Control theory in biomedical engineering: applications in physiology and medical robotics
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlingtdon, Oxford, United Kingdom
Academic Press, an imprint of Elsevier
[2020]
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xvii, 378 Seiten) Illustrationen, Diagramme |
ISBN: | 9780128226216 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441742 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780128226216 |9 978-0-12-822621-6 | ||
035 | |a (ZDB-30-PQE)EBC6242916 | ||
035 | |a (ZDB-30-PAD)EBC6242916 | ||
035 | |a (ZDB-89-EBL)EBL6242916 | ||
035 | |a (OCoLC)1163951656 | ||
035 | |a (DE-599)BVBBV047441742 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 629.83119999999997 | |
084 | |a ZQ 9950 |0 (DE-625)158196: |2 rvk | ||
084 | |a XC 4003 |0 (DE-625)152514:12909 |2 rvk | ||
084 | |a DAT 815 |2 stub | ||
084 | |a MED 370 |2 stub | ||
245 | 1 | 0 | |a Control theory in biomedical engineering |b applications in physiology and medical robotics |c edited by Olfa Boubaker |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlingtdon, Oxford, United Kingdom |b Academic Press, an imprint of Elsevier |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (xvii, 378 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Intro -- Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics -- Copyright -- Contents -- Contributors -- Preface -- Part I: Applications in physiology -- Chapter 1: Modeling and control in physiology -- 1. Introduction -- 2. Mathematical modeling in physiology -- 2.1. Modeling methodology -- 2.2. Modeling approaches -- 2.2.1. Compartmental modeling approach -- 2.2.2. Equivalent modeling approach -- 2.2.3. Data-driven modeling approach -- 2.3. Classification of mathematical models -- 2.4. Structural identifiability -- 2.5. Practical identifiability -- 2.6. Application examples -- 2.6.1. The endocrine system models -- 2.6.2. The tumor-immune system model -- 2.6.3. The cardiovascular system -- 2.7. Chaos in physiology -- 3. Control in physiology -- 3.1. The homeostasis principal -- 3.2. Homeostasis examples -- 3.3. Control strategies in homeostasis -- 3.4. Control therapy applications -- 3.4.1. Optimal control -- 3.4.2. Adaptive control -- 3.4.3. Fuzzy logic control -- 4. Future trends and challenges -- 5. Conclusion -- References -- Chapter 2: Mathematical modeling of cholesterol homeostasis -- 1. Introduction -- 2. Circulation of cholesterol in the human body -- 3. Two-compartment model of cholesterol homeostasis -- 4. Estimating the values of the model parameters -- 5. Analysis of the solutions -- 6. Summary and conclusion -- References -- Chapter 3: Adaptive control of artificial pancreas systems for treatment of type 1 diabetes -- 1. Introduction -- 2. Methods -- 2.1. Adaptive-personalized PIC estimator -- 2.2. Recursive subspace-based system identification -- 3. PIC cognizant AL-MPC algorithm -- 3.1. Adaptive glycemic and plasma insulin risk indexes -- 3.2. Plasma insulin concentration bounds -- 3.3. Feature extraction for manipulating constraints -- 3.4. Adaptive-learning MPC formulation -- 4. Results | |
505 | 8 | |a 5. Conclusions -- Acknowledgments -- References -- Chapter 4: Modeling and optimal control of cancer-immune system -- 1. Introduction -- 2. Mathematical models -- 2.1. Boundedness and nonnegativity of the model solutions -- 3. Model with chemotherapy and control -- 4. Numerical simulations -- 4.1. Numerical algorithm -- 5. Conclusion -- Appendix -- A.1. DDEs with optimal control -- A.2. Matlab program for optimal control with DDEs -- References -- Chapter 5: Genetic fuzzy logic based system for arrhythmia classification -- 1. Introduction -- 2. Methodology -- 2.1. Preprocessing -- 2.1.1. ECG signal filtering -- 2.1.2. ECG feature extraction -- 2.2. Fuzzy arrhythmia classification -- 2.2.1. FLC configuration -- 2.2.2. FLC optimization -- 3. Experimental results -- 3.1. Comparison study between the performances before and after the genetic optimization -- 3.2. Comparison analysis with related works -- 4. Conclusion -- References -- Chapter 6: Modeling simple and complex handwriting based on EMG signals -- 1. Introduction -- 2. History of handwriting modeling -- 3. Kalman filter-based model -- 4. Zhang-Kamavuako model (ZK) -- 5. Modeling of cursive writing from two EMG signals -- 5.1. Experimental approach and system presentation -- 5.2. Murata-Kosaku-Sano model (MKS) -- 5.3. Interval observer for robust handwriting characterization -- 6. Discussion -- 7. Conclusion -- References -- Part II: Applications in medical robotics -- Chapter 7: Medical robotics -- 1. Introduction -- 2. Literature review -- 3. Classification of medical robotics -- 4. Advantages and fundamental requirements -- 4.1. Advantages -- 4.2. Fundamental requirements -- 5. Robot-assisted surgery -- 5.1. History -- 5.2. Applications -- 5.3. Commercially available/FDA-approved robotic devices and platforms -- 6. Rehabilitation robotics and assistive technologies -- 6.1. Motivations | |
505 | 8 | |a 6.2. Literature review -- 6.3. A brief history -- 6.4. Classification and related devices -- 7. Robots in medical training as body-part simulators -- 8. Conclusion -- References -- Chapter 8: Wearable mechatronic devices for upper-limb amputees -- 1. Introduction -- 2. Human sensory feedback and physiology of the human skin -- 2.1. Tactile feedback -- 2.2. Kinesthetic feedback -- 3. Wearable device: Preliminary concepts -- 3.1. Definitions -- Wearable device -- Empowering robotic exoskeletons (extenders) -- Orthotic robots -- Prosthetic robots -- 3.2. Features -- 4. Upper-limb prosthetic technologies -- 4.1. Overview -- 4.2. Body-powered prosthesis -- 4.3. Externally powered prosthesis -- 4.4. Myoelectric prostheses -- 4.4.1. EMG control strategies -- 4.4.2. Targeted muscle reinnervation -- 4.5. Sensory feedback prosthesis -- 4.5.1. Sensory substitution feedback -- Vibrotactile -- Electrotactile -- Others -- 4.5.2. Modality-matched feedback -- Mechanotactile -- Direct-neural -- 4.6. Summary of wearable devices -- 5. Challenges -- 6. Conclusion -- References -- Chapter 9: Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality* -- 1. Introduction -- 2. Existing upper limb exoskeletons -- 3. Design requirements and challenges -- Safety -- Comfort of wearing -- Alignment of exoskeleton joints with human joints -- Actuation -- Power transmission mechanism -- Singularity -- Backdrivability -- Sensors -- 4. Control approaches -- 5. Discussion -- 6. Conclusion -- References -- Chapter 10: A double pendulum model for human walking control on the treadmill and stride-to-stride fluctuations: Control ... -- 1. Introduction -- 2. Material and method -- 2.1. Double pendulum model -- 2.2. Controller design -- 2.3. Experimental data -- 2.4. Adding uncertainty to the model -- 3. Results -- 4. Discussion -- 5. Conclusion | |
505 | 8 | |a References -- Chapter 11: Continuum NasoXplorer manipulator with shape memory actuators for transnasal exploration -- 1. Clinical needs and intended engineering design objectives -- 2. Methods -- 2.1. Device specifications from anatomical considerations -- 2.1.1. Anatomical variations in shape -- 2.1.2. Anatomical variations in size -- 2.1.3. Anatomical variations based on age and gender -- 2.1.4. Estimation of the distance between nasal inlet to the channel -- 2.1.5. Estimation of area of narrowest path in the nasopharynx region -- 2.1.6. Device design specifications -- 2.2. Overall design -- 2.3. Design components and design rationale -- 2.3.1. Optical zooming segment and camera -- 2.3.2. Actuation and control of the bending segment -- 2.3.3. Stiffness modulation -- 3. Design verification -- 3.1. Bending capability: Determine the bending angle -- 3.2. Temperature monitoring during both actuation and retraction -- 3.3. Dynamic force test with changes in temperature -- 3.4. Insertion test -- 4. Design review -- 4.1. Failure mode analysis -- 4.2. Remarks on the prior comparative art -- 4.3. Satisfaction benchmarking in clinical needs -- 4.4. Target metrics -- 4.5. Needs-metrics mapping matrix -- 4.6. Metrics benchmarking -- 5. Conclusion and future work -- Appendix: Supplementary material -- References -- Chapter 12: Tunable stiffness using negative Poisson's ratio toward load-bearing continuum tubular mechanisms in medical ... -- 1. Background -- 2. Literature review/concept evaluation -- 2.1. Electro/magneto-rheological fluids -- 2.2. Phase change materials -- 2.3. Jamming methods -- 2.4. Negative pressure jamming -- 3. Concept combining jamming and continuum metamaterials with negative Poisson's ratio materials (auxetics) -- 4. Concentric continuum metastructures -- 5. Fabrication methodology -- 5.1. Rolling two-dimensional sheets | |
505 | 8 | |a 5.2. 3D printed auxetics -- 5.2.1. Material filaments -- 5.3. Auxetic material designs -- 5.3.1. Hexagonal re-entrant honeycomb structure -- 5.3.2. Chiral structure -- 5.3.3. Star honeycomb structure -- 5.3.4. Missing rib structure -- 5.3.5. Double arrowhead structure -- 6. Continuum metastructural test -- 6.1. Mechanical test specifications -- 6.2. Continuum metastructural tests -- 6.2.1. Re-entrant honeycomb structure tests -- 6.2.2. Missing rib structure tests -- 6.2.3. Double arrow honeycomb structure tests -- 6.2.4. Chiral structure tests -- 6.2.5. Star structure tests -- 6.3. Results discussions -- 7. Kirigami and origami methods -- 7.1. Kirigami methods -- 7.1.1. Cardboard paper -- 7.1.2. Silicone rubber -- 7.1.3. High-density foam -- 7.2. Origami methods -- 7.2.1. Collapsible origami structure -- 7.2.2. Miura origami structure -- 7.2.3. Waterbomb tube -- 8. Conclusion -- References -- Appendices for Chapter 2 -- Index | |
650 | 4 | |a Control theory | |
650 | 0 | 7 | |a Biomedizinische Technik |0 (DE-588)4006882-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regelungstheorie |0 (DE-588)4122327-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Biomedizinische Technik |0 (DE-588)4006882-1 |D s |
689 | 0 | 1 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 0 | 2 | |a Regelungstheorie |0 (DE-588)4122327-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Boubaker, Olfa |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Boubaker, Olfa |t Control Theory in Biomedical Engineering |d San Diego : Elsevier Science & Technology,c2020 |n Druck-Ausgabe |z 978-0-12-821350-6 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032843894 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6242916 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734550073344 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Boubaker, Olfa |
author2_role | edt |
author2_variant | o b ob |
author_facet | Boubaker, Olfa |
building | Verbundindex |
bvnumber | BV047441742 |
classification_rvk | ZQ 9950 XC 4003 |
classification_tum | DAT 815 MED 370 |
collection | ZDB-30-PQE |
contents | Intro -- Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics -- Copyright -- Contents -- Contributors -- Preface -- Part I: Applications in physiology -- Chapter 1: Modeling and control in physiology -- 1. Introduction -- 2. Mathematical modeling in physiology -- 2.1. Modeling methodology -- 2.2. Modeling approaches -- 2.2.1. Compartmental modeling approach -- 2.2.2. Equivalent modeling approach -- 2.2.3. Data-driven modeling approach -- 2.3. Classification of mathematical models -- 2.4. Structural identifiability -- 2.5. Practical identifiability -- 2.6. Application examples -- 2.6.1. The endocrine system models -- 2.6.2. The tumor-immune system model -- 2.6.3. The cardiovascular system -- 2.7. Chaos in physiology -- 3. Control in physiology -- 3.1. The homeostasis principal -- 3.2. Homeostasis examples -- 3.3. Control strategies in homeