Microorganisms for sustainable environment and health:
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands
Elsevier
[2020]
|
Schlagworte: | |
Online-Zugang: | DE-188 DE-706 Volltext |
Beschreibung: | 1 Online-Ressource (xxviii, 509 Seiten) Illustrationen |
ISBN: | 9780128190043 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441792 | ||
003 | DE-604 | ||
005 | 20241121 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 xx a||| o|||| 00||| eng d | ||
020 | |a 9780128190043 |9 9780128190043 | ||
024 | 7 | |a 10.1016/C2018-0-05025-2 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6269324 | ||
035 | |a (ZDB-30-PAD)EBC6269324 | ||
035 | |a (ZDB-89-EBL)EBL6269324 | ||
035 | |a (ZDB-33-EBS)9780128190012 | ||
035 | |a (OCoLC)1178714281 | ||
035 | |a (DE-599)BVBBV047441792 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 |a DE-706 | ||
082 | 0 | |a 628.5 | |
245 | 1 | 0 | |a Microorganisms for sustainable environment and health |c edited by Pankaj Chowdhary, Abhay Raj, Digvijay Verma, Yusuf Akhter |
264 | 1 | |a Amsterdam, Netherlands |b Elsevier |c [2020] | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (xxviii, 509 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Front Cover -- Microorganisms for Sustainable Environment and Health -- Copyright Page -- Contents -- List of Contributors -- About the editors -- Preface -- 1 Recent advancement in the biotechnological application of lignin peroxidase and its future prospects -- 1.1 Introduction -- 1.2 Production or sources of lignin peroxidase -- 1.3 Physiochemical and molecular properties lignin peroxidase -- 1.4 Mode of action -- 1.5 Application in various sectors -- 1.5.1 Cosmetic industry -- 1.5.2 Bioethanol production -- 1.5.3 Pulp and paper industry -- 1.5.4 Textile industry -- 1.6 Miscellaneous biotechnological application -- 1.7 Conclusion and future prospects -- References -- 2 Microbes mediated approaches for environmental waste management -- 2.1 Introduction -- 2.2 Characteristics and classification of waste -- 2.2.1 Based on material -- 2.2.1.1 Solid waste -- 2.2.1.2 Liquid waste -- 2.2.1.3 Air emissions -- 2.2.2 Based on degradation property -- 2.2.3 Based on environmental impact -- 2.2.4 Based on the source of generation -- 2.2.4.1 Household waste -- 2.2.4.2 Industrial waste -- 2.2.4.2.1 Toxic chemicals -- 2.2.4.2.2 Air contaminants -- 2.2.4.2.3 Greenhouse gases -- 2.2.4.2.4 Hazardous waste -- 2.2.4.2.5 Nonhazardous or ordinary industrial waste -- 2.2.4.2.6 Construction and demolition waste -- 2.2.4.2.7 Electronic waste -- 2.2.4.2.8 Medical waste -- 2.2.4.2.9 Nuclear waste -- 2.3 Waste management practices -- 2.3.1 Solid waste management techniques -- 2.3.1.1 Dumps and landfills -- 2.3.1.2 Thermal treatment -- 2.3.1.2.1 Pyrolysis and gasification -- 2.3.1.2.2 Plasma arc -- 2.3.1.2.3 Incineration -- 2.3.1.2.4 Open burning -- 2.5.1.2.5 Supercritical water decomposition -- 2.3.1.3 Composting -- 2.3.2 Liquid waste management techniques -- 2.3.2.1 Preliminary treatment -- 2.3.2.1.1 Screening -- 2.3.2.1.2 Shredding -- 2.3.2.1.3 Grit removal | |
505 | 8 | |a 2.3.2.1.4 Preaeration -- 2.3.2.1.5 Chemical addition -- 2.3.2.2 Primary treatment -- 2.3.2.3 Secondary treatment -- 2.3.2.4 Tertiary treatment -- 2.4 Role of microorganisms in waste management -- 2.4.1 Bioremediation -- 2.4.2 Bioaugmentation -- 2.4.3 Decomposition -- 2.4.3.1 Aerobic decomposition -- 2.4.3.2 Anaerobic decomposition -- 2.4.4 Recycling -- 2.5 Conclusion and future prospects -- References -- 3 Actinobacteria for the effective removal of toxic dyes -- 3.1 Introduction -- 3.2 Toxic dyes -- 3.2.1 Azo dyes -- 3.2.2 Triphenylmethane dyes -- 3.3 Removal technologies -- 3.3.1 Physicochemical approaches -- 3.3.2 Biological approaches -- 3.3.3 Microbial-based technologies -- 3.4 Actinobacteria -- 3.4.1 Origin, diversity, and ubiquity -- 3.4.2 Applications in bioremediation -- 3.5 Removal of dyes by actinobacteria -- 3.5.1 Actinobacteria with dye removal potential -- 3.5.2 Biosorption as a mechanism for dye removal -- 3.5.3 Biodegradation as a mechanism for dye removal -- 3.6 Innovations to the use of actinobacteria for dye removal -- 3.7 Conclusions and prospects -- Acknowledgments -- References -- 4 Arsenic toxicity: adverse effect and recent advance in microbes mediated bioremediation -- 4.1 Introduction -- 4.2 Arsenic toxicity and its adverse effects -- 4.3 Arsenic resistance via microbial intracellular and extracellular sequestration -- 4.3.1 Bioaccumulation of arsenic -- 4.3.2 Biosorption of arsenic -- 4.3.3 Arsenic bioremediation by adsorption -- 4.4 Microbial transformation of arsenic -- 4.4.1 Oxidation of arsenite -- 4.4.2 Reduction of arsenate -- 4.4.3 Arsenic methylation -- 4.4.4 Arsenic demethylation -- 4.5 Bioremediation of arsenic by microorganisms -- 4.5.1 Immobilization of arsenic -- 4.5.2 Mobilization of arsenic -- 4.5.3 Bioleaching of arsenic -- 4.5.4 Biostimulation of arsenic -- 4.5.5 Biofilm formation for arsenic | |
505 | 8 | |a 4.5.6 Biomineralization of arsenic -- 4.6 Arsenic remediation by genetic engineered microbes -- 4.7 In silico approaches for bioremediation of arsenic -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants -- 5.1 Introduction -- 5.2 Biofilm: An overview -- 5.2.1 Composition -- 5.2.1.1 Polysaccharides -- 5.2.1.2 Protein -- 5.2.1.3 Extracellular DNA -- 5.2.1.4 Membrane vesicles -- 5.2.2 Role of extracellular polysaccharide in biofilm -- 5.2.3 Biofilm formation steps -- 5.2.3.1 Microbial attachment to the surface -- 5.2.3.2 Microcolony formation -- 5.2.3.3 Maturation and architecture -- 5.2.3.4 Detachment/dispersion of biofilm -- 5.2.4 Signaling in biofilm or mechanism in biofilm formation -- 5.3 Biofilm-forming microorganisms -- 5.3.1 Bacteria -- 5.3.2 Fungi -- 5.3.3 Algae -- 5.4 Factors affecting biofilm formation -- 5.4.1 Substrate nature -- 5.4.2 Effect of pH -- 5.4.3 Rheological and adhesive properties of biofilms (viscoelastic behavior) -- 5.4.4 Effect of temperature -- 5.4.5 Effect of metal ions -- 5.4.6 Effect of exogenous (addition) signaling molecules -- 5.4.7 Secondary metabolites -- 5.4.8 Impact of environmental stimuli (shear stress) on biofilm formation -- 5.4.9 Mechanical properties of biofilms -- 5.4.10 Nutrients availability -- 5.5 The adverse impact of microbial biofilm -- 5.6 Emerging scope in biofilm -- 5.6.1 Production of surfactants/proteins -- 5.6.2 Quorum quenching -- 5.7 Application of biofilm in bioremediation -- 5.7.1 Wastewater treatment -- 5.7.1.1 Organic pollutants -- 5.7.1.2 Inorganic pollutants -- 5.7.1.3 Micropollutants removal -- 5.7.2 Challenges during the pollutant removal -- 5.8 Miscellaneous use of biofilm -- 5.9 Conclusion and future perspectives -- Acknowledgments -- References | |
