 6.4.1. Energy targeting for the overall site -- 6.4.2. Total Site Profiles -- 6.4.3. Practical heat recovery through the site steam system -- 6.4.4. Total Site Problem Table Algorithm -- 6.4.5. Indirect heat transfer -- 6.4.6. Estimation of cogeneration targets -- 6.4.7. Emissions Targeting and Acid Rain -- 6.5. Worked example - organics distillation unit -- 6.6. Worked Case Study and Example for Total Site Problem Table Algorithm 6.7. Case studies and examples -- 6.7.1. Whisky distillery -- 6.7.2. CHP with geothermal district heating -- 6.7.3. Beet sugar refinery -- 6.7.4. Tropical power generation and desalination -- 6.7.5. Hospital site -- 6.8. Exercises -- References -- Chapter 7: Process change and evolution -- 7.1. Concepts -- 7.2. General principles -- 7.2.1. The basic objective -- 7.2.2. The plus-minus principle -- 7.2.3. Appropriate Placement applied to unit operations -- 7.3. Reactor systems -- 7.4. Distillation columns -- 7.4.1. Overview of basic analysis method -- 7.4.2. Refinements to the analysis -- 7.4.2.1. Sensible and latent heat loads -- 7.4.2.2. Unequal reboiler and condenser loads -- 7.4.3. Multiple columns -- 7.4.4. Distillation column profiles -- 7.4.5. Distillation column sequencing -- 7.4.5.1. Complex columns and side strippers -- 7.5. Evaporator systems -- 7.5.1.1. Analysis by pinch methods -- 7.6. Flash systems -- 7.7. Solids drying -- 7.8. Other separation methods -- 7.9. Application to the organics distillation process case study -- 7.9.1. Identifying potential process changes -- 7.9.2. Eliminating bottoms rundown - detailed analysis -- 7.9.3. Economic assessment -- 7.10. Summary and conclusions -- 7.11. Exercise -- References -- Chapter 8: Batch and time-dependent processes -- 8.1. Introduction -- 8.2. Concepts -- 8.3. Types of streams in batch processes -- 8.4. Time intervals -- 8.5. Calculating energy targets -- 8.5.1. Formation of stream data -- 8.5.2. Time average model -- 8.5.3. Time slice model -- 8.5.4. Heat storage possibilities -- 8.6. Heat exchanger network design -- 8.6.1. Networks based on continuous or averaged process -- 8.6.2. Networks based on individual time intervals -- 8.7. Rescheduling -- 8.7.1. Definition -- 8.7.2. Classification of rescheduling types -- 8.7.3. Methodology -- 8.8. Debottlenecking 8.9. Other time-dependent applications Lim, Jeng Shiun Verfasser aut Erscheint auch als Kemp, Ian C. Pinch Analysis for Energy and Carbon Footprint Reduction San Diego : Elsevier Science & Technology,c2020 Druck-Ausgabe 978-0-08-102536-9 |
spellingShingle | Kemp, Ian C. Lim, Jeng Shiun Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy Intro -- Pinch Analysis for Energy and Carbon Footprint Reduction: User Guide to Process Integration for the Efficient Use of Energy -- Copyright -- Contents -- Foreword to the first edition -- Foreword to the second edition -- Preface -- Acknowledgements -- Figure acknowledgements -- Abbreviations -- Chapter 1: Introduction -- 1.1. What is pinch analysis? -- 1.2. Historical development and industrial experience -- 1.3. Why does pinch analysis work? -- 1.4. The concept of process synthesis -- 1.5. Hierarchy of energy reduction -- 1.6. The role of thermodynamics in process design -- 1.6.1. How can we apply thermodynamics practically? -- 1.6.2. Capital and energy costs -- 1.7. Learning and applying the techniques -- 1.8. A note on terminology -- References -- Chapter 2: Carbon footprint and primary energy -- 2.1. Introduction -- 2.2. Definition of carbon footprint -- 2.3. Primary energy -- 2.4. Carbon dioxide emissions and carbon footprint -- 2.4.1. Carbon footprint of fuel and electricity -- 2.4.2. Lifecycle emissions -- 2.5. Components of carbon footprint -- 2.6. Carbon pinch and emissions targeting -- 2.7. Energy costs -- 2.8. Conclusions -- References -- Chapter 3: Key concepts of pinch analysis -- 3.1. Heat recovery and heat exchange -- 3.1.1. Basic concepts of heat exchange -- 3.1.2. The temperature-enthalpy diagram -- 3.1.3. Composite curves -- 3.1.4. A targeting procedure - the ''problem table ́́-- 3.1.5. The grand composite curve and shifted composite curves -- 3.2. The pinch and its significance -- 3.3. Heat exchanger network design -- 3.3.1. Network grid representation -- 3.3.2. A ''commonsense ́́network design -- 3.3.3. Design for maximum energy recovery -- 3.3.4. A word about design strategy -- 3.4. Choosing DeltaTmin: supertargeting -- 3.4.1. Further implications of the choice of DeltaTmin -- 3.5. Methodology of pinch analysis 3.5.1. The range of pinch analysis techniques -- 3.5.2. How to do a Pinch Study -- 3.6. Exercise -- References -- Chapter 4: Data extraction and energy targeting -- 4.1. Data extraction -- 4.1.1. Heat and mass balance -- 4.1.2. Stream data extraction -- 4.1.3. Calculating heat loads and heat capacities -- 4.1.4. Choosing streams -- 4.1.5. Mixing -- 4.1.6. Heat losses -- 4.1.7. Summary guidelines -- 4.2. Case study - organics distillation plant -- 4.2.1. Process description -- 4.2.2. Heat and mass balance -- 4.2.3. Stream data extraction -- 4.2.4. Cost data -- 4.3. Energy targeting -- 4.3.1. DeltaTmin contributions for individual streams -- 4.3.2. Threshold problems -- 4.4. Multiple utilities -- 4.4.1. Types of utility -- 4.4.2. The Appropriate Placement principle -- 4.4.3. Constant temperature utilities -- 4.4.4. Utility pinches -- 4.4.5. Variable temperature utilities -- 4.4.5.1. Once-through streams -- 4.4.5.2. Recirculating systems -- 4.4.6. Balanced composite and grand composite curves -- 4.4.7. Choice of multiple utility levels -- 4.4.8. Relationship of utilities to furnaces -- 4.5. More advanced energy targeting -- 4.5.1. Zonal targeting -- 4.5.2. Pressure drop targeting -- 4.6. Targeting heat exchange units, area and shells -- 4.6.1. Targeting for number of units -- 4.6.2. Targeting for the minimum number of units -- 4.6.3. Area targeting -- 4.6.4. Deviations from pure countercurrent flow -- 4.6.5. Number of shells targeting -- 4.6.6. Performance of existing systems -- 4.6.7. Topology traps -- 4.7. Supertargeting -- cost targeting for optimal DeltaTmin -- 4.7.1. Trade-offs in choosing DeltaTmin -- 4.7.2. Illustration for two-stream example -- 4.7.3. Factors affecting the optimal DeltaTmin -- 4.7.4. Approximate estimation of ideal DeltaTmin -- 4.8. Targeting for organics distillation plant case study -- 4.8.1. Energy targeting 4.8.2. Area targeting -- 4.8.3. Cost targeting -- 4.8.4. Zonal targeting -- 4.8.5. Furnace efficiency and cost calculations -- 4.8.6. Translating hot utility targets to furnace fuel use -- 4.8.7. Targeting with utility streams included -- 4.9. Exercises -- 4.10. Appendix - Algorithms for Problem Table and composite curves -- 4.10.1. Problem Table and Grand Composite Curve -- 4.10.2. Composite Curves -- References -- Chapter 5: Heat exchanger network design -- 5.1. Introduction -- 5.2. Heat exchange equipment -- 5.2.1. Types of heat exchanger -- 5.2.2. Shell-and-tube exchangers -- 5.2.2.1. Implications for network design -- 5.2.2.2. True temperature driving forces in matches -- 5.2.3. Plate exchangers -- 5.2.4. Recuperative exchangers -- 5.2.5. Heat recovery to and from solids -- 5.2.6. Multistream heat exchangers -- 5.3. Stream splitting and cyclic matching -- 5.3.1. Stream splitting -- 5.3.2. Cyclic matching -- 5.3.3. Design away from the pinch -- 5.4. Network relaxation -- 5.4.1. Using loops and paths -- 5.4.2. Network and exchanger temperature differences -- 5.4.3. Alternative network design and relaxation strategy -- 5.5. More complex designs -- 5.5.1. Threshold problems -- 5.5.2. Constraints -- 5.5.2.1. Forbidden matches -- 5.5.2.2. Imposed matches and Remaining Problem Analysis -- 5.6. Multiple pinches and near-pinches -- 5.6.1. Definition -- 5.6.2. Network design with multiple pinches -- 5.7. Retrofit design -- 5.7.1. Alternative strategies for process revamp -- 5.7.2. Network optimisation -- 5.7.3. The network pinch -- 5.7.4. Example retrofit network design -- 5.7.5. Automated network design -- 5.8. Operability -- multiple base case design -- 5.9. Network design for organics distillation case study -- 5.9.1. Units separate -- 5.9.2. Units integrated -- 5.9.3. Including utility streams -- 5.9.4. Multiple utilities -- 5.10. Conclusions 5.11. Exercises -- References -- Chapter 6: Utilities, heat and power systems -- 6.1. Concepts -- 6.1.1. Introduction -- 6.1.2. Types of heat and power systems -- 6.1.3. Basic principles of heat engines and heat pumps -- 6.1.4. Appropriate Placement for heat engines and heat pumps -- 6.2. Combined Heat and Power systems -- 6.2.1. Practical heat engines -- 6.2.2. Selection of a CHP system -- 6.2.3. Refinements to site heat and power systems -- 6.2.3.1. Optimising a steam Rankine cycle -- 6.2.3.2. Sizing a gas turbine system -- 6.2.3.3. Combined cycle power generation -- 6.2.3.4. Gas and diesel engines -- 6.2.3.5. Distributed heating and power generation -- 6.2.4. Economic Evaluation -- 6.2.4.1. CHP and process heat recovery -- 6.2.4.2. Electricity tariff structures -- 6.2.4.3. Exporting power -- 6.2.4.4. Fuel value -- 6.2.4.5. Marginal cost of process heating -- 6.2.4.6. Example - economics for a gas turbine project -- 6.2.5. Organic Rankine cycles -- 6.2.6. Alternative fuels and carbon footprint effects -- 6.2.6.1. Alternative fuels and biomass -- 6.2.6.2. Energy choices -- 6.2.6.3. Energy storage -- 6.3. Heat pumps and refrigeration systems -- 6.3.1. Heat pump cycles -- 6.3.1.1. Operating temperature -- 6.3.1.2. Ratio of absorbed and released heat loads -- 6.3.1.3. Economics -- 6.3.2. Refrigeration systems -- 6.3.3. Shaft work analysis -- 6.3.4. Cooling water systems -- 6.3.5. Summary -- 6.4. Total Site Analysis -- 6.4.1. Energy targeting for the overall site -- 6.4.2. Total Site Profiles -- 6.4.3. Practical heat recovery through the site steam system -- 6.4.4. Total Site Problem Table Algorithm -- 6.4.5. Indirect heat transfer -- 6.4.6. Estimation of cogeneration targets -- 6.4.7. Emissions Targeting and Acid Rain -- 6.5. Worked example - organics distillation unit -- 6.6. Worked Case Study and Example for Total Site Problem Table Algorithm 6.7. Case studies and examples -- 6.7.1. Whisky distillery -- 6.7.2. CHP with geothermal district heating -- 6.7.3. Beet sugar refinery -- 6.7.4. Tropical power generation and desalination -- 6.7.5. Hospital site -- 6.8. Exercises -- References -- Chapter 7: Process change and evolution -- 7.1. Concepts -- 7.2. General principles -- 7.2.1. The basic objective -- 7.2.2. The plus-minus principle -- 7.2.3. Appropriate Placement applied to unit operations -- 7.3. Reactor systems -- 7.4. Distillation columns -- 7.4.1. Overview of basic analysis method -- 7.4.2. Refinements to the analysis -- 7.4.2.1. Sensible and latent heat loads -- 7.4.2.2. Unequal reboiler and condenser loads -- 7.4.3. Multiple columns -- 7.4.4. Distillation column profiles -- 7.4.5. Distillation column sequencing -- 7.4.5.1. Complex columns and side strippers -- 7.5. Evaporator systems -- 7.5.1.1. Analysis by pinch methods -- 7.6. Flash systems -- 7.7. Solids drying -- 7.8. Other separation methods -- 7.9. Application to the organics distillation process case study -- 7.9.1. Identifying potential process changes -- 7.9.2. Eliminating bottoms rundown - detailed analysis -- 7.9.3. Economic assessment -- 7.10. Summary and conclusions -- 7.11. Exercise -- References -- Chapter 8: Batch and time-dependent processes -- 8.1. Introduction -- 8.2. Concepts -- 8.3. Types of streams in batch processes -- 8.4. Time intervals -- 8.5. Calculating energy targets -- 8.5.1. Formation of stream data -- 8.5.2. Time average model -- 8.5.3. Time slice model -- 8.5.4. Heat storage possibilities -- 8.6. Heat exchanger network design -- 8.6.1. Networks based on continuous or averaged process -- 8.6.2. Networks based on individual time intervals -- 8.7. Rescheduling -- 8.7.1. Definition -- 8.7.2. Classification of rescheduling types -- 8.7.3. Methodology -- 8.8. Debottlenecking 8.9. Other time-dependent applications |
title | Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy |
title_auth | Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy |
title_exact_search | Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy |
title_exact_search_txtP | Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy |
title_full | Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy Ian C. Kemp, Jeng Shiun Lim |
title_fullStr | Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy Ian C. Kemp, Jeng Shiun Lim |
title_full_unstemmed | Pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy Ian C. Kemp, Jeng Shiun Lim |
title_short | Pinch analysis for energy and carbon footprint reduction |
title_sort | pinch analysis for energy and carbon footprint reduction user guide to process integration for the efficient use of energy |
title_sub | user guide to process integration for the efficient use of energy |
work_keys_str_mv | AT kempianc pinchanalysisforenergyandcarbonfootprintreductionuserguidetoprocessintegrationfortheefficientuseofenergy AT limjengshiun pinchanalysisforenergyandcarbonfootprintreductionuserguidetoprocessintegrationfortheefficientuseofenergy |