Lightweight polymer composite structures: design and manufacturing techniques
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press, Taylor & Francis Group
2020
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xvi, 394 Seiten) Illustrationen, Diagramme |
ISBN: | 9780429520822 9780429244087 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441838 | ||
003 | DE-604 | ||
005 | 20231005 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780429520822 |9 978-0-429-52082-2 | ||
020 | |a 9780429244087 |9 978-0-429-24408-7 | ||
035 | |a (ZDB-30-PQE)EBC6280244 | ||
035 | |a (ZDB-30-PAD)EBC6280244 | ||
035 | |a (ZDB-89-EBL)EBL6280244 | ||
035 | |a (OCoLC)1182842704 | ||
035 | |a (DE-599)BVBBV047441838 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 668.9 | |
084 | |a WER 550 |2 stub | ||
245 | 1 | 0 | |a Lightweight polymer composite structures |b design and manufacturing techniques |c editors Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Suchart Siengchin, and Lothar Kroll |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press, Taylor & Francis Group |c 2020 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xvi, 394 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor Biographies -- Contributors -- Chapter 1 Lightweight Graphene Composite Materials -- 1.1 Introduction -- 1.1.1 Synthesis of Graphene -- 1.1.2 Properties of Graphene -- 1.1.3 Graphene-Based Polymer Composites -- 1.2 Large-Scale Production of Graphene-Based Composite Materials -- 1.3 Modeling and Simulation of Graphene-Based Lightweight Composite Materials -- 1.4 Advanced Graphene-Based Lightweight Composite Materials -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 2 Conventional Processing of Polymer Matrix Composites -- 2.1 Introduction -- 2.1.1 Advantages of Composite Materials -- 2.1.2 Major Applications of Composite Materials -- 2.1.3 Classifications of Composites -- 2.1.3.1 Based on Matrix -- 2.1.4 Comparison of Thermoplastic and Thermosetting Polymers -- 2.1.5 Based on Reinforcement -- 2.1.5.1 Natural Fibers -- 2.1.5.2 Synthetic Fibers -- 2.1.5.3 Comparison of Synthetic Fibers and Natural Fibers -- 2.2 Processing of Polymer Matrix Composites -- 2.2.1 Degree of Cure -- 2.2.2 Viscosity -- 2.2.3 Resin Flow -- 2.2.4 Consolidation -- 2.2.5 Gel-Time Test -- 2.2.6 Shrinkage -- 2.2.7 Voids -- 2.3 Manufacturing Techniques of Thermoplastic Composites -- 2.3.1 Injection Molding -- 2.3.1.1 Application -- 2.3.1.2 Benefits of Injection Molding -- 2.3.1.3 Limitations of Injection Molding -- 2.3.2 Blow Molding -- 2.3.2.1 Application -- 2.3.2.2 Advantages of Blow Molding -- 2.3.2.3 Limitations of Blow Molding -- 2.3.3 Autoclave Process -- 2.3.3.1 Application -- 2.3.3.2 Advantages of Autoclave Process -- 2.3.3.3 Limitations of Autoclave Process -- 2.3.4 Thermoforming -- 2.3.4.1 Application -- 2.3.4.2 Advantages of Thermoforming -- 2.3.4.3 Limitations of Thermoforming -- 2.3.5 Compression Molding -- 2.3.5.1 Application | |
505 | 8 | |a 2.3.5.2 Advantages of Compression Molding -- 2.3.5.3 Limitations of Compression Molding -- 2.4 Manufacturing Techniques of Thermoset Composites -- 2.4.1 Sheet Molding Compound (SMC) Molding -- 2.4.1.1 Application -- 2.4.1.2 Advantages of SMC -- 2.4.1.3 Limitations of SMC -- 2.4.2 BMC Molding -- 2.4.2.1 Application -- 2.4.2.2 Advantages of BMC -- 2.4.2.3 Limitations of BMC -- 2.4.3 Hand Lay-Up -- 2.4.3.1 Application -- 2.4.3.2 Advantages of Hand Lay-Up -- 2.4.3.3 Limitations of Hand Lay-Up -- 2.4.4 Spray-Up -- 2.4.4.1 Application -- 2.4.4.2 Advantages of Spray-Up -- 2.4.4.3 Limitations of Spray-Up -- 2.4.5 Resin Transfer Molding -- 2.4.5.1 Applications -- 2.4.5.2 Advantages of RTM -- 2.4.5.3 Limitations of RTM -- 2.4.6 Vacuum Bagging -- 2.4.6.1 Applications -- 2.4.6.2 Benefits of Vacuum Bagging -- 2.4.6.3 Limitations of Vacuum Bagging -- 2.4.7 Pultrusion -- 2.4.7.1 Applications -- 2.4.7.2 Benefits of Pultrusion Process -- 2.4.7.3 Limitations of Pultrusion -- 2.4.8 Filament Winding -- 2.4.8.1 Applications -- 2.4.8.2 Benefits of Filament Winding -- 2.4.8.3 Limitations of Filament Winding -- 2.5 Novel Fabrication Techniques of Polymer Composites: Microwave-Assisted Compression Molding (MACM) -- 2.5.1 Microwave Heating Mechanism of Polymer Composites -- 2.5.2 Fabrication of Composites Using MACM -- 2.5.3 Advantages of MACM -- 2.6 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Biodegradable and Biocompatible Polymer Composite: Biomedical Applications and Bioimplants -- 3.1 Introduction -- 3.2 Interesting Fact about Biodegradable and Biocompatible Materials -- 3.3 Need, Necessity, and Prevention of Biodegradable and Biocompatible Materials -- 3.4 Biodegradable and Biocompatible Polymer Composites and Their Biomedical Applications -- 3.5 Conclusion -- Acknowledgment -- Conflict of Interest -- References | |
505 | 8 | |a Chapter 4 Lightweight Polymer Composites from Wood Flour, Metals, Alloys, Metallic Fibers, Ceramics -- 4.1 Introduction -- 4.2 Composite Materials -- 4.3 Particle Reinforced Polymer Composites -- 4.4 Particulates -- 4.5 Metal Reinforcements -- 4.6 Wood Plastic Composites -- 4.7 Ceramic Reinforced Polymer Composites -- 4.8 Conclusion -- Acknowledgments -- References -- Chapter 5 Lightweight Composite Materials in Transport Structures -- 5.1 Introduction -- 5.2 History -- 5.3 Polymer Matrix Composites -- 5.3.1 Resin Types -- 5.3.2 Fiber Types -- 5.4 Production Techniques -- 5.4.1 Hand Lay-Up -- 5.4.2 Spray-Up -- 5.4.3 Vacuum Bagging/Autoclave -- 5.4.4 Vacuum Infusion -- 5.4.5 Filament Winding -- 5.4.6 Resin Transfer Molding -- 5.4.7 Prepreg -- 5.4.8 Long Fiber Technology (LFT) -- 5.5 Applications -- 5.6 Future Trends -- 5.7 Conclusion -- References -- Chapter 6 Hybrid Thermoplastic and Thermosetting Composites -- Abbreviations -- 6.1 Introduction -- 6.2 Hybrid Composites Based on Thermoplastic Matrices -- 6.2.1 Preparation -- 6.2.1.1 Functionalization and Preparation of Fillers -- 6.2.1.2 Solution Mixing and Casting/Molding -- 6.2.1.3 Overmolding Injection -- 6.2.1.4 Mechanical Mixing and Compression Molding -- 6.2.2 Composites Containing Natural Fibers -- 6.2.3 Composites Containing Synthetic Fibers -- 6.2.4 Composites Containing Two Different Nanocarbons -- 6.3 Hybrid Composites Based on Thermosetting Matrices -- 6.3.1 Synthesis Technique -- 6.3.1.1 Hand Lay-Up -- 6.3.1.2 Compression Molding -- 6.3.1.3 Casting Method -- 6.3.1.4 Resin Transfer Molding (RTM) -- 6.4 Conclusions -- References -- Chapter 7 Design and Modeling of Lightweight Polymer Composite Structures -- 7.1 Introduction -- 7.2 Macro-Mechanical Behavior of Lamina -- 7.3 Plane-Stress Condition -- 7.4 Hook's Law for Angle Lamina in Two Dimensions (2D) | |
505 | 8 | |a 7.5 Micro-Mechanical Behavior of Lamina -- 7.6 Analysis of Laminates -- 7.7 Visco-Elastic Behavior of the Polymer Matrix Composite -- 7.8 Molecular Dynamics Technique to Model Lightweight Polymer Composites -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 8 Smart Lightweight Polymer Composites -- 8.1 Introduction -- 8.2 Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.1 Synthesis of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2 Factors Governing the Performances of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2.1 Concentration of Particulate Phases -- 8.2.2.2 Particle Size of the Discrete Phases -- 8.2.2.3 Extent of Alignment -- 8.2.2.4 Treatment by Coupling Agent -- 8.2.2.5 Nature of the Matrix -- 8.2.3 Applications -- 8.3 Electromagnetic Radiation Absorber Material -- 8.3.1 Mechanism of Electromagnetic Wave Loss -- 8.3.1.1 Mechanism of Dielectric Loss -- 8.3.1.2 Magnetic Loss Mechanism -- 8.3.2 Synthesis of Electromagnetic Radiation Absorber Material -- 8.3.2.1 Mechanical Mixing -- 8.3.2.2 Melt-Blending -- 8.3.2.3 In Situ Emulsion Polymerization -- 8.3.2.4 Solution Mixing -- 8.3.3 Factors Governing the Performances of Electromagnetic Radiation Absorbing Polymer Composites -- 8.3.3.1 Characteristics of Filler -- 8.3.3.2 Filler Loading -- 8.3.3.3 Size and Distribution of Filler -- 8.3.3.4 Characteristics of Polymer -- 8.3.3.5 Thickness of the Composite -- 8.3.4 Applications -- 8.4 Piezoelectric Materials -- 8.4.1 Synthesis of Piezoelectric Materials -- 8.4.1.1 Synthesis of Inorganic Particulate Matters -- 8.4.1.2 Fabrication of the Polymer Composites/Nanocomposites -- 8.4.1.3 Synthesis of Sandwich-Type Piezoelectric Nanogenerators -- 8.4.2 Factors Governing the Performance of Piezoelectric Nanogenerators -- 8.4.2.1 Crystallinity/Defects -- 8.4.2.2 Diameter and Length | |
505 | 8 | |a 8.4.2.3 Thickness -- 8.4.2.4 Characteristics of Piezoelectric Phase -- 8.4.2.5 Functionalization of Piezoelectric Phase -- 8.4.2.6 Characteristics of the Polymer Matrix -- 8.4.3 Applications -- 8.5 Conclusions -- References -- Chapter 9 Carbon Fiber Reinforced Thermoplastics and Thermosetting Composites -- 9.1 Introduction -- 9.2 Thermoset and Thermoplastics Polymers: A Brief Description -- 9.2.1 Thermoset Polymers: -- 9.2.2 Thermoplastic Polymers: -- 9.3 Carbon Fiber: An Introduction -- 9.3.1 Types of Carbon Fibers: General Classification -- 9.4 Properties of Carbon Fiber -- 9.5 Mechanical Properties of Thermoplastic Polymer-Based Composites -- 9.6 Mechanical Properties of Thermoset Polymer-Based Composites -- 9.7 Conclusion -- References -- Chapter 10 Glass Fiber Thermoset and Thermoplastic Composites -- 10.1 Introduction -- 10.1.1 Batching Process -- 10.1.2 Melting Process -- 10.1.3 Fibrilization -- 10.1.4 Coating -- 10.1.5 Drying and Packing -- 10.2 Preparation of Thermoset Glass Fiber Composites -- 10.2.1 Resin Transfer Mold (RTM) -- 10.2.2 Hany Lay-up Method -- 10.3 Randomly Oriented Glass Fiber Thermoset Composites -- 10.3.1 Polyester Composites -- 10.3.2 Epoxy Composites -- 10.3.3 Vinyl Ester Composites -- 10.4 Laminated Glass Fiber Thermoset Composites -- 10.4.1 Polyester Composites -- 10.4.2 Epoxy Composites -- 10.4.3 Vinyl Ester Composites -- 10.5 Glass Fiber Thermoplastic Composites -- 10.6 Hybrid Fiber-Reinforced Polymer Composites -- 10.6.1 Thermoset Composites -- 10.6.2 Thermoplastic Composites -- 10.7 Conclusion -- References -- Chapter 11 Inorganic Nanofillers-Based Thermoplastic and Thermosetting Composites -- 11.1 Introduction -- 11.2 Types of Inorganic Nanofillers -- 11.2.1 Gold Nanoparticles (GNPs) -- 11.2.2 Quantum Dots (QDs) -- 11.2.3 Silver Nanoparticles (AgNPs) -- 11.2.4 Iron Oxide Nanoparticles (INPs) | |
505 | 8 | |a 11.2.5 Carbon Nano Tubes (CNTs) | |
650 | 4 | |a Polymers | |
650 | 0 | 7 | |a Kunststoff |0 (DE-588)4033676-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Leichtbau |0 (DE-588)4035165-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Kunststoff |0 (DE-588)4033676-1 |D s |
689 | 0 | 1 | |a Leichtbau |0 (DE-588)4035165-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rangappa, Sanjay Mavinkere |0 (DE-588)1219460885 |4 edt | |
700 | 1 | |a Parameswaranpillai, Jyotishkumar |0 (DE-588)1068121556 |4 edt | |
700 | 0 | |a Suchart Siengchin |0 (DE-588)136810772 |4 edt | |
700 | 1 | |a Kroll, Lothar |d 1959- |0 (DE-588)172677343 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Rangappa, Sanjay Mavinkere |t Lightweight Polymer Composite Structures |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-0-367-19920-3 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032843990 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6280244 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734631862272 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Rangappa, Sanjay Mavinkere Parameswaranpillai, Jyotishkumar Suchart Siengchin Kroll, Lothar 1959- |
author2_role | edt edt edt edt |
author2_variant | s m r sm smr j p jp s s ss l k lk |
author_GND | (DE-588)1219460885 (DE-588)1068121556 (DE-588)136810772 (DE-588)172677343 |
author_facet | Rangappa, Sanjay Mavinkere Parameswaranpillai, Jyotishkumar Suchart Siengchin Kroll, Lothar 1959- |
building | Verbundindex |
bvnumber | BV047441838 |
classification_tum | WER 550 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor Biographies -- Contributors -- Chapter 1 Lightweight Graphene Composite Materials -- 1.1 Introduction -- 1.1.1 Synthesis of Graphene -- 1.1.2 Properties of Graphene -- 1.1.3 Graphene-Based Polymer Composites -- 1.2 Large-Scale Production of Graphene-Based Composite Materials -- 1.3 Modeling and Simulation of Graphene-Based Lightweight Composite Materials -- 1.4 Advanced Graphene-Based Lightweight Composite Materials -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 2 Conventional Processing of Polymer Matrix Composites -- 2.1 Introduction -- 2.1.1 Advantages of Composite Materials -- 2.1.2 Major Applications of Composite Materials -- 2.1.3 Classifications of Composites -- 2.1.3.1 Based on Matrix -- 2.1.4 Comparison of Thermoplastic and Thermosetting Polymers -- 2.1.5 Based on Reinforcement -- 2.1.5.1 Natural Fibers -- 2.1.5.2 Synthetic Fibers -- 2.1.5.3 Comparison of Synthetic Fibers and Natural Fibers -- 2.2 Processing of Polymer Matrix Composites -- 2.2.1 Degree of Cure -- 2.2.2 Viscosity -- 2.2.3 Resin Flow -- 2.2.4 Consolidation -- 2.2.5 Gel-Time Test -- 2.2.6 Shrinkage -- 2.2.7 Voids -- 2.3 Manufacturing Techniques of Thermoplastic Composites -- 2.3.1 Injection Molding -- 2.3.1.1 Application -- 2.3.1.2 Benefits of Injection Molding -- 2.3.1.3 Limitations of Injection Molding -- 2.3.2 Blow Molding -- 2.3.2.1 Application -- 2.3.2.2 Advantages of Blow Molding -- 2.3.2.3 Limitations of Blow Molding -- 2.3.3 Autoclave Process -- 2.3.3.1 Application -- 2.3.3.2 Advantages of Autoclave Process -- 2.3.3.3 Limitations of Autoclave Process -- 2.3.4 Thermoforming -- 2.3.4.1 Application -- 2.3.4.2 Advantages of Thermoforming -- 2.3.4.3 Limitations of Thermoforming -- 2.3.5 Compression Molding -- 2.3.5.1 Application 2.3.5.2 Advantages of Compression Molding -- 2.3.5.3 Limitations of Compression Molding -- 2.4 Manufacturing Techniques of Thermoset Composites -- 2.4.1 Sheet Molding Compound (SMC) Molding -- 2.4.1.1 Application -- 2.4.1.2 Advantages of SMC -- 2.4.1.3 Limitations of SMC -- 2.4.2 BMC Molding -- 2.4.2.1 Application -- 2.4.2.2 Advantages of BMC -- 2.4.2.3 Limitations of BMC -- 2.4.3 Hand Lay-Up -- 2.4.3.1 Application -- 2.4.3.2 Advantages of Hand Lay-Up -- 2.4.3.3 Limitations of Hand Lay-Up -- 2.4.4 Spray-Up -- 2.4.4.1 Application -- 2.4.4.2 Advantages of Spray-Up -- 2.4.4.3 Limitations of Spray-Up -- 2.4.5 Resin Transfer Molding -- 2.4.5.1 Applications -- 2.4.5.2 Advantages of RTM -- 2.4.5.3 Limitations of RTM -- 2.4.6 Vacuum Bagging -- 2.4.6.1 Applications -- 2.4.6.2 Benefits of Vacuum Bagging -- 2.4.6.3 Limitations of Vacuum Bagging -- 2.4.7 Pultrusion -- 2.4.7.1 Applications -- 2.4.7.2 Benefits of Pultrusion Process -- 2.4.7.3 Limitations of Pultrusion -- 2.4.8 Filament Winding -- 2.4.8.1 Applications -- 2.4.8.2 Benefits of Filament Winding -- 2.4.8.3 Limitations of Filament Winding -- 2.5 Novel Fabrication Techniques of Polymer Composites: Microwave-Assisted Compression Molding (MACM) -- 2.5.1 Microwave Heating Mechanism of Polymer Composites -- 2.5.2 Fabrication of Composites Using MACM -- 2.5.3 Advantages of MACM -- 2.6 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Biodegradable and Biocompatible Polymer Composite: Biomedical Applications and Bioimplants -- 3.1 Introduction -- 3.2 Interesting Fact about Biodegradable and Biocompatible Materials -- 3.3 Need, Necessity, and Prevention of Biodegradable and Biocompatible Materials -- 3.4 Biodegradable and Biocompatible Polymer Composites and Their Biomedical Applications -- 3.5 Conclusion -- Acknowledgment -- Conflict of Interest -- References Chapter 4 Lightweight Polymer Composites from Wood Flour, Metals, Alloys, Metallic Fibers, Ceramics -- 4.1 Introduction -- 4.2 Composite Materials -- 4.3 Particle Reinforced Polymer Composites -- 4.4 Particulates -- 4.5 Metal Reinforcements -- 4.6 Wood Plastic Composites -- 4.7 Ceramic Reinforced Polymer Composites -- 4.8 Conclusion -- Acknowledgments -- References -- Chapter 5 Lightweight Composite Materials in Transport Structures -- 5.1 Introduction -- 5.2 History -- 5.3 Polymer Matrix Composites -- 5.3.1 Resin Types -- 5.3.2 Fiber Types -- 5.4 Production Techniques -- 5.4.1 Hand Lay-Up -- 5.4.2 Spray-Up -- 5.4.3 Vacuum Bagging/Autoclave -- 5.4.4 Vacuum Infusion -- 5.4.5 Filament Winding -- 5.4.6 Resin Transfer Molding -- 5.4.7 Prepreg -- 5.4.8 Long Fiber Technology (LFT) -- 5.5 Applications -- 5.6 Future Trends -- 5.7 Conclusion -- References -- Chapter 6 Hybrid Thermoplastic and Thermosetting Composites -- Abbreviations -- 6.1 Introduction -- 6.2 Hybrid Composites Based on Thermoplastic Matrices -- 6.2.1 Preparation -- 6.2.1.1 Functionalization and Preparation of Fillers -- 6.2.1.2 Solution Mixing and Casting/Molding -- 6.2.1.3 Overmolding Injection -- 6.2.1.4 Mechanical Mixing and Compression Molding -- 6.2.2 Composites Containing Natural Fibers -- 6.2.3 Composites Containing Synthetic Fibers -- 6.2.4 Composites Containing Two Different Nanocarbons -- 6.3 Hybrid Composites Based on Thermosetting Matrices -- 6.3.1 Synthesis Technique -- 6.3.1.1 Hand Lay-Up -- 6.3.1.2 Compression Molding -- 6.3.1.3 Casting Method -- 6.3.1.4 Resin Transfer Molding (RTM) -- 6.4 Conclusions -- References -- Chapter 7 Design and Modeling of Lightweight Polymer Composite Structures -- 7.1 Introduction -- 7.2 Macro-Mechanical Behavior of Lamina -- 7.3 Plane-Stress Condition -- 7.4 Hook's Law for Angle Lamina in Two Dimensions (2D) 7.5 Micro-Mechanical Behavior of Lamina -- 7.6 Analysis of Laminates -- 7.7 Visco-Elastic Behavior of the Polymer Matrix Composite -- 7.8 Molecular Dynamics Technique to Model Lightweight Polymer Composites -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 8 Smart Lightweight Polymer Composites -- 8.1 Introduction -- 8.2 Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.1 Synthesis of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2 Factors Governing the Performances of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2.1 Concentration of Particulate Phases -- 8.2.2.2 Particle Size of the Discrete Phases -- 8.2.2.3 Extent of Alignment -- 8.2.2.4 Treatment by Coupling Agent -- 8.2.2.5 Nature of the Matrix -- 8.2.3 Applications -- 8.3 Electromagnetic Radiation Absorber Material -- 8.3.1 Mechanism of Electromagnetic Wave Loss -- 8.3.1.1 Mechanism of Dielectric Loss -- 8.3.1.2 Magnetic Loss Mechanism -- 8.3.2 Synthesis of Electromagnetic Radiation Absorber Material -- 8.3.2.1 Mechanical Mixing -- 8.3.2.2 Melt-Blending -- 8.3.2.3 In Situ Emulsion Polymerization -- 8.3.2.4 Solution Mixing -- 8.3.3 Factors Governing the Performances of Electromagnetic Radiation Absorbing Polymer Composites -- 8.3.3.1 Characteristics of Filler -- 8.3.3.2 Filler Loading -- 8.3.3.3 Size and Distribution of Filler -- 8.3.3.4 Characteristics of Polymer -- 8.3.3.5 Thickness of the Composite -- 8.3.4 Applications -- 8.4 Piezoelectric Materials -- 8.4.1 Synthesis of Piezoelectric Materials -- 8.4.1.1 Synthesis of Inorganic Particulate Matters -- 8.4.1.2 Fabrication of the Polymer Composites/Nanocomposites -- 8.4.1.3 Synthesis of Sandwich-Type Piezoelectric Nanogenerators -- 8.4.2 Factors Governing the Performance of Piezoelectric Nanogenerators -- 8.4.2.1 Crystallinity/Defects -- 8.4.2.2 Diameter and Length 8.4.2.3 Thickness -- 8.4.2.4 Characteristics of Piezoelectric Phase -- 8.4.2.5 Functionalization of Piezoelectric Phase -- 8.4.2.6 Characteristics of the Polymer Matrix -- 8.4.3 Applications -- 8.5 Conclusions -- References -- Chapter 9 Carbon Fiber Reinforced Thermoplastics and Thermosetting Composites -- 9.1 Introduction -- 9.2 Thermoset and Thermoplastics Polymers: A Brief Description -- 9.2.1 Thermoset Polymers: -- 9.2.2 Thermoplastic Polymers: -- 9.3 Carbon Fiber: An Introduction -- 9.3.1 Types of Carbon Fibers: General Classification -- 9.4 Properties of Carbon Fiber -- 9.5 Mechanical Properties of Thermoplastic Polymer-Based Composites -- 9.6 Mechanical Properties of Thermoset Polymer-Based Composites -- 9.7 Conclusion -- References -- Chapter 10 Glass Fiber Thermoset and Thermoplastic Composites -- 10.1 Introduction -- 10.1.1 Batching Process -- 10.1.2 Melting Process -- 10.1.3 Fibrilization -- 10.1.4 Coating -- 10.1.5 Drying and Packing -- 10.2 Preparation of Thermoset Glass Fiber Composites -- 10.2.1 Resin Transfer Mold (RTM) -- 10.2.2 Hany Lay-up Method -- 10.3 Randomly Oriented Glass Fiber Thermoset Composites -- 10.3.1 Polyester Composites -- 10.3.2 Epoxy Composites -- 10.3.3 Vinyl Ester Composites -- 10.4 Laminated Glass Fiber Thermoset Composites -- 10.4.1 Polyester Composites -- 10.4.2 Epoxy Composites -- 10.4.3 Vinyl Ester Composites -- 10.5 Glass Fiber Thermoplastic Composites -- 10.6 Hybrid Fiber-Reinforced Polymer Composites -- 10.6.1 Thermoset Composites -- 10.6.2 Thermoplastic Composites -- 10.7 Conclusion -- References -- Chapter 11 Inorganic Nanofillers-Based Thermoplastic and Thermosetting Composites -- 11.1 Introduction -- 11.2 Types of Inorganic Nanofillers -- 11.2.1 Gold Nanoparticles (GNPs) -- 11.2.2 Quantum Dots (QDs) -- 11.2.3 Silver Nanoparticles (AgNPs) -- 11.2.4 Iron Oxide Nanoparticles (INPs) 11.2.5 Carbon Nano Tubes (CNTs) |
ctrlnum | (ZDB-30-PQE)EBC6280244 (ZDB-30-PAD)EBC6280244 (ZDB-89-EBL)EBL6280244 (OCoLC)1182842704 (DE-599)BVBBV047441838 |
dewey-full | 668.9 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 668 - Technology of other organic products |
dewey-raw | 668.9 |
dewey-search | 668.9 |
dewey-sort | 3668.9 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Werkstoffwissenschaften |
discipline_str_mv | Chemie / Pharmazie Werkstoffwissenschaften |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11617nmm a2200589zc 4500</leader><controlfield tag="001">BV047441838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231005 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429520822</subfield><subfield code="9">978-0-429-52082-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429244087</subfield><subfield code="9">978-0-429-24408-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6280244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6280244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6280244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1182842704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441838</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">668.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 550</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lightweight polymer composite structures</subfield><subfield code="b">design and manufacturing techniques</subfield><subfield code="c">editors Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Suchart Siengchin, and Lothar Kroll</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 394 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor Biographies -- Contributors -- Chapter 1 Lightweight Graphene Composite Materials -- 1.1 Introduction -- 1.1.1 Synthesis of Graphene -- 1.1.2 Properties of Graphene -- 1.1.3 Graphene-Based Polymer Composites -- 1.2 Large-Scale Production of Graphene-Based Composite Materials -- 1.3 Modeling and Simulation of Graphene-Based Lightweight Composite Materials -- 1.4 Advanced Graphene-Based Lightweight Composite Materials -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 2 Conventional Processing of Polymer Matrix Composites -- 2.1 Introduction -- 2.1.1 Advantages of Composite Materials -- 2.1.2 Major Applications of Composite Materials -- 2.1.3 Classifications of Composites -- 2.1.3.1 Based on Matrix -- 2.1.4 Comparison of Thermoplastic and Thermosetting Polymers -- 2.1.5 Based on Reinforcement -- 2.1.5.1 Natural Fibers -- 2.1.5.2 Synthetic Fibers -- 2.1.5.3 Comparison of Synthetic Fibers and Natural Fibers -- 2.2 Processing of Polymer Matrix Composites -- 2.2.1 Degree of Cure -- 2.2.2 Viscosity -- 2.2.3 Resin Flow -- 2.2.4 Consolidation -- 2.2.5 Gel-Time Test -- 2.2.6 Shrinkage -- 2.2.7 Voids -- 2.3 Manufacturing Techniques of Thermoplastic Composites -- 2.3.1 Injection Molding -- 2.3.1.1 Application -- 2.3.1.2 Benefits of Injection Molding -- 2.3.1.3 Limitations of Injection Molding -- 2.3.2 Blow Molding -- 2.3.2.1 Application -- 2.3.2.2 Advantages of Blow Molding -- 2.3.2.3 Limitations of Blow Molding -- 2.3.3 Autoclave Process -- 2.3.3.1 Application -- 2.3.3.2 Advantages of Autoclave Process -- 2.3.3.3 Limitations of Autoclave Process -- 2.3.4 Thermoforming -- 2.3.4.1 Application -- 2.3.4.2 Advantages of Thermoforming -- 2.3.4.3 Limitations of Thermoforming -- 2.3.5 Compression Molding -- 2.3.5.1 Application</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.5.2 Advantages of Compression Molding -- 2.3.5.3 Limitations of Compression Molding -- 2.4 Manufacturing Techniques of Thermoset Composites -- 2.4.1 Sheet Molding Compound (SMC) Molding -- 2.4.1.1 Application -- 2.4.1.2 Advantages of SMC -- 2.4.1.3 Limitations of SMC -- 2.4.2 BMC Molding -- 2.4.2.1 Application -- 2.4.2.2 Advantages of BMC -- 2.4.2.3 Limitations of BMC -- 2.4.3 Hand Lay-Up -- 2.4.3.1 Application -- 2.4.3.2 Advantages of Hand Lay-Up -- 2.4.3.3 Limitations of Hand Lay-Up -- 2.4.4 Spray-Up -- 2.4.4.1 Application -- 2.4.4.2 Advantages of Spray-Up -- 2.4.4.3 Limitations of Spray-Up -- 2.4.5 Resin Transfer Molding -- 2.4.5.1 Applications -- 2.4.5.2 Advantages of RTM -- 2.4.5.3 Limitations of RTM -- 2.4.6 Vacuum Bagging -- 2.4.6.1 Applications -- 2.4.6.2 Benefits of Vacuum Bagging -- 2.4.6.3 Limitations of Vacuum Bagging -- 2.4.7 Pultrusion -- 2.4.7.1 Applications -- 2.4.7.2 Benefits of Pultrusion Process -- 2.4.7.3 Limitations of Pultrusion -- 2.4.8 Filament Winding -- 2.4.8.1 Applications -- 2.4.8.2 Benefits of Filament Winding -- 2.4.8.3 Limitations of Filament Winding -- 2.5 Novel Fabrication Techniques of Polymer Composites: Microwave-Assisted Compression Molding (MACM) -- 2.5.1 Microwave Heating Mechanism of Polymer Composites -- 2.5.2 Fabrication of Composites Using MACM -- 2.5.3 Advantages of MACM -- 2.6 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Biodegradable and Biocompatible Polymer Composite: Biomedical Applications and Bioimplants -- 3.1 Introduction -- 3.2 Interesting Fact about Biodegradable and Biocompatible Materials -- 3.3 Need, Necessity, and Prevention of Biodegradable and Biocompatible Materials -- 3.4 Biodegradable and Biocompatible Polymer Composites and Their Biomedical Applications -- 3.5 Conclusion -- Acknowledgment -- Conflict of Interest -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4 Lightweight Polymer Composites from Wood Flour, Metals, Alloys, Metallic Fibers, Ceramics -- 4.1 Introduction -- 4.2 Composite Materials -- 4.3 Particle Reinforced Polymer Composites -- 4.4 Particulates -- 4.5 Metal Reinforcements -- 4.6 Wood Plastic Composites -- 4.7 Ceramic Reinforced Polymer Composites -- 4.8 Conclusion -- Acknowledgments -- References -- Chapter 5 Lightweight Composite Materials in Transport Structures -- 5.1 Introduction -- 5.2 History -- 5.3 Polymer Matrix Composites -- 5.3.1 Resin Types -- 5.3.2 Fiber Types -- 5.4 Production Techniques -- 5.4.1 Hand Lay-Up -- 5.4.2 Spray-Up -- 5.4.3 Vacuum Bagging/Autoclave -- 5.4.4 Vacuum Infusion -- 5.4.5 Filament Winding -- 5.4.6 Resin Transfer Molding -- 5.4.7 Prepreg -- 5.4.8 Long Fiber Technology (LFT) -- 5.5 Applications -- 5.6 Future Trends -- 5.7 Conclusion -- References -- Chapter 6 Hybrid Thermoplastic and Thermosetting Composites -- Abbreviations -- 6.1 Introduction -- 6.2 Hybrid Composites Based on Thermoplastic Matrices -- 6.2.1 Preparation -- 6.2.1.1 Functionalization and Preparation of Fillers -- 6.2.1.2 Solution Mixing and Casting/Molding -- 6.2.1.3 Overmolding Injection -- 6.2.1.4 Mechanical Mixing and Compression Molding -- 6.2.2 Composites Containing Natural Fibers -- 6.2.3 Composites Containing Synthetic Fibers -- 6.2.4 Composites Containing Two Different Nanocarbons -- 6.3 Hybrid Composites Based on Thermosetting Matrices -- 6.3.1 Synthesis Technique -- 6.3.1.1 Hand Lay-Up -- 6.3.1.2 Compression Molding -- 6.3.1.3 Casting Method -- 6.3.1.4 Resin Transfer Molding (RTM) -- 6.4 Conclusions -- References -- Chapter 7 Design and Modeling of Lightweight Polymer Composite Structures -- 7.1 Introduction -- 7.2 Macro-Mechanical Behavior of Lamina -- 7.3 Plane-Stress Condition -- 7.4 Hook's Law for Angle Lamina in Two Dimensions (2D)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 Micro-Mechanical Behavior of Lamina -- 7.6 Analysis of Laminates -- 7.7 Visco-Elastic Behavior of the Polymer Matrix Composite -- 7.8 Molecular Dynamics Technique to Model Lightweight Polymer Composites -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 8 Smart Lightweight Polymer Composites -- 8.1 Introduction -- 8.2 Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.1 Synthesis of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2 Factors Governing the Performances of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2.1 Concentration of Particulate Phases -- 8.2.2.2 Particle Size of the Discrete Phases -- 8.2.2.3 Extent of Alignment -- 8.2.2.4 Treatment by Coupling Agent -- 8.2.2.5 Nature of the Matrix -- 8.2.3 Applications -- 8.3 Electromagnetic Radiation Absorber Material -- 8.3.1 Mechanism of Electromagnetic Wave Loss -- 8.3.1.1 Mechanism of Dielectric Loss -- 8.3.1.2 Magnetic Loss Mechanism -- 8.3.2 Synthesis of Electromagnetic Radiation Absorber Material -- 8.3.2.1 Mechanical Mixing -- 8.3.2.2 Melt-Blending -- 8.3.2.3 In Situ Emulsion Polymerization -- 8.3.2.4 Solution Mixing -- 8.3.3 Factors Governing the Performances of Electromagnetic Radiation Absorbing Polymer Composites -- 8.3.3.1 Characteristics of Filler -- 8.3.3.2 Filler Loading -- 8.3.3.3 Size and Distribution of Filler -- 8.3.3.4 Characteristics of Polymer -- 8.3.3.5 Thickness of the Composite -- 8.3.4 Applications -- 8.4 Piezoelectric Materials -- 8.4.1 Synthesis of Piezoelectric Materials -- 8.4.1.1 Synthesis of Inorganic Particulate Matters -- 8.4.1.2 Fabrication of the Polymer Composites/Nanocomposites -- 8.4.1.3 Synthesis of Sandwich-Type Piezoelectric Nanogenerators -- 8.4.2 Factors Governing the Performance of Piezoelectric Nanogenerators -- 8.4.2.1 Crystallinity/Defects -- 8.4.2.2 Diameter and Length</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4.2.3 Thickness -- 8.4.2.4 Characteristics of Piezoelectric Phase -- 8.4.2.5 Functionalization of Piezoelectric Phase -- 8.4.2.6 Characteristics of the Polymer Matrix -- 8.4.3 Applications -- 8.5 Conclusions -- References -- Chapter 9 Carbon Fiber Reinforced Thermoplastics and Thermosetting Composites -- 9.1 Introduction -- 9.2 Thermoset and Thermoplastics Polymers: A Brief Description -- 9.2.1 Thermoset Polymers: -- 9.2.2 Thermoplastic Polymers: -- 9.3 Carbon Fiber: An Introduction -- 9.3.1 Types of Carbon Fibers: General Classification -- 9.4 Properties of Carbon Fiber -- 9.5 Mechanical Properties of Thermoplastic Polymer-Based Composites -- 9.6 Mechanical Properties of Thermoset Polymer-Based Composites -- 9.7 Conclusion -- References -- Chapter 10 Glass Fiber Thermoset and Thermoplastic Composites -- 10.1 Introduction -- 10.1.1 Batching Process -- 10.1.2 Melting Process -- 10.1.3 Fibrilization -- 10.1.4 Coating -- 10.1.5 Drying and Packing -- 10.2 Preparation of Thermoset Glass Fiber Composites -- 10.2.1 Resin Transfer Mold (RTM) -- 10.2.2 Hany Lay-up Method -- 10.3 Randomly Oriented Glass Fiber Thermoset Composites -- 10.3.1 Polyester Composites -- 10.3.2 Epoxy Composites -- 10.3.3 Vinyl Ester Composites -- 10.4 Laminated Glass Fiber Thermoset Composites -- 10.4.1 Polyester Composites -- 10.4.2 Epoxy Composites -- 10.4.3 Vinyl Ester Composites -- 10.5 Glass Fiber Thermoplastic Composites -- 10.6 Hybrid Fiber-Reinforced Polymer Composites -- 10.6.1 Thermoset Composites -- 10.6.2 Thermoplastic Composites -- 10.7 Conclusion -- References -- Chapter 11 Inorganic Nanofillers-Based Thermoplastic and Thermosetting Composites -- 11.1 Introduction -- 11.2 Types of Inorganic Nanofillers -- 11.2.1 Gold Nanoparticles (GNPs) -- 11.2.2 Quantum Dots (QDs) -- 11.2.3 Silver Nanoparticles (AgNPs) -- 11.2.4 Iron Oxide Nanoparticles (INPs)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.2.5 Carbon Nano Tubes (CNTs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Leichtbau</subfield><subfield code="0">(DE-588)4035165-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kunststoff</subfield><subfield code="0">(DE-588)4033676-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Leichtbau</subfield><subfield code="0">(DE-588)4035165-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rangappa, Sanjay Mavinkere</subfield><subfield code="0">(DE-588)1219460885</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parameswaranpillai, Jyotishkumar</subfield><subfield code="0">(DE-588)1068121556</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suchart Siengchin</subfield><subfield code="0">(DE-588)136810772</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kroll, Lothar</subfield><subfield code="d">1959-</subfield><subfield code="0">(DE-588)172677343</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Rangappa, Sanjay Mavinkere</subfield><subfield code="t">Lightweight Polymer Composite Structures</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-19920-3</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843990</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6280244</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047441838 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-07-10T09:12:16Z |
institution | BVB |
isbn | 9780429520822 9780429244087 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032843990 |
oclc_num | 1182842704 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xvi, 394 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
spelling | Lightweight polymer composite structures design and manufacturing techniques editors Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Suchart Siengchin, and Lothar Kroll First edition Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2020 © 2021 1 Online-Ressource (xvi, 394 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor Biographies -- Contributors -- Chapter 1 Lightweight Graphene Composite Materials -- 1.1 Introduction -- 1.1.1 Synthesis of Graphene -- 1.1.2 Properties of Graphene -- 1.1.3 Graphene-Based Polymer Composites -- 1.2 Large-Scale Production of Graphene-Based Composite Materials -- 1.3 Modeling and Simulation of Graphene-Based Lightweight Composite Materials -- 1.4 Advanced Graphene-Based Lightweight Composite Materials -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 2 Conventional Processing of Polymer Matrix Composites -- 2.1 Introduction -- 2.1.1 Advantages of Composite Materials -- 2.1.2 Major Applications of Composite Materials -- 2.1.3 Classifications of Composites -- 2.1.3.1 Based on Matrix -- 2.1.4 Comparison of Thermoplastic and Thermosetting Polymers -- 2.1.5 Based on Reinforcement -- 2.1.5.1 Natural Fibers -- 2.1.5.2 Synthetic Fibers -- 2.1.5.3 Comparison of Synthetic Fibers and Natural Fibers -- 2.2 Processing of Polymer Matrix Composites -- 2.2.1 Degree of Cure -- 2.2.2 Viscosity -- 2.2.3 Resin Flow -- 2.2.4 Consolidation -- 2.2.5 Gel-Time Test -- 2.2.6 Shrinkage -- 2.2.7 Voids -- 2.3 Manufacturing Techniques of Thermoplastic Composites -- 2.3.1 Injection Molding -- 2.3.1.1 Application -- 2.3.1.2 Benefits of Injection Molding -- 2.3.1.3 Limitations of Injection Molding -- 2.3.2 Blow Molding -- 2.3.2.1 Application -- 2.3.2.2 Advantages of Blow Molding -- 2.3.2.3 Limitations of Blow Molding -- 2.3.3 Autoclave Process -- 2.3.3.1 Application -- 2.3.3.2 Advantages of Autoclave Process -- 2.3.3.3 Limitations of Autoclave Process -- 2.3.4 Thermoforming -- 2.3.4.1 Application -- 2.3.4.2 Advantages of Thermoforming -- 2.3.4.3 Limitations of Thermoforming -- 2.3.5 Compression Molding -- 2.3.5.1 Application 2.3.5.2 Advantages of Compression Molding -- 2.3.5.3 Limitations of Compression Molding -- 2.4 Manufacturing Techniques of Thermoset Composites -- 2.4.1 Sheet Molding Compound (SMC) Molding -- 2.4.1.1 Application -- 2.4.1.2 Advantages of SMC -- 2.4.1.3 Limitations of SMC -- 2.4.2 BMC Molding -- 2.4.2.1 Application -- 2.4.2.2 Advantages of BMC -- 2.4.2.3 Limitations of BMC -- 2.4.3 Hand Lay-Up -- 2.4.3.1 Application -- 2.4.3.2 Advantages of Hand Lay-Up -- 2.4.3.3 Limitations of Hand Lay-Up -- 2.4.4 Spray-Up -- 2.4.4.1 Application -- 2.4.4.2 Advantages of Spray-Up -- 2.4.4.3 Limitations of Spray-Up -- 2.4.5 Resin Transfer Molding -- 2.4.5.1 Applications -- 2.4.5.2 Advantages of RTM -- 2.4.5.3 Limitations of RTM -- 2.4.6 Vacuum Bagging -- 2.4.6.1 Applications -- 2.4.6.2 Benefits of Vacuum Bagging -- 2.4.6.3 Limitations of Vacuum Bagging -- 2.4.7 Pultrusion -- 2.4.7.1 Applications -- 2.4.7.2 Benefits of Pultrusion Process -- 2.4.7.3 Limitations of Pultrusion -- 2.4.8 Filament Winding -- 2.4.8.1 Applications -- 2.4.8.2 Benefits of Filament Winding -- 2.4.8.3 Limitations of Filament Winding -- 2.5 Novel Fabrication Techniques of Polymer Composites: Microwave-Assisted Compression Molding (MACM) -- 2.5.1 Microwave Heating Mechanism of Polymer Composites -- 2.5.2 Fabrication of Composites Using MACM -- 2.5.3 Advantages of MACM -- 2.6 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Biodegradable and Biocompatible Polymer Composite: Biomedical Applications and Bioimplants -- 3.1 Introduction -- 3.2 Interesting Fact about Biodegradable and Biocompatible Materials -- 3.3 Need, Necessity, and Prevention of Biodegradable and Biocompatible Materials -- 3.4 Biodegradable and Biocompatible Polymer Composites and Their Biomedical Applications -- 3.5 Conclusion -- Acknowledgment -- Conflict of Interest -- References Chapter 4 Lightweight Polymer Composites from Wood Flour, Metals, Alloys, Metallic Fibers, Ceramics -- 4.1 Introduction -- 4.2 Composite Materials -- 4.3 Particle Reinforced Polymer Composites -- 4.4 Particulates -- 4.5 Metal Reinforcements -- 4.6 Wood Plastic Composites -- 4.7 Ceramic Reinforced Polymer Composites -- 4.8 Conclusion -- Acknowledgments -- References -- Chapter 5 Lightweight Composite Materials in Transport Structures -- 5.1 Introduction -- 5.2 History -- 5.3 Polymer Matrix Composites -- 5.3.1 Resin Types -- 5.3.2 Fiber Types -- 5.4 Production Techniques -- 5.4.1 Hand Lay-Up -- 5.4.2 Spray-Up -- 5.4.3 Vacuum Bagging/Autoclave -- 5.4.4 Vacuum Infusion -- 5.4.5 Filament Winding -- 5.4.6 Resin Transfer Molding -- 5.4.7 Prepreg -- 5.4.8 Long Fiber Technology (LFT) -- 5.5 Applications -- 5.6 Future Trends -- 5.7 Conclusion -- References -- Chapter 6 Hybrid Thermoplastic and Thermosetting Composites -- Abbreviations -- 6.1 Introduction -- 6.2 Hybrid Composites Based on Thermoplastic Matrices -- 6.2.1 Preparation -- 6.2.1.1 Functionalization and Preparation of Fillers -- 6.2.1.2 Solution Mixing and Casting/Molding -- 6.2.1.3 Overmolding Injection -- 6.2.1.4 Mechanical Mixing and Compression Molding -- 6.2.2 Composites Containing Natural Fibers -- 6.2.3 Composites Containing Synthetic Fibers -- 6.2.4 Composites Containing Two Different Nanocarbons -- 6.3 Hybrid Composites Based on Thermosetting Matrices -- 6.3.1 Synthesis Technique -- 6.3.1.1 Hand Lay-Up -- 6.3.1.2 Compression Molding -- 6.3.1.3 Casting Method -- 6.3.1.4 Resin Transfer Molding (RTM) -- 6.4 Conclusions -- References -- Chapter 7 Design and Modeling of Lightweight Polymer Composite Structures -- 7.1 Introduction -- 7.2 Macro-Mechanical Behavior of Lamina -- 7.3 Plane-Stress Condition -- 7.4 Hook's Law for Angle Lamina in Two Dimensions (2D) 7.5 Micro-Mechanical Behavior of Lamina -- 7.6 Analysis of Laminates -- 7.7 Visco-Elastic Behavior of the Polymer Matrix Composite -- 7.8 Molecular Dynamics Technique to Model Lightweight Polymer Composites -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 8 Smart Lightweight Polymer Composites -- 8.1 Introduction -- 8.2 Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.1 Synthesis of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2 Factors Governing the Performances of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2.1 Concentration of Particulate Phases -- 8.2.2.2 Particle Size of the Discrete Phases -- 8.2.2.3 Extent of Alignment -- 8.2.2.4 Treatment by Coupling Agent -- 8.2.2.5 Nature of the Matrix -- 8.2.3 Applications -- 8.3 Electromagnetic Radiation Absorber Material -- 8.3.1 Mechanism of Electromagnetic Wave Loss -- 8.3.1.1 Mechanism of Dielectric Loss -- 8.3.1.2 Magnetic Loss Mechanism -- 8.3.2 Synthesis of Electromagnetic Radiation Absorber Material -- 8.3.2.1 Mechanical Mixing -- 8.3.2.2 Melt-Blending -- 8.3.2.3 In Situ Emulsion Polymerization -- 8.3.2.4 Solution Mixing -- 8.3.3 Factors Governing the Performances of Electromagnetic Radiation Absorbing Polymer Composites -- 8.3.3.1 Characteristics of Filler -- 8.3.3.2 Filler Loading -- 8.3.3.3 Size and Distribution of Filler -- 8.3.3.4 Characteristics of Polymer -- 8.3.3.5 Thickness of the Composite -- 8.3.4 Applications -- 8.4 Piezoelectric Materials -- 8.4.1 Synthesis of Piezoelectric Materials -- 8.4.1.1 Synthesis of Inorganic Particulate Matters -- 8.4.1.2 Fabrication of the Polymer Composites/Nanocomposites -- 8.4.1.3 Synthesis of Sandwich-Type Piezoelectric Nanogenerators -- 8.4.2 Factors Governing the Performance of Piezoelectric Nanogenerators -- 8.4.2.1 Crystallinity/Defects -- 8.4.2.2 Diameter and Length 8.4.2.3 Thickness -- 8.4.2.4 Characteristics of Piezoelectric Phase -- 8.4.2.5 Functionalization of Piezoelectric Phase -- 8.4.2.6 Characteristics of the Polymer Matrix -- 8.4.3 Applications -- 8.5 Conclusions -- References -- Chapter 9 Carbon Fiber Reinforced Thermoplastics and Thermosetting Composites -- 9.1 Introduction -- 9.2 Thermoset and Thermoplastics Polymers: A Brief Description -- 9.2.1 Thermoset Polymers: -- 9.2.2 Thermoplastic Polymers: -- 9.3 Carbon Fiber: An Introduction -- 9.3.1 Types of Carbon Fibers: General Classification -- 9.4 Properties of Carbon Fiber -- 9.5 Mechanical Properties of Thermoplastic Polymer-Based Composites -- 9.6 Mechanical Properties of Thermoset Polymer-Based Composites -- 9.7 Conclusion -- References -- Chapter 10 Glass Fiber Thermoset and Thermoplastic Composites -- 10.1 Introduction -- 10.1.1 Batching Process -- 10.1.2 Melting Process -- 10.1.3 Fibrilization -- 10.1.4 Coating -- 10.1.5 Drying and Packing -- 10.2 Preparation of Thermoset Glass Fiber Composites -- 10.2.1 Resin Transfer Mold (RTM) -- 10.2.2 Hany Lay-up Method -- 10.3 Randomly Oriented Glass Fiber Thermoset Composites -- 10.3.1 Polyester Composites -- 10.3.2 Epoxy Composites -- 10.3.3 Vinyl Ester Composites -- 10.4 Laminated Glass Fiber Thermoset Composites -- 10.4.1 Polyester Composites -- 10.4.2 Epoxy Composites -- 10.4.3 Vinyl Ester Composites -- 10.5 Glass Fiber Thermoplastic Composites -- 10.6 Hybrid Fiber-Reinforced Polymer Composites -- 10.6.1 Thermoset Composites -- 10.6.2 Thermoplastic Composites -- 10.7 Conclusion -- References -- Chapter 11 Inorganic Nanofillers-Based Thermoplastic and Thermosetting Composites -- 11.1 Introduction -- 11.2 Types of Inorganic Nanofillers -- 11.2.1 Gold Nanoparticles (GNPs) -- 11.2.2 Quantum Dots (QDs) -- 11.2.3 Silver Nanoparticles (AgNPs) -- 11.2.4 Iron Oxide Nanoparticles (INPs) 11.2.5 Carbon Nano Tubes (CNTs) Polymers Kunststoff (DE-588)4033676-1 gnd rswk-swf Leichtbau (DE-588)4035165-8 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Kunststoff (DE-588)4033676-1 s Leichtbau (DE-588)4035165-8 s DE-604 Rangappa, Sanjay Mavinkere (DE-588)1219460885 edt Parameswaranpillai, Jyotishkumar (DE-588)1068121556 edt Suchart Siengchin (DE-588)136810772 edt Kroll, Lothar 1959- (DE-588)172677343 edt Erscheint auch als Rangappa, Sanjay Mavinkere Lightweight Polymer Composite Structures Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-0-367-19920-3 |
spellingShingle | Lightweight polymer composite structures design and manufacturing techniques Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editor Biographies -- Contributors -- Chapter 1 Lightweight Graphene Composite Materials -- 1.1 Introduction -- 1.1.1 Synthesis of Graphene -- 1.1.2 Properties of Graphene -- 1.1.3 Graphene-Based Polymer Composites -- 1.2 Large-Scale Production of Graphene-Based Composite Materials -- 1.3 Modeling and Simulation of Graphene-Based Lightweight Composite Materials -- 1.4 Advanced Graphene-Based Lightweight Composite Materials -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 2 Conventional Processing of Polymer Matrix Composites -- 2.1 Introduction -- 2.1.1 Advantages of Composite Materials -- 2.1.2 Major Applications of Composite Materials -- 2.1.3 Classifications of Composites -- 2.1.3.1 Based on Matrix -- 2.1.4 Comparison of Thermoplastic and Thermosetting Polymers -- 2.1.5 Based on Reinforcement -- 2.1.5.1 Natural Fibers -- 2.1.5.2 Synthetic Fibers -- 2.1.5.3 Comparison of Synthetic Fibers and Natural Fibers -- 2.2 Processing of Polymer Matrix Composites -- 2.2.1 Degree of Cure -- 2.2.2 Viscosity -- 2.2.3 Resin Flow -- 2.2.4 Consolidation -- 2.2.5 Gel-Time Test -- 2.2.6 Shrinkage -- 2.2.7 Voids -- 2.3 Manufacturing Techniques of Thermoplastic Composites -- 2.3.1 Injection Molding -- 2.3.1.1 Application -- 2.3.1.2 Benefits of Injection Molding -- 2.3.1.3 Limitations of Injection Molding -- 2.3.2 Blow Molding -- 2.3.2.1 Application -- 2.3.2.2 Advantages of Blow Molding -- 2.3.2.3 Limitations of Blow Molding -- 2.3.3 Autoclave Process -- 2.3.3.1 Application -- 2.3.3.2 Advantages of Autoclave Process -- 2.3.3.3 Limitations of Autoclave Process -- 2.3.4 Thermoforming -- 2.3.4.1 Application -- 2.3.4.2 Advantages of Thermoforming -- 2.3.4.3 Limitations of Thermoforming -- 2.3.5 Compression Molding -- 2.3.5.1 Application 2.3.5.2 Advantages of Compression Molding -- 2.3.5.3 Limitations of Compression Molding -- 2.4 Manufacturing Techniques of Thermoset Composites -- 2.4.1 Sheet Molding Compound (SMC) Molding -- 2.4.1.1 Application -- 2.4.1.2 Advantages of SMC -- 2.4.1.3 Limitations of SMC -- 2.4.2 BMC Molding -- 2.4.2.1 Application -- 2.4.2.2 Advantages of BMC -- 2.4.2.3 Limitations of BMC -- 2.4.3 Hand Lay-Up -- 2.4.3.1 Application -- 2.4.3.2 Advantages of Hand Lay-Up -- 2.4.3.3 Limitations of Hand Lay-Up -- 2.4.4 Spray-Up -- 2.4.4.1 Application -- 2.4.4.2 Advantages of Spray-Up -- 2.4.4.3 Limitations of Spray-Up -- 2.4.5 Resin Transfer Molding -- 2.4.5.1 Applications -- 2.4.5.2 Advantages of RTM -- 2.4.5.3 Limitations of RTM -- 2.4.6 Vacuum Bagging -- 2.4.6.1 Applications -- 2.4.6.2 Benefits of Vacuum Bagging -- 2.4.6.3 Limitations of Vacuum Bagging -- 2.4.7 Pultrusion -- 2.4.7.1 Applications -- 2.4.7.2 Benefits of Pultrusion Process -- 2.4.7.3 Limitations of Pultrusion -- 2.4.8 Filament Winding -- 2.4.8.1 Applications -- 2.4.8.2 Benefits of Filament Winding -- 2.4.8.3 Limitations of Filament Winding -- 2.5 Novel Fabrication Techniques of Polymer Composites: Microwave-Assisted Compression Molding (MACM) -- 2.5.1 Microwave Heating Mechanism of Polymer Composites -- 2.5.2 Fabrication of Composites Using MACM -- 2.5.3 Advantages of MACM -- 2.6 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Biodegradable and Biocompatible Polymer Composite: Biomedical Applications and Bioimplants -- 3.1 Introduction -- 3.2 Interesting Fact about Biodegradable and Biocompatible Materials -- 3.3 Need, Necessity, and Prevention of Biodegradable and Biocompatible Materials -- 3.4 Biodegradable and Biocompatible Polymer Composites and Their Biomedical Applications -- 3.5 Conclusion -- Acknowledgment -- Conflict of Interest -- References Chapter 4 Lightweight Polymer Composites from Wood Flour, Metals, Alloys, Metallic Fibers, Ceramics -- 4.1 Introduction -- 4.2 Composite Materials -- 4.3 Particle Reinforced Polymer Composites -- 4.4 Particulates -- 4.5 Metal Reinforcements -- 4.6 Wood Plastic Composites -- 4.7 Ceramic Reinforced Polymer Composites -- 4.8 Conclusion -- Acknowledgments -- References -- Chapter 5 Lightweight Composite Materials in Transport Structures -- 5.1 Introduction -- 5.2 History -- 5.3 Polymer Matrix Composites -- 5.3.1 Resin Types -- 5.3.2 Fiber Types -- 5.4 Production Techniques -- 5.4.1 Hand Lay-Up -- 5.4.2 Spray-Up -- 5.4.3 Vacuum Bagging/Autoclave -- 5.4.4 Vacuum Infusion -- 5.4.5 Filament Winding -- 5.4.6 Resin Transfer Molding -- 5.4.7 Prepreg -- 5.4.8 Long Fiber Technology (LFT) -- 5.5 Applications -- 5.6 Future Trends -- 5.7 Conclusion -- References -- Chapter 6 Hybrid Thermoplastic and Thermosetting Composites -- Abbreviations -- 6.1 Introduction -- 6.2 Hybrid Composites Based on Thermoplastic Matrices -- 6.2.1 Preparation -- 6.2.1.1 Functionalization and Preparation of Fillers -- 6.2.1.2 Solution Mixing and Casting/Molding -- 6.2.1.3 Overmolding Injection -- 6.2.1.4 Mechanical Mixing and Compression Molding -- 6.2.2 Composites Containing Natural Fibers -- 6.2.3 Composites Containing Synthetic Fibers -- 6.2.4 Composites Containing Two Different Nanocarbons -- 6.3 Hybrid Composites Based on Thermosetting Matrices -- 6.3.1 Synthesis Technique -- 6.3.1.1 Hand Lay-Up -- 6.3.1.2 Compression Molding -- 6.3.1.3 Casting Method -- 6.3.1.4 Resin Transfer Molding (RTM) -- 6.4 Conclusions -- References -- Chapter 7 Design and Modeling of Lightweight Polymer Composite Structures -- 7.1 Introduction -- 7.2 Macro-Mechanical Behavior of Lamina -- 7.3 Plane-Stress Condition -- 7.4 Hook's Law for Angle Lamina in Two Dimensions (2D) 7.5 Micro-Mechanical Behavior of Lamina -- 7.6 Analysis of Laminates -- 7.7 Visco-Elastic Behavior of the Polymer Matrix Composite -- 7.8 Molecular Dynamics Technique to Model Lightweight Polymer Composites -- Acknowledgment -- Conflicts of Interest -- References -- Chapter 8 Smart Lightweight Polymer Composites -- 8.1 Introduction -- 8.2 Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.1 Synthesis of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2 Factors Governing the Performances of Magnetostrictive and Magnetorheological Polymer Composites -- 8.2.2.1 Concentration of Particulate Phases -- 8.2.2.2 Particle Size of the Discrete Phases -- 8.2.2.3 Extent of Alignment -- 8.2.2.4 Treatment by Coupling Agent -- 8.2.2.5 Nature of the Matrix -- 8.2.3 Applications -- 8.3 Electromagnetic Radiation Absorber Material -- 8.3.1 Mechanism of Electromagnetic Wave Loss -- 8.3.1.1 Mechanism of Dielectric Loss -- 8.3.1.2 Magnetic Loss Mechanism -- 8.3.2 Synthesis of Electromagnetic Radiation Absorber Material -- 8.3.2.1 Mechanical Mixing -- 8.3.2.2 Melt-Blending -- 8.3.2.3 In Situ Emulsion Polymerization -- 8.3.2.4 Solution Mixing -- 8.3.3 Factors Governing the Performances of Electromagnetic Radiation Absorbing Polymer Composites -- 8.3.3.1 Characteristics of Filler -- 8.3.3.2 Filler Loading -- 8.3.3.3 Size and Distribution of Filler -- 8.3.3.4 Characteristics of Polymer -- 8.3.3.5 Thickness of the Composite -- 8.3.4 Applications -- 8.4 Piezoelectric Materials -- 8.4.1 Synthesis of Piezoelectric Materials -- 8.4.1.1 Synthesis of Inorganic Particulate Matters -- 8.4.1.2 Fabrication of the Polymer Composites/Nanocomposites -- 8.4.1.3 Synthesis of Sandwich-Type Piezoelectric Nanogenerators -- 8.4.2 Factors Governing the Performance of Piezoelectric Nanogenerators -- 8.4.2.1 Crystallinity/Defects -- 8.4.2.2 Diameter and Length 8.4.2.3 Thickness -- 8.4.2.4 Characteristics of Piezoelectric Phase -- 8.4.2.5 Functionalization of Piezoelectric Phase -- 8.4.2.6 Characteristics of the Polymer Matrix -- 8.4.3 Applications -- 8.5 Conclusions -- References -- Chapter 9 Carbon Fiber Reinforced Thermoplastics and Thermosetting Composites -- 9.1 Introduction -- 9.2 Thermoset and Thermoplastics Polymers: A Brief Description -- 9.2.1 Thermoset Polymers: -- 9.2.2 Thermoplastic Polymers: -- 9.3 Carbon Fiber: An Introduction -- 9.3.1 Types of Carbon Fibers: General Classification -- 9.4 Properties of Carbon Fiber -- 9.5 Mechanical Properties of Thermoplastic Polymer-Based Composites -- 9.6 Mechanical Properties of Thermoset Polymer-Based Composites -- 9.7 Conclusion -- References -- Chapter 10 Glass Fiber Thermoset and Thermoplastic Composites -- 10.1 Introduction -- 10.1.1 Batching Process -- 10.1.2 Melting Process -- 10.1.3 Fibrilization -- 10.1.4 Coating -- 10.1.5 Drying and Packing -- 10.2 Preparation of Thermoset Glass Fiber Composites -- 10.2.1 Resin Transfer Mold (RTM) -- 10.2.2 Hany Lay-up Method -- 10.3 Randomly Oriented Glass Fiber Thermoset Composites -- 10.3.1 Polyester Composites -- 10.3.2 Epoxy Composites -- 10.3.3 Vinyl Ester Composites -- 10.4 Laminated Glass Fiber Thermoset Composites -- 10.4.1 Polyester Composites -- 10.4.2 Epoxy Composites -- 10.4.3 Vinyl Ester Composites -- 10.5 Glass Fiber Thermoplastic Composites -- 10.6 Hybrid Fiber-Reinforced Polymer Composites -- 10.6.1 Thermoset Composites -- 10.6.2 Thermoplastic Composites -- 10.7 Conclusion -- References -- Chapter 11 Inorganic Nanofillers-Based Thermoplastic and Thermosetting Composites -- 11.1 Introduction -- 11.2 Types of Inorganic Nanofillers -- 11.2.1 Gold Nanoparticles (GNPs) -- 11.2.2 Quantum Dots (QDs) -- 11.2.3 Silver Nanoparticles (AgNPs) -- 11.2.4 Iron Oxide Nanoparticles (INPs) 11.2.5 Carbon Nano Tubes (CNTs) Polymers Kunststoff (DE-588)4033676-1 gnd Leichtbau (DE-588)4035165-8 gnd |
subject_GND | (DE-588)4033676-1 (DE-588)4035165-8 (DE-588)4143413-4 |
title | Lightweight polymer composite structures design and manufacturing techniques |
title_auth | Lightweight polymer composite structures design and manufacturing techniques |
title_exact_search | Lightweight polymer composite structures design and manufacturing techniques |
title_exact_search_txtP | Lightweight polymer composite structures design and manufacturing techniques |
title_full | Lightweight polymer composite structures design and manufacturing techniques editors Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Suchart Siengchin, and Lothar Kroll |
title_fullStr | Lightweight polymer composite structures design and manufacturing techniques editors Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Suchart Siengchin, and Lothar Kroll |
title_full_unstemmed | Lightweight polymer composite structures design and manufacturing techniques editors Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Suchart Siengchin, and Lothar Kroll |
title_short | Lightweight polymer composite structures |
title_sort | lightweight polymer composite structures design and manufacturing techniques |
title_sub | design and manufacturing techniques |
topic | Polymers Kunststoff (DE-588)4033676-1 gnd Leichtbau (DE-588)4035165-8 gnd |
topic_facet | Polymers Kunststoff Leichtbau Aufsatzsammlung |
work_keys_str_mv | AT rangappasanjaymavinkere lightweightpolymercompositestructuresdesignandmanufacturingtechniques AT parameswaranpillaijyotishkumar lightweightpolymercompositestructuresdesignandmanufacturingtechniques AT suchartsiengchin lightweightpolymercompositestructuresdesignandmanufacturingtechniques AT krolllothar lightweightpolymercompositestructuresdesignandmanufacturingtechniques |