505 | 8 | |a 6 Waste treatment approaches for environmental sustainability -- 6.1 Introduction -- 6.2 Generation of waste -- 6.2.1 Municipal waste -- 6.2.2 Construction and demolition waste -- 6.2.3 Industrial waste -- 6.2.4 Medical waste -- 6.2.5 Hazardous waste -- 6.3 Types of waste -- 6.4 Conventional, physical, and chemical treatments -- 6.4.1 Processing -- 6.4.2 Coagulation and sedimentation -- 6.4.3 Filtration -- 6.4.4 Thermal treatments (incineration and pyrolysis/gasification) -- 6.4.4.1 Incineration -- 6.4.4.2 Pyrolysis/gasification -- 6.4.5 Landfills -- 6.5 Biological treatment -- 6.5.1 Microbial mediated -- 6.5.1.1 Anaerobic digestion -- 6.5.1.2 Composting -- 6.5.2 Plant mediated -- 6.6 Recovery, recycling, and reuse -- 6.7 Legal and institutional framework for waste treatments -- 6.8 Life cycle assessment decision for waste treatments -- 6.9 Conclusion -- References -- 7 Biodegradation of environmental pollutant through pathways engineering and genetically modified organisms approaches -- 7.1 Introduction -- 7.2 Genetically modified organism -- 7.2.1 Designing of genetically modified organisms -- 7.2.2 Genetically modifying bacteria -- 7.2.3 Applications of genetically modified bacteria -- 7.2.3.1 In biomedical field -- 7.2.3.1.1 Immunotherapy of cancer -- 7.2.3.1.2 Role in drug delivery -- 7.2.3.1.3 Production of insulin -- 7.2.3.2 Agricultural applications of bacteria -- 7.2.3.2.1 Bacteria improving crop nutrition -- 7.2.3.2.2 Bacteria controlling pest -- 7.2.3.2.3 Bacteria controlling plant disease -- 7.2.4 Genetically modified fungus -- 7.2.4.1 Medicinal use of fungus -- 7.2.4.2 Fungus as cultured foods -- 7.2.4.3 Genetically modified fungus in mycoremediation -- 7.2.5 Genetically modified plants -- 7.2.5.1 Genetically modified plant in food nutrition improvement -- 7.2.5.2 Genetically modified plant controlling biotic and abiotic stress | |
505 | 8 | |a 7.2.5.3 Genetically modified plant in phytoremediation -- 7.2.6 Other genetically modified organisms and their applications -- 7.2.6.1 Goldfish in pollutant testing -- 7.2.7 Genetically modified cyanobacteria -- 7.3 Factors affecting bioremediation -- 7.3.1 Degradation process -- 7.3.2 Moisture content -- 7.3.3 Nutrient availability -- 7.3.4 Temperature -- 7.3.5 pH -- 7.3.6 Molecular oxygen (O2) availability -- 7.3.7 Biological factors -- 7.3.8 Biocatalyst optimization -- 7.3.9 Protein engineering -- 7.4 Phytoremediation -- 7.5 Mycoremediation -- 7.6 Survivability of genetically modified organisms -- 7.7 Sustainability of genetically modified organism -- 7.8 Future prospects and conclusion -- References -- 8 Exploring the microbiome of smokeless tobacco -- 8.1 Introduction -- 8.2 History of association of microorganisms with smokeless tobacco -- 8.3 16S rRNA analysis for smokeless tobacco -- 8.4 Microbial diversity of smokeless tobacco -- 8.4.1 Bacterial diversity -- 8.4.2 Fungal diversity of smokeless tobacco -- 8.5 Relationship with the oral microbiome -- 8.6 Future prospects -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Microbial ligninolytic enzymes and their role in bioremediation -- 9.1 Introduction -- 9.2 Ligninolytic enzymes, structure, and catalytic mechanism -- 9.2.1 Lignin-modifying enzymes -- 9.2.1.1 Lignin peroxidase -- 9.2.1.2 Manganese peroxidase -- 9.2.1.3 Versatile peroxidase -- 9.2.2 Laccases -- 9.3 Applications of ligninolytic enzymes in the bioremediation of industrial pollutants -- 9.3.1 Textile Industries -- 9.3.1.1 Degradation and decolorization of synthetic dyes -- 9.3.1.2 Denim washing/finishing -- 9.3.2 Pulp and paper industry -- 9.3.2.1 Delignification of lignocellulose -- 9.3.2.2 Biopulping and biobleaching -- 9.3.3 Degradation and detoxification of recalcitrant/xenobiotic compounds | |
505 | 8 | |a 9.3.3.1 Degradation of petroleum hydrocarbons | |
650 | 4 | |a Bioremediation.. | |
650 | 4 | |a Microorganisms | |
650 | 0 | 7 | |a Lignin |0 (DE-588)4167660-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Farbstoff |0 (DE-588)4016465-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bioremediation |0 (DE-588)4611954-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Arsenverbindungen |0 (DE-588)4143104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Peroxidasen |0 (DE-588)4045219-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Carcinogenese |0 (DE-588)4069853-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikroplastik |0 (DE-588)117071482X |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abwasser |0 (DE-588)4000302-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Arzneimittelresistenz |0 (DE-588)4143180-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lignin |0 (DE-588)4167660-9 |D s |
689 | 0 | 1 | |a Peroxidasen |0 (DE-588)4045219-0 |D s |
689 | 0 | 2 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bioremediation |0 (DE-588)4611954-1 |D s |
689 | 1 | 1 | |a Farbstoff |0 (DE-588)4016465-2 |D s |
689 | 1 | 2 | |a Arsenverbindungen |0 (DE-588)4143104-2 |D s |
689 | 1 | 3 | |a Abwasser |0 (DE-588)4000302-4 |D s |
689 | 1 | 4 | |a Mikroplastik |0 (DE-588)117071482X |D s |
689 | 1 | |5 (DE-627) | |
689 | 2 | 0 | |a Arzneimittelresistenz |0 (DE-588)4143180-7 |D s |
689 | 2 | |5 (DE-627) | |
689 | 3 | 0 | |a Carcinogenese |0 (DE-588)4069853-1 |D s |
689 | 3 | |5 (DE-627) | |
700 | 1 | |a Chowdhary, Pankaj |d 1989- |0 (DE-588)1210181282 |4 edt | |
700 | 1 | |a Raj, Abhay |d 1978- |0 (DE-588)1210181495 |4 edt | |
700 | 1 | |a Verma, Digvijay |4 edt | |
700 | 1 | |a Akhter, Yusuf |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128190012 |
856 | 4 | 0 | |u https://www.sciencedirect.com/science/book/9780128190012 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD | ||
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-33-EBS | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032843944 | |
966 | e | |u https://www.sciencedirect.com/science/book/9780128190012 |l DE-188 |p ZDB-33-ESD |q ZDB-33-ESD 2021 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1016/C2018-0-05025-2 |l DE-706 |p ZDB-33-EBS |q UBY_PDA_EBS_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1816344649834430464 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Chowdhary, Pankaj 1989- Raj, Abhay 1978- Verma, Digvijay Akhter, Yusuf |
author2_role | edt edt edt edt |
author2_variant | p c pc a r ar d v dv y a ya |
author_GND | (DE-588)1210181282 (DE-588)1210181495 |
author_facet | Chowdhary, Pankaj 1989- Raj, Abhay 1978- Verma, Digvijay Akhter, Yusuf |
building | Verbundindex |
bvnumber | BV047441792 |
collection | ZDB-33-ESD ZDB-30-PQE ZDB-33-EBS |
contents | Front Cover -- Microorganisms for Sustainable Environment and Health -- Copyright Page -- Contents -- List of Contributors -- About the editors -- Preface -- 1 Recent advancement in the biotechnological application of lignin peroxidase and its future prospects -- 1.1 Introduction -- 1.2 Production or sources of lignin peroxidase -- 1.3 Physiochemical and molecular properties lignin peroxidase -- 1.4 Mode of action -- 1.5 Application in various sectors -- 1.5.1 Cosmetic industry -- 1.5.2 Bioethanol production -- 1.5.3 Pulp and paper industry -- 1.5.4 Textile industry -- 1.6 Miscellaneous biotechnological application -- 1.7 Conclusion and future prospects -- References -- 2 Microbes mediated approaches for environmental waste management -- 2.1 Introduction -- 2.2 Characteristics and classification of waste -- 2.2.1 Based on material -- 2.2.1.1 Solid waste -- 2.2.1.2 Liquid waste -- 2.2.1.3 Air emissions -- 2.2.2 Based on degradation property -- 2.2.3 Based on environmental impact -- 2.2.4 Based on the source of generation -- 2.2.4.1 Household waste -- 2.2.4.2 Industrial waste -- 2.2.4.2.1 Toxic chemicals -- 2.2.4.2.2 Air contaminants -- 2.2.4.2.3 Greenhouse gases -- 2.2.4.2.4 Hazardous waste -- 2.2.4.2.5 Nonhazardous or ordinary industrial waste -- 2.2.4.2.6 Construction and demolition waste -- 2.2.4.2.7 Electronic waste -- 2.2.4.2.8 Medical waste -- 2.2.4.2.9 Nuclear waste -- 2.3 Waste management practices -- 2.3.1 Solid waste management techniques -- 2.3.1.1 Dumps and landfills -- 2.3.1.2 Thermal treatment -- 2.3.1.2.1 Pyrolysis and gasification -- 2.3.1.2.2 Plasma arc -- 2.3.1.2.3 Incineration -- 2.3.1.2.4 Open burning -- 2.5.1.2.5 Supercritical water decomposition -- 2.3.1.3 Composting -- 2.3.2 Liquid waste management techniques -- 2.3.2.1 Preliminary treatment -- 2.3.2.1.1 Screening -- 2.3.2.1.2 Shredding -- 2.3.2.1.3 Grit removal 2.3.2.1.4 Preaeration -- 2.3.2.1.5 Chemical addition -- 2.3.2.2 Primary treatment -- 2.3.2.3 Secondary treatment -- 2.3.2.4 Tertiary treatment -- 2.4 Role of microorganisms in waste management -- 2.4.1 Bioremediation -- 2.4.2 Bioaugmentation -- 2.4.3 Decomposition -- 2.4.3.1 Aerobic decomposition -- 2.4.3.2 Anaerobic decomposition -- 2.4.4 Recycling -- 2.5 Conclusion and future prospects -- References -- 3 Actinobacteria for the effective removal of toxic dyes -- 3.1 Introduction -- 3.2 Toxic dyes -- 3.2.1 Azo dyes -- 3.2.2 Triphenylmethane dyes -- 3.3 Removal technologies -- 3.3.1 Physicochemical approaches -- 3.3.2 Biological approaches -- 3.3.3 Microbial-based technologies -- 3.4 Actinobacteria -- 3.4.1 Origin, diversity, and ubiquity -- 3.4.2 Applications in bioremediation -- 3.5 Removal of dyes by actinobacteria -- 3.5.1 Actinobacteria with dye removal potential -- 3.5.2 Biosorption as a mechanism for dye removal -- 3.5.3 Biodegradation as a mechanism for dye removal -- 3.6 Innovations to the use of actinobacteria for dye removal -- 3.7 Conclusions and prospects -- Acknowledgments -- References -- 4 Arsenic toxicity: adverse effect and recent advance in microbes mediated bioremediation -- 4.1 Introduction -- 4.2 Arsenic toxicity and its adverse effects -- 4.3 Arsenic resistance via microbial intracellular and extracellular sequestration -- 4.3.1 Bioaccumulation of arsenic -- 4.3.2 Biosorption of arsenic -- 4.3.3 Arsenic bioremediation by adsorption -- 4.4 Microbial transformation of arsenic -- 4.4.1 Oxidation of arsenite -- 4.4.2 Reduction of arsenate -- 4.4.3 Arsenic methylation -- 4.4.4 Arsenic demethylation -- 4.5 Bioremediation of arsenic by microorganisms -- 4.5.1 Immobilization of arsenic -- 4.5.2 Mobilization of arsenic -- 4.5.3 Bioleaching of arsenic -- 4.5.4 Biostimulation of arsenic -- 4.5.5 Biofilm formation for arsenic 4.5.6 Biomineralization of arsenic -- 4.6 Arsenic remediation by genetic engineered microbes -- 4.7 In silico approaches for bioremediation of arsenic -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants -- 5.1 Introduction -- 5.2 Biofilm: An overview -- 5.2.1 Composition -- 5.2.1.1 Polysaccharides -- 5.2.1.2 Protein -- 5.2.1.3 Extracellular DNA -- 5.2.1.4 Membrane vesicles -- 5.2.2 Role of extracellular polysaccharide in biofilm -- 5.2.3 Biofilm formation steps -- 5.2.3.1 Microbial attachment to the surface -- 5.2.3.2 Microcolony formation -- 5.2.3.3 Maturation and architecture -- 5.2.3.4 Detachment/dispersion of biofilm -- 5.2.4 Signaling in biofilm or mechanism in biofilm formation -- 5.3 Biofilm-forming microorganisms -- 5.3.1 Bacteria -- 5.3.2 Fungi -- 5.3.3 Algae -- 5.4 Factors affecting biofilm formation -- 5.4.1 Substrate nature -- 5.4.2 Effect of pH -- 5.4.3 Rheological and adhesive properties of biofilms (viscoelastic behavior) -- 5.4.4 Effect of temperature -- 5.4.5 Effect of metal ions -- 5.4.6 Effect of exogenous (addition) signaling molecules -- 5.4.7 Secondary metabolites -- 5.4.8 Impact of environmental stimuli (shear stress) on biofilm formation -- 5.4.9 Mechanical properties of biofilms -- 5.4.10 Nutrients availability -- 5.5 The adverse impact of microbial biofilm -- 5.6 Emerging scope in biofilm -- 5.6.1 Production of surfactants/proteins -- 5.6.2 Quorum quenching -- 5.7 Application of biofilm in bioremediation -- 5.7.1 Wastewater treatment -- 5.7.1.1 Organic pollutants -- 5.7.1.2 Inorganic pollutants -- 5.7.1.3 Micropollutants removal -- 5.7.2 Challenges during the pollutant removal -- 5.8 Miscellaneous use of biofilm -- 5.9 Conclusion and future perspectives -- Acknowledgments -- References 6 Waste treatment approaches for environmental sustainability -- 6.1 Introduction -- 6.2 Generation of waste -- 6.2.1 Municipal waste -- 6.2.2 Construction and demolition waste -- 6.2.3 Industrial waste -- 6.2.4 Medical waste -- 6.2.5 Hazardous waste -- 6.3 Types of waste -- 6.4 Conventional, physical, and chemical treatments -- 6.4.1 Processing -- 6.4.2 Coagulation and sedimentation -- 6.4.3 Filtration -- 6.4.4 Thermal treatments (incineration and pyrolysis/gasification) -- 6.4.4.1 Incineration -- 6.4.4.2 Pyrolysis/gasification -- 6.4.5 Landfills -- 6.5 Biological treatment -- 6.5.1 Microbial mediated -- 6.5.1.1 Anaerobic digestion -- 6.5.1.2 Composting -- 6.5.2 Plant mediated -- 6.6 Recovery, recycling, and reuse -- 6.7 Legal and institutional framework for waste treatments -- 6.8 Life cycle assessment decision for waste treatments -- 6.9 Conclusion -- References -- 7 Biodegradation of environmental pollutant through pathways engineering and genetically modified organisms approaches -- 7.1 Introduction -- 7.2 Genetically modified organism -- 7.2.1 Designing of genetically modified organisms -- 7.2.2 Genetically modifying bacteria -- 7.2.3 Applications of genetically modified bacteria -- 7.2.3.1 In biomedical field -- 7.2.3.1.1 Immunotherapy of cancer -- 7.2.3.1.2 Role in drug delivery -- 7.2.3.1.3 Production of insulin -- 7.2.3.2 Agricultural applications of bacteria -- 7.2.3.2.1 Bacteria improving crop nutrition -- 7.2.3.2.2 Bacteria controlling pest -- 7.2.3.2.3 Bacteria controlling plant disease -- 7.2.4 Genetically modified fungus -- 7.2.4.1 Medicinal use of fungus -- 7.2.4.2 Fungus as cultured foods -- 7.2.4.3 Genetically modified fungus in mycoremediation -- 7.2.5 Genetically modified plants -- 7.2.5.1 Genetically modified plant in food nutrition improvement -- 7.2.5.2 Genetically modified plant controlling biotic and abiotic stress 7.2.5.3 Genetically modified plant in phytoremediation -- 7.2.6 Other genetically modified organisms and their applications -- 7.2.6.1 Goldfish in pollutant testing -- 7.2.7 Genetically modified cyanobacteria -- 7.3 Factors affecting bioremediation -- 7.3.1 Degradation process -- 7.3.2 Moisture content -- 7.3.3 Nutrient availability -- 7.3.4 Temperature -- 7.3.5 pH -- 7.3.6 Molecular oxygen (O2) availability -- 7.3.7 Biological factors -- 7.3.8 Biocatalyst optimization -- 7.3.9 Protein engineering -- 7.4 Phytoremediation -- 7.5 Mycoremediation -- 7.6 Survivability of genetically modified organisms -- 7.7 Sustainability of genetically modified organism -- 7.8 Future prospects and conclusion -- References -- 8 Exploring the microbiome of smokeless tobacco -- 8.1 Introduction -- 8.2 History of association of microorganisms with smokeless tobacco -- 8.3 16S rRNA analysis for smokeless tobacco -- 8.4 Microbial diversity of smokeless tobacco -- 8.4.1 Bacterial diversity -- 8.4.2 Fungal diversity of smokeless tobacco -- 8.5 Relationship with the oral microbiome -- 8.6 Future prospects -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Microbial ligninolytic enzymes and their role in bioremediation -- 9.1 Introduction -- 9.2 Ligninolytic enzymes, structure, and catalytic mechanism -- 9.2.1 Lignin-modifying enzymes -- 9.2.1.1 Lignin peroxidase -- 9.2.1.2 Manganese peroxidase -- 9.2.1.3 Versatile peroxidase -- 9.2.2 Laccases -- 9.3 Applications of ligninolytic enzymes in the bioremediation of industrial pollutants -- 9.3.1 Textile Industries -- 9.3.1.1 Degradation and decolorization of synthetic dyes -- 9.3.1.2 Denim washing/finishing -- 9.3.2 Pulp and paper industry -- 9.3.2.1 Delignification of lignocellulose -- 9.3.2.2 Biopulping and biobleaching -- 9.3.3 Degradation and detoxification of recalcitrant/xenobiotic compounds 9.3.3.1 Degradation of petroleum hydrocarbons |
ctrlnum | (ZDB-30-PQE)EBC6269324 (ZDB-30-PAD)EBC6269324 (ZDB-89-EBL)EBL6269324 (ZDB-33-EBS)9780128190012 (OCoLC)1178714281 (DE-599)BVBBV047441792 |
dewey-full | 628.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 628 - Sanitary engineering |
dewey-raw | 628.5 |
dewey-search | 628.5 |
dewey-sort | 3628.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
discipline_str_mv | Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047441792</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241121</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128190043</subfield><subfield code="9">9780128190043</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/C2018-0-05025-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6269324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6269324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6269324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)9780128190012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1178714281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441792</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">628.5</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microorganisms for sustainable environment and health</subfield><subfield code="c">edited by Pankaj Chowdhary, Abhay Raj, Digvijay Verma, Yusuf Akhter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxviii, 509 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Microorganisms for Sustainable Environment and Health -- Copyright Page -- Contents -- List of Contributors -- About the editors -- Preface -- 1 Recent advancement in the biotechnological application of lignin peroxidase and its future prospects -- 1.1 Introduction -- 1.2 Production or sources of lignin peroxidase -- 1.3 Physiochemical and molecular properties lignin peroxidase -- 1.4 Mode of action -- 1.5 Application in various sectors -- 1.5.1 Cosmetic industry -- 1.5.2 Bioethanol production -- 1.5.3 Pulp and paper industry -- 1.5.4 Textile industry -- 1.6 Miscellaneous biotechnological application -- 1.7 Conclusion and future prospects -- References -- 2 Microbes mediated approaches for environmental waste management -- 2.1 Introduction -- 2.2 Characteristics and classification of waste -- 2.2.1 Based on material -- 2.2.1.1 Solid waste -- 2.2.1.2 Liquid waste -- 2.2.1.3 Air emissions -- 2.2.2 Based on degradation property -- 2.2.3 Based on environmental impact -- 2.2.4 Based on the source of generation -- 2.2.4.1 Household waste -- 2.2.4.2 Industrial waste -- 2.2.4.2.1 Toxic chemicals -- 2.2.4.2.2 Air contaminants -- 2.2.4.2.3 Greenhouse gases -- 2.2.4.2.4 Hazardous waste -- 2.2.4.2.5 Nonhazardous or ordinary industrial waste -- 2.2.4.2.6 Construction and demolition waste -- 2.2.4.2.7 Electronic waste -- 2.2.4.2.8 Medical waste -- 2.2.4.2.9 Nuclear waste -- 2.3 Waste management practices -- 2.3.1 Solid waste management techniques -- 2.3.1.1 Dumps and landfills -- 2.3.1.2 Thermal treatment -- 2.3.1.2.1 Pyrolysis and gasification -- 2.3.1.2.2 Plasma arc -- 2.3.1.2.3 Incineration -- 2.3.1.2.4 Open burning -- 2.5.1.2.5 Supercritical water decomposition -- 2.3.1.3 Composting -- 2.3.2 Liquid waste management techniques -- 2.3.2.1 Preliminary treatment -- 2.3.2.1.1 Screening -- 2.3.2.1.2 Shredding -- 2.3.2.1.3 Grit removal</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.2.1.4 Preaeration -- 2.3.2.1.5 Chemical addition -- 2.3.2.2 Primary treatment -- 2.3.2.3 Secondary treatment -- 2.3.2.4 Tertiary treatment -- 2.4 Role of microorganisms in waste management -- 2.4.1 Bioremediation -- 2.4.2 Bioaugmentation -- 2.4.3 Decomposition -- 2.4.3.1 Aerobic decomposition -- 2.4.3.2 Anaerobic decomposition -- 2.4.4 Recycling -- 2.5 Conclusion and future prospects -- References -- 3 Actinobacteria for the effective removal of toxic dyes -- 3.1 Introduction -- 3.2 Toxic dyes -- 3.2.1 Azo dyes -- 3.2.2 Triphenylmethane dyes -- 3.3 Removal technologies -- 3.3.1 Physicochemical approaches -- 3.3.2 Biological approaches -- 3.3.3 Microbial-based technologies -- 3.4 Actinobacteria -- 3.4.1 Origin, diversity, and ubiquity -- 3.4.2 Applications in bioremediation -- 3.5 Removal of dyes by actinobacteria -- 3.5.1 Actinobacteria with dye removal potential -- 3.5.2 Biosorption as a mechanism for dye removal -- 3.5.3 Biodegradation as a mechanism for dye removal -- 3.6 Innovations to the use of actinobacteria for dye removal -- 3.7 Conclusions and prospects -- Acknowledgments -- References -- 4 Arsenic toxicity: adverse effect and recent advance in microbes mediated bioremediation -- 4.1 Introduction -- 4.2 Arsenic toxicity and its adverse effects -- 4.3 Arsenic resistance via microbial intracellular and extracellular sequestration -- 4.3.1 Bioaccumulation of arsenic -- 4.3.2 Biosorption of arsenic -- 4.3.3 Arsenic bioremediation by adsorption -- 4.4 Microbial transformation of arsenic -- 4.4.1 Oxidation of arsenite -- 4.4.2 Reduction of arsenate -- 4.4.3 Arsenic methylation -- 4.4.4 Arsenic demethylation -- 4.5 Bioremediation of arsenic by microorganisms -- 4.5.1 Immobilization of arsenic -- 4.5.2 Mobilization of arsenic -- 4.5.3 Bioleaching of arsenic -- 4.5.4 Biostimulation of arsenic -- 4.5.5 Biofilm formation for arsenic</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5.6 Biomineralization of arsenic -- 4.6 Arsenic remediation by genetic engineered microbes -- 4.7 In silico approaches for bioremediation of arsenic -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants -- 5.1 Introduction -- 5.2 Biofilm: An overview -- 5.2.1 Composition -- 5.2.1.1 Polysaccharides -- 5.2.1.2 Protein -- 5.2.1.3 Extracellular DNA -- 5.2.1.4 Membrane vesicles -- 5.2.2 Role of extracellular polysaccharide in biofilm -- 5.2.3 Biofilm formation steps -- 5.2.3.1 Microbial attachment to the surface -- 5.2.3.2 Microcolony formation -- 5.2.3.3 Maturation and architecture -- 5.2.3.4 Detachment/dispersion of biofilm -- 5.2.4 Signaling in biofilm or mechanism in biofilm formation -- 5.3 Biofilm-forming microorganisms -- 5.3.1 Bacteria -- 5.3.2 Fungi -- 5.3.3 Algae -- 5.4 Factors affecting biofilm formation -- 5.4.1 Substrate nature -- 5.4.2 Effect of pH -- 5.4.3 Rheological and adhesive properties of biofilms (viscoelastic behavior) -- 5.4.4 Effect of temperature -- 5.4.5 Effect of metal ions -- 5.4.6 Effect of exogenous (addition) signaling molecules -- 5.4.7 Secondary metabolites -- 5.4.8 Impact of environmental stimuli (shear stress) on biofilm formation -- 5.4.9 Mechanical properties of biofilms -- 5.4.10 Nutrients availability -- 5.5 The adverse impact of microbial biofilm -- 5.6 Emerging scope in biofilm -- 5.6.1 Production of surfactants/proteins -- 5.6.2 Quorum quenching -- 5.7 Application of biofilm in bioremediation -- 5.7.1 Wastewater treatment -- 5.7.1.1 Organic pollutants -- 5.7.1.2 Inorganic pollutants -- 5.7.1.3 Micropollutants removal -- 5.7.2 Challenges during the pollutant removal -- 5.8 Miscellaneous use of biofilm -- 5.9 Conclusion and future perspectives -- Acknowledgments -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6 Waste treatment approaches for environmental sustainability -- 6.1 Introduction -- 6.2 Generation of waste -- 6.2.1 Municipal waste -- 6.2.2 Construction and demolition waste -- 6.2.3 Industrial waste -- 6.2.4 Medical waste -- 6.2.5 Hazardous waste -- 6.3 Types of waste -- 6.4 Conventional, physical, and chemical treatments -- 6.4.1 Processing -- 6.4.2 Coagulation and sedimentation -- 6.4.3 Filtration -- 6.4.4 Thermal treatments (incineration and pyrolysis/gasification) -- 6.4.4.1 Incineration -- 6.4.4.2 Pyrolysis/gasification -- 6.4.5 Landfills -- 6.5 Biological treatment -- 6.5.1 Microbial mediated -- 6.5.1.1 Anaerobic digestion -- 6.5.1.2 Composting -- 6.5.2 Plant mediated -- 6.6 Recovery, recycling, and reuse -- 6.7 Legal and institutional framework for waste treatments -- 6.8 Life cycle assessment decision for waste treatments -- 6.9 Conclusion -- References -- 7 Biodegradation of environmental pollutant through pathways engineering and genetically modified organisms approaches -- 7.1 Introduction -- 7.2 Genetically modified organism -- 7.2.1 Designing of genetically modified organisms -- 7.2.2 Genetically modifying bacteria -- 7.2.3 Applications of genetically modified bacteria -- 7.2.3.1 In biomedical field -- 7.2.3.1.1 Immunotherapy of cancer -- 7.2.3.1.2 Role in drug delivery -- 7.2.3.1.3 Production of insulin -- 7.2.3.2 Agricultural applications of bacteria -- 7.2.3.2.1 Bacteria improving crop nutrition -- 7.2.3.2.2 Bacteria controlling pest -- 7.2.3.2.3 Bacteria controlling plant disease -- 7.2.4 Genetically modified fungus -- 7.2.4.1 Medicinal use of fungus -- 7.2.4.2 Fungus as cultured foods -- 7.2.4.3 Genetically modified fungus in mycoremediation -- 7.2.5 Genetically modified plants -- 7.2.5.1 Genetically modified plant in food nutrition improvement -- 7.2.5.2 Genetically modified plant controlling biotic and abiotic stress</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2.5.3 Genetically modified plant in phytoremediation -- 7.2.6 Other genetically modified organisms and their applications -- 7.2.6.1 Goldfish in pollutant testing -- 7.2.7 Genetically modified cyanobacteria -- 7.3 Factors affecting bioremediation -- 7.3.1 Degradation process -- 7.3.2 Moisture content -- 7.3.3 Nutrient availability -- 7.3.4 Temperature -- 7.3.5 pH -- 7.3.6 Molecular oxygen (O2) availability -- 7.3.7 Biological factors -- 7.3.8 Biocatalyst optimization -- 7.3.9 Protein engineering -- 7.4 Phytoremediation -- 7.5 Mycoremediation -- 7.6 Survivability of genetically modified organisms -- 7.7 Sustainability of genetically modified organism -- 7.8 Future prospects and conclusion -- References -- 8 Exploring the microbiome of smokeless tobacco -- 8.1 Introduction -- 8.2 History of association of microorganisms with smokeless tobacco -- 8.3 16S rRNA analysis for smokeless tobacco -- 8.4 Microbial diversity of smokeless tobacco -- 8.4.1 Bacterial diversity -- 8.4.2 Fungal diversity of smokeless tobacco -- 8.5 Relationship with the oral microbiome -- 8.6 Future prospects -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Microbial ligninolytic enzymes and their role in bioremediation -- 9.1 Introduction -- 9.2 Ligninolytic enzymes, structure, and catalytic mechanism -- 9.2.1 Lignin-modifying enzymes -- 9.2.1.1 Lignin peroxidase -- 9.2.1.2 Manganese peroxidase -- 9.2.1.3 Versatile peroxidase -- 9.2.2 Laccases -- 9.3 Applications of ligninolytic enzymes in the bioremediation of industrial pollutants -- 9.3.1 Textile Industries -- 9.3.1.1 Degradation and decolorization of synthetic dyes -- 9.3.1.2 Denim washing/finishing -- 9.3.2 Pulp and paper industry -- 9.3.2.1 Delignification of lignocellulose -- 9.3.2.2 Biopulping and biobleaching -- 9.3.3 Degradation and detoxification of recalcitrant/xenobiotic compounds</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.3.3.1 Degradation of petroleum hydrocarbons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioremediation..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microorganisms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lignin</subfield><subfield code="0">(DE-588)4167660-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Farbstoff</subfield><subfield code="0">(DE-588)4016465-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioremediation</subfield><subfield code="0">(DE-588)4611954-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arsenverbindungen</subfield><subfield code="0">(DE-588)4143104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Peroxidasen</subfield><subfield code="0">(DE-588)4045219-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Carcinogenese</subfield><subfield code="0">(DE-588)4069853-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroplastik</subfield><subfield code="0">(DE-588)117071482X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abwasser</subfield><subfield code="0">(DE-588)4000302-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arzneimittelresistenz</subfield><subfield code="0">(DE-588)4143180-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lignin</subfield><subfield code="0">(DE-588)4167660-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Peroxidasen</subfield><subfield code="0">(DE-588)4045219-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bioremediation</subfield><subfield code="0">(DE-588)4611954-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Farbstoff</subfield><subfield code="0">(DE-588)4016465-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Arsenverbindungen</subfield><subfield code="0">(DE-588)4143104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Abwasser</subfield><subfield code="0">(DE-588)4000302-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Mikroplastik</subfield><subfield code="0">(DE-588)117071482X</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">(DE-627)</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Arzneimittelresistenz</subfield><subfield code="0">(DE-588)4143180-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">(DE-627)</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Carcinogenese</subfield><subfield code="0">(DE-588)4069853-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">(DE-627)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhary, Pankaj</subfield><subfield code="d">1989-</subfield><subfield code="0">(DE-588)1210181282</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raj, Abhay</subfield><subfield code="d">1978-</subfield><subfield code="0">(DE-588)1210181495</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verma, Digvijay</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akhter, Yusuf</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128190012</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.sciencedirect.com/science/book/9780128190012</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843944</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.sciencedirect.com/science/book/9780128190012</subfield><subfield code="l">DE-188</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">ZDB-33-ESD 2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1016/C2018-0-05025-2</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-33-EBS</subfield><subfield code="q">UBY_PDA_EBS_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441792 |
illustrated | Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-11-21T15:00:41Z |
institution | BVB |
isbn | 9780128190043 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032843944 |
oclc_num | 1178714281 |
open_access_boolean | |
owner | DE-188 DE-706 |
owner_facet | DE-188 DE-706 |
physical | 1 Online-Ressource (xxviii, 509 Seiten) Illustrationen |
psigel | ZDB-33-ESD ZDB-30-PQE ZDB-33-EBS ZDB-33-ESD ZDB-33-ESD 2021 ZDB-33-EBS UBY_PDA_EBS_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Elsevier |
record_format | marc |
spelling | Microorganisms for sustainable environment and health edited by Pankaj Chowdhary, Abhay Raj, Digvijay Verma, Yusuf Akhter Amsterdam, Netherlands Elsevier [2020] ©2020 1 Online-Ressource (xxviii, 509 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Front Cover -- Microorganisms for Sustainable Environment and Health -- Copyright Page -- Contents -- List of Contributors -- About the editors -- Preface -- 1 Recent advancement in the biotechnological application of lignin peroxidase and its future prospects -- 1.1 Introduction -- 1.2 Production or sources of lignin peroxidase -- 1.3 Physiochemical and molecular properties lignin peroxidase -- 1.4 Mode of action -- 1.5 Application in various sectors -- 1.5.1 Cosmetic industry -- 1.5.2 Bioethanol production -- 1.5.3 Pulp and paper industry -- 1.5.4 Textile industry -- 1.6 Miscellaneous biotechnological application -- 1.7 Conclusion and future prospects -- References -- 2 Microbes mediated approaches for environmental waste management -- 2.1 Introduction -- 2.2 Characteristics and classification of waste -- 2.2.1 Based on material -- 2.2.1.1 Solid waste -- 2.2.1.2 Liquid waste -- 2.2.1.3 Air emissions -- 2.2.2 Based on degradation property -- 2.2.3 Based on environmental impact -- 2.2.4 Based on the source of generation -- 2.2.4.1 Household waste -- 2.2.4.2 Industrial waste -- 2.2.4.2.1 Toxic chemicals -- 2.2.4.2.2 Air contaminants -- 2.2.4.2.3 Greenhouse gases -- 2.2.4.2.4 Hazardous waste -- 2.2.4.2.5 Nonhazardous or ordinary industrial waste -- 2.2.4.2.6 Construction and demolition waste -- 2.2.4.2.7 Electronic waste -- 2.2.4.2.8 Medical waste -- 2.2.4.2.9 Nuclear waste -- 2.3 Waste management practices -- 2.3.1 Solid waste management techniques -- 2.3.1.1 Dumps and landfills -- 2.3.1.2 Thermal treatment -- 2.3.1.2.1 Pyrolysis and gasification -- 2.3.1.2.2 Plasma arc -- 2.3.1.2.3 Incineration -- 2.3.1.2.4 Open burning -- 2.5.1.2.5 Supercritical water decomposition -- 2.3.1.3 Composting -- 2.3.2 Liquid waste management techniques -- 2.3.2.1 Preliminary treatment -- 2.3.2.1.1 Screening -- 2.3.2.1.2 Shredding -- 2.3.2.1.3 Grit removal 2.3.2.1.4 Preaeration -- 2.3.2.1.5 Chemical addition -- 2.3.2.2 Primary treatment -- 2.3.2.3 Secondary treatment -- 2.3.2.4 Tertiary treatment -- 2.4 Role of microorganisms in waste management -- 2.4.1 Bioremediation -- 2.4.2 Bioaugmentation -- 2.4.3 Decomposition -- 2.4.3.1 Aerobic decomposition -- 2.4.3.2 Anaerobic decomposition -- 2.4.4 Recycling -- 2.5 Conclusion and future prospects -- References -- 3 Actinobacteria for the effective removal of toxic dyes -- 3.1 Introduction -- 3.2 Toxic dyes -- 3.2.1 Azo dyes -- 3.2.2 Triphenylmethane dyes -- 3.3 Removal technologies -- 3.3.1 Physicochemical approaches -- 3.3.2 Biological approaches -- 3.3.3 Microbial-based technologies -- 3.4 Actinobacteria -- 3.4.1 Origin, diversity, and ubiquity -- 3.4.2 Applications in bioremediation -- 3.5 Removal of dyes by actinobacteria -- 3.5.1 Actinobacteria with dye removal potential -- 3.5.2 Biosorption as a mechanism for dye removal -- 3.5.3 Biodegradation as a mechanism for dye removal -- 3.6 Innovations to the use of actinobacteria for dye removal -- 3.7 Conclusions and prospects -- Acknowledgments -- References -- 4 Arsenic toxicity: adverse effect and recent advance in microbes mediated bioremediation -- 4.1 Introduction -- 4.2 Arsenic toxicity and its adverse effects -- 4.3 Arsenic resistance via microbial intracellular and extracellular sequestration -- 4.3.1 Bioaccumulation of arsenic -- 4.3.2 Biosorption of arsenic -- 4.3.3 Arsenic bioremediation by adsorption -- 4.4 Microbial transformation of arsenic -- 4.4.1 Oxidation of arsenite -- 4.4.2 Reduction of arsenate -- 4.4.3 Arsenic methylation -- 4.4.4 Arsenic demethylation -- 4.5 Bioremediation of arsenic by microorganisms -- 4.5.1 Immobilization of arsenic -- 4.5.2 Mobilization of arsenic -- 4.5.3 Bioleaching of arsenic -- 4.5.4 Biostimulation of arsenic -- 4.5.5 Biofilm formation for arsenic 4.5.6 Biomineralization of arsenic -- 4.6 Arsenic remediation by genetic engineered microbes -- 4.7 In silico approaches for bioremediation of arsenic -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants -- 5.1 Introduction -- 5.2 Biofilm: An overview -- 5.2.1 Composition -- 5.2.1.1 Polysaccharides -- 5.2.1.2 Protein -- 5.2.1.3 Extracellular DNA -- 5.2.1.4 Membrane vesicles -- 5.2.2 Role of extracellular polysaccharide in biofilm -- 5.2.3 Biofilm formation steps -- 5.2.3.1 Microbial attachment to the surface -- 5.2.3.2 Microcolony formation -- 5.2.3.3 Maturation and architecture -- 5.2.3.4 Detachment/dispersion of biofilm -- 5.2.4 Signaling in biofilm or mechanism in biofilm formation -- 5.3 Biofilm-forming microorganisms -- 5.3.1 Bacteria -- 5.3.2 Fungi -- 5.3.3 Algae -- 5.4 Factors affecting biofilm formation -- 5.4.1 Substrate nature -- 5.4.2 Effect of pH -- 5.4.3 Rheological and adhesive properties of biofilms (viscoelastic behavior) -- 5.4.4 Effect of temperature -- 5.4.5 Effect of metal ions -- 5.4.6 Effect of exogenous (addition) signaling molecules -- 5.4.7 Secondary metabolites -- 5.4.8 Impact of environmental stimuli (shear stress) on biofilm formation -- 5.4.9 Mechanical properties of biofilms -- 5.4.10 Nutrients availability -- 5.5 The adverse impact of microbial biofilm -- 5.6 Emerging scope in biofilm -- 5.6.1 Production of surfactants/proteins -- 5.6.2 Quorum quenching -- 5.7 Application of biofilm in bioremediation -- 5.7.1 Wastewater treatment -- 5.7.1.1 Organic pollutants -- 5.7.1.2 Inorganic pollutants -- 5.7.1.3 Micropollutants removal -- 5.7.2 Challenges during the pollutant removal -- 5.8 Miscellaneous use of biofilm -- 5.9 Conclusion and future perspectives -- Acknowledgments -- References 6 Waste treatment approaches for environmental sustainability -- 6.1 Introduction -- 6.2 Generation of waste -- 6.2.1 Municipal waste -- 6.2.2 Construction and demolition waste -- 6.2.3 Industrial waste -- 6.2.4 Medical waste -- 6.2.5 Hazardous waste -- 6.3 Types of waste -- 6.4 Conventional, physical, and chemical treatments -- 6.4.1 Processing -- 6.4.2 Coagulation and sedimentation -- 6.4.3 Filtration -- 6.4.4 Thermal treatments (incineration and pyrolysis/gasification) -- 6.4.4.1 Incineration -- 6.4.4.2 Pyrolysis/gasification -- 6.4.5 Landfills -- 6.5 Biological treatment -- 6.5.1 Microbial mediated -- 6.5.1.1 Anaerobic digestion -- 6.5.1.2 Composting -- 6.5.2 Plant mediated -- 6.6 Recovery, recycling, and reuse -- 6.7 Legal and institutional framework for waste treatments -- 6.8 Life cycle assessment decision for waste treatments -- 6.9 Conclusion -- References -- 7 Biodegradation of environmental pollutant through pathways engineering and genetically modified organisms approaches -- 7.1 Introduction -- 7.2 Genetically modified organism -- 7.2.1 Designing of genetically modified organisms -- 7.2.2 Genetically modifying bacteria -- 7.2.3 Applications of genetically modified bacteria -- 7.2.3.1 In biomedical field -- 7.2.3.1.1 Immunotherapy of cancer -- 7.2.3.1.2 Role in drug delivery -- 7.2.3.1.3 Production of insulin -- 7.2.3.2 Agricultural applications of bacteria -- 7.2.3.2.1 Bacteria improving crop nutrition -- 7.2.3.2.2 Bacteria controlling pest -- 7.2.3.2.3 Bacteria controlling plant disease -- 7.2.4 Genetically modified fungus -- 7.2.4.1 Medicinal use of fungus -- 7.2.4.2 Fungus as cultured foods -- 7.2.4.3 Genetically modified fungus in mycoremediation -- 7.2.5 Genetically modified plants -- 7.2.5.1 Genetically modified plant in food nutrition improvement -- 7.2.5.2 Genetically modified plant controlling biotic and abiotic stress 7.2.5.3 Genetically modified plant in phytoremediation -- 7.2.6 Other genetically modified organisms and their applications -- 7.2.6.1 Goldfish in pollutant testing -- 7.2.7 Genetically modified cyanobacteria -- 7.3 Factors affecting bioremediation -- 7.3.1 Degradation process -- 7.3.2 Moisture content -- 7.3.3 Nutrient availability -- 7.3.4 Temperature -- 7.3.5 pH -- 7.3.6 Molecular oxygen (O2) availability -- 7.3.7 Biological factors -- 7.3.8 Biocatalyst optimization -- 7.3.9 Protein engineering -- 7.4 Phytoremediation -- 7.5 Mycoremediation -- 7.6 Survivability of genetically modified organisms -- 7.7 Sustainability of genetically modified organism -- 7.8 Future prospects and conclusion -- References -- 8 Exploring the microbiome of smokeless tobacco -- 8.1 Introduction -- 8.2 History of association of microorganisms with smokeless tobacco -- 8.3 16S rRNA analysis for smokeless tobacco -- 8.4 Microbial diversity of smokeless tobacco -- 8.4.1 Bacterial diversity -- 8.4.2 Fungal diversity of smokeless tobacco -- 8.5 Relationship with the oral microbiome -- 8.6 Future prospects -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Microbial ligninolytic enzymes and their role in bioremediation -- 9.1 Introduction -- 9.2 Ligninolytic enzymes, structure, and catalytic mechanism -- 9.2.1 Lignin-modifying enzymes -- 9.2.1.1 Lignin peroxidase -- 9.2.1.2 Manganese peroxidase -- 9.2.1.3 Versatile peroxidase -- 9.2.2 Laccases -- 9.3 Applications of ligninolytic enzymes in the bioremediation of industrial pollutants -- 9.3.1 Textile Industries -- 9.3.1.1 Degradation and decolorization of synthetic dyes -- 9.3.1.2 Denim washing/finishing -- 9.3.2 Pulp and paper industry -- 9.3.2.1 Delignification of lignocellulose -- 9.3.2.2 Biopulping and biobleaching -- 9.3.3 Degradation and detoxification of recalcitrant/xenobiotic compounds 9.3.3.1 Degradation of petroleum hydrocarbons Bioremediation.. Microorganisms Lignin (DE-588)4167660-9 gnd rswk-swf Farbstoff (DE-588)4016465-2 gnd rswk-swf Bioremediation (DE-588)4611954-1 gnd rswk-swf Arsenverbindungen (DE-588)4143104-2 gnd rswk-swf Peroxidasen (DE-588)4045219-0 gnd rswk-swf Carcinogenese (DE-588)4069853-1 gnd rswk-swf Mikroplastik (DE-588)117071482X gnd rswk-swf Abwasser (DE-588)4000302-4 gnd rswk-swf Biotechnologie (DE-588)4069491-4 gnd rswk-swf Arzneimittelresistenz (DE-588)4143180-7 gnd rswk-swf Lignin (DE-588)4167660-9 s Peroxidasen (DE-588)4045219-0 s Biotechnologie (DE-588)4069491-4 s DE-604 Bioremediation (DE-588)4611954-1 s Farbstoff (DE-588)4016465-2 s Arsenverbindungen (DE-588)4143104-2 s Abwasser (DE-588)4000302-4 s Mikroplastik (DE-588)117071482X s (DE-627) Arzneimittelresistenz (DE-588)4143180-7 s Carcinogenese (DE-588)4069853-1 s Chowdhary, Pankaj 1989- (DE-588)1210181282 edt Raj, Abhay 1978- (DE-588)1210181495 edt Verma, Digvijay edt Akhter, Yusuf edt Erscheint auch als Druck-Ausgabe 9780128190012 https://www.sciencedirect.com/science/book/9780128190012 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Microorganisms for sustainable environment and health Front Cover -- Microorganisms for Sustainable Environment and Health -- Copyright Page -- Contents -- List of Contributors -- About the editors -- Preface -- 1 Recent advancement in the biotechnological application of lignin peroxidase and its future prospects -- 1.1 Introduction -- 1.2 Production or sources of lignin peroxidase -- 1.3 Physiochemical and molecular properties lignin peroxidase -- 1.4 Mode of action -- 1.5 Application in various sectors -- 1.5.1 Cosmetic industry -- 1.5.2 Bioethanol production -- 1.5.3 Pulp and paper industry -- 1.5.4 Textile industry -- 1.6 Miscellaneous biotechnological application -- 1.7 Conclusion and future prospects -- References -- 2 Microbes mediated approaches for environmental waste management -- 2.1 Introduction -- 2.2 Characteristics and classification of waste -- 2.2.1 Based on material -- 2.2.1.1 Solid waste -- 2.2.1.2 Liquid waste -- 2.2.1.3 Air emissions -- 2.2.2 Based on degradation property -- 2.2.3 Based on environmental impact -- 2.2.4 Based on the source of generation -- 2.2.4.1 Household waste -- 2.2.4.2 Industrial waste -- 2.2.4.2.1 Toxic chemicals -- 2.2.4.2.2 Air contaminants -- 2.2.4.2.3 Greenhouse gases -- 2.2.4.2.4 Hazardous waste -- 2.2.4.2.5 Nonhazardous or ordinary industrial waste -- 2.2.4.2.6 Construction and demolition waste -- 2.2.4.2.7 Electronic waste -- 2.2.4.2.8 Medical waste -- 2.2.4.2.9 Nuclear waste -- 2.3 Waste management practices -- 2.3.1 Solid waste management techniques -- 2.3.1.1 Dumps and landfills -- 2.3.1.2 Thermal treatment -- 2.3.1.2.1 Pyrolysis and gasification -- 2.3.1.2.2 Plasma arc -- 2.3.1.2.3 Incineration -- 2.3.1.2.4 Open burning -- 2.5.1.2.5 Supercritical water decomposition -- 2.3.1.3 Composting -- 2.3.2 Liquid waste management techniques -- 2.3.2.1 Preliminary treatment -- 2.3.2.1.1 Screening -- 2.3.2.1.2 Shredding -- 2.3.2.1.3 Grit removal 2.3.2.1.4 Preaeration -- 2.3.2.1.5 Chemical addition -- 2.3.2.2 Primary treatment -- 2.3.2.3 Secondary treatment -- 2.3.2.4 Tertiary treatment -- 2.4 Role of microorganisms in waste management -- 2.4.1 Bioremediation -- 2.4.2 Bioaugmentation -- 2.4.3 Decomposition -- 2.4.3.1 Aerobic decomposition -- 2.4.3.2 Anaerobic decomposition -- 2.4.4 Recycling -- 2.5 Conclusion and future prospects -- References -- 3 Actinobacteria for the effective removal of toxic dyes -- 3.1 Introduction -- 3.2 Toxic dyes -- 3.2.1 Azo dyes -- 3.2.2 Triphenylmethane dyes -- 3.3 Removal technologies -- 3.3.1 Physicochemical approaches -- 3.3.2 Biological approaches -- 3.3.3 Microbial-based technologies -- 3.4 Actinobacteria -- 3.4.1 Origin, diversity, and ubiquity -- 3.4.2 Applications in bioremediation -- 3.5 Removal of dyes by actinobacteria -- 3.5.1 Actinobacteria with dye removal potential -- 3.5.2 Biosorption as a mechanism for dye removal -- 3.5.3 Biodegradation as a mechanism for dye removal -- 3.6 Innovations to the use of actinobacteria for dye removal -- 3.7 Conclusions and prospects -- Acknowledgments -- References -- 4 Arsenic toxicity: adverse effect and recent advance in microbes mediated bioremediation -- 4.1 Introduction -- 4.2 Arsenic toxicity and its adverse effects -- 4.3 Arsenic resistance via microbial intracellular and extracellular sequestration -- 4.3.1 Bioaccumulation of arsenic -- 4.3.2 Biosorption of arsenic -- 4.3.3 Arsenic bioremediation by adsorption -- 4.4 Microbial transformation of arsenic -- 4.4.1 Oxidation of arsenite -- 4.4.2 Reduction of arsenate -- 4.4.3 Arsenic methylation -- 4.4.4 Arsenic demethylation -- 4.5 Bioremediation of arsenic by microorganisms -- 4.5.1 Immobilization of arsenic -- 4.5.2 Mobilization of arsenic -- 4.5.3 Bioleaching of arsenic -- 4.5.4 Biostimulation of arsenic -- 4.5.5 Biofilm formation for arsenic 4.5.6 Biomineralization of arsenic -- 4.6 Arsenic remediation by genetic engineered microbes -- 4.7 In silico approaches for bioremediation of arsenic -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants -- 5.1 Introduction -- 5.2 Biofilm: An overview -- 5.2.1 Composition -- 5.2.1.1 Polysaccharides -- 5.2.1.2 Protein -- 5.2.1.3 Extracellular DNA -- 5.2.1.4 Membrane vesicles -- 5.2.2 Role of extracellular polysaccharide in biofilm -- 5.2.3 Biofilm formation steps -- 5.2.3.1 Microbial attachment to the surface -- 5.2.3.2 Microcolony formation -- 5.2.3.3 Maturation and architecture -- 5.2.3.4 Detachment/dispersion of biofilm -- 5.2.4 Signaling in biofilm or mechanism in biofilm formation -- 5.3 Biofilm-forming microorganisms -- 5.3.1 Bacteria -- 5.3.2 Fungi -- 5.3.3 Algae -- 5.4 Factors affecting biofilm formation -- 5.4.1 Substrate nature -- 5.4.2 Effect of pH -- 5.4.3 Rheological and adhesive properties of biofilms (viscoelastic behavior) -- 5.4.4 Effect of temperature -- 5.4.5 Effect of metal ions -- 5.4.6 Effect of exogenous (addition) signaling molecules -- 5.4.7 Secondary metabolites -- 5.4.8 Impact of environmental stimuli (shear stress) on biofilm formation -- 5.4.9 Mechanical properties of biofilms -- 5.4.10 Nutrients availability -- 5.5 The adverse impact of microbial biofilm -- 5.6 Emerging scope in biofilm -- 5.6.1 Production of surfactants/proteins -- 5.6.2 Quorum quenching -- 5.7 Application of biofilm in bioremediation -- 5.7.1 Wastewater treatment -- 5.7.1.1 Organic pollutants -- 5.7.1.2 Inorganic pollutants -- 5.7.1.3 Micropollutants removal -- 5.7.2 Challenges during the pollutant removal -- 5.8 Miscellaneous use of biofilm -- 5.9 Conclusion and future perspectives -- Acknowledgments -- References 6 Waste treatment approaches for environmental sustainability -- 6.1 Introduction -- 6.2 Generation of waste -- 6.2.1 Municipal waste -- 6.2.2 Construction and demolition waste -- 6.2.3 Industrial waste -- 6.2.4 Medical waste -- 6.2.5 Hazardous waste -- 6.3 Types of waste -- 6.4 Conventional, physical, and chemical treatments -- 6.4.1 Processing -- 6.4.2 Coagulation and sedimentation -- 6.4.3 Filtration -- 6.4.4 Thermal treatments (incineration and pyrolysis/gasification) -- 6.4.4.1 Incineration -- 6.4.4.2 Pyrolysis/gasification -- 6.4.5 Landfills -- 6.5 Biological treatment -- 6.5.1 Microbial mediated -- 6.5.1.1 Anaerobic digestion -- 6.5.1.2 Composting -- 6.5.2 Plant mediated -- 6.6 Recovery, recycling, and reuse -- 6.7 Legal and institutional framework for waste treatments -- 6.8 Life cycle assessment decision for waste treatments -- 6.9 Conclusion -- References -- 7 Biodegradation of environmental pollutant through pathways engineering and genetically modified organisms approaches -- 7.1 Introduction -- 7.2 Genetically modified organism -- 7.2.1 Designing of genetically modified organisms -- 7.2.2 Genetically modifying bacteria -- 7.2.3 Applications of genetically modified bacteria -- 7.2.3.1 In biomedical field -- 7.2.3.1.1 Immunotherapy of cancer -- 7.2.3.1.2 Role in drug delivery -- 7.2.3.1.3 Production of insulin -- 7.2.3.2 Agricultural applications of bacteria -- 7.2.3.2.1 Bacteria improving crop nutrition -- 7.2.3.2.2 Bacteria controlling pest -- 7.2.3.2.3 Bacteria controlling plant disease -- 7.2.4 Genetically modified fungus -- 7.2.4.1 Medicinal use of fungus -- 7.2.4.2 Fungus as cultured foods -- 7.2.4.3 Genetically modified fungus in mycoremediation -- 7.2.5 Genetically modified plants -- 7.2.5.1 Genetically modified plant in food nutrition improvement -- 7.2.5.2 Genetically modified plant controlling biotic and abiotic stress 7.2.5.3 Genetically modified plant in phytoremediation -- 7.2.6 Other genetically modified organisms and their applications -- 7.2.6.1 Goldfish in pollutant testing -- 7.2.7 Genetically modified cyanobacteria -- 7.3 Factors affecting bioremediation -- 7.3.1 Degradation process -- 7.3.2 Moisture content -- 7.3.3 Nutrient availability -- 7.3.4 Temperature -- 7.3.5 pH -- 7.3.6 Molecular oxygen (O2) availability -- 7.3.7 Biological factors -- 7.3.8 Biocatalyst optimization -- 7.3.9 Protein engineering -- 7.4 Phytoremediation -- 7.5 Mycoremediation -- 7.6 Survivability of genetically modified organisms -- 7.7 Sustainability of genetically modified organism -- 7.8 Future prospects and conclusion -- References -- 8 Exploring the microbiome of smokeless tobacco -- 8.1 Introduction -- 8.2 History of association of microorganisms with smokeless tobacco -- 8.3 16S rRNA analysis for smokeless tobacco -- 8.4 Microbial diversity of smokeless tobacco -- 8.4.1 Bacterial diversity -- 8.4.2 Fungal diversity of smokeless tobacco -- 8.5 Relationship with the oral microbiome -- 8.6 Future prospects -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Microbial ligninolytic enzymes and their role in bioremediation -- 9.1 Introduction -- 9.2 Ligninolytic enzymes, structure, and catalytic mechanism -- 9.2.1 Lignin-modifying enzymes -- 9.2.1.1 Lignin peroxidase -- 9.2.1.2 Manganese peroxidase -- 9.2.1.3 Versatile peroxidase -- 9.2.2 Laccases -- 9.3 Applications of ligninolytic enzymes in the bioremediation of industrial pollutants -- 9.3.1 Textile Industries -- 9.3.1.1 Degradation and decolorization of synthetic dyes -- 9.3.1.2 Denim washing/finishing -- 9.3.2 Pulp and paper industry -- 9.3.2.1 Delignification of lignocellulose -- 9.3.2.2 Biopulping and biobleaching -- 9.3.3 Degradation and detoxification of recalcitrant/xenobiotic compounds 9.3.3.1 Degradation of petroleum hydrocarbons Bioremediation.. Microorganisms Lignin (DE-588)4167660-9 gnd Farbstoff (DE-588)4016465-2 gnd Bioremediation (DE-588)4611954-1 gnd Arsenverbindungen (DE-588)4143104-2 gnd Peroxidasen (DE-588)4045219-0 gnd Carcinogenese (DE-588)4069853-1 gnd Mikroplastik (DE-588)117071482X gnd Abwasser (DE-588)4000302-4 gnd Biotechnologie (DE-588)4069491-4 gnd Arzneimittelresistenz (DE-588)4143180-7 gnd |
subject_GND | (DE-588)4167660-9 (DE-588)4016465-2 (DE-588)4611954-1 (DE-588)4143104-2 (DE-588)4045219-0 (DE-588)4069853-1 (DE-588)117071482X (DE-588)4000302-4 (DE-588)4069491-4 (DE-588)4143180-7 |
title | Microorganisms for sustainable environment and health |
title_auth | Microorganisms for sustainable environment and health |
title_exact_search | Microorganisms for sustainable environment and health |
title_exact_search_txtP | Microorganisms for sustainable environment and health |
title_full | Microorganisms for sustainable environment and health edited by Pankaj Chowdhary, Abhay Raj, Digvijay Verma, Yusuf Akhter |
title_fullStr | Microorganisms for sustainable environment and health edited by Pankaj Chowdhary, Abhay Raj, Digvijay Verma, Yusuf Akhter |
title_full_unstemmed | Microorganisms for sustainable environment and health edited by Pankaj Chowdhary, Abhay Raj, Digvijay Verma, Yusuf Akhter |
title_short | Microorganisms for sustainable environment and health |
title_sort | microorganisms for sustainable environment and health |
topic | Bioremediation.. Microorganisms Lignin (DE-588)4167660-9 gnd Farbstoff (DE-588)4016465-2 gnd Bioremediation (DE-588)4611954-1 gnd Arsenverbindungen (DE-588)4143104-2 gnd Peroxidasen (DE-588)4045219-0 gnd Carcinogenese (DE-588)4069853-1 gnd Mikroplastik (DE-588)117071482X gnd Abwasser (DE-588)4000302-4 gnd Biotechnologie (DE-588)4069491-4 gnd Arzneimittelresistenz (DE-588)4143180-7 gnd |
topic_facet | Bioremediation.. Microorganisms Lignin Farbstoff Bioremediation Arsenverbindungen Peroxidasen Carcinogenese Mikroplastik Abwasser Biotechnologie Arzneimittelresistenz |
url | https://www.sciencedirect.com/science/book/9780128190012 |
work_keys_str_mv | AT chowdharypankaj microorganismsforsustainableenvironmentandhealth AT rajabhay microorganismsforsustainableenvironmentandhealth AT vermadigvijay microorganismsforsustainableenvironmentandhealth AT akhteryusuf microorganismsforsustainableenvironmentandhealth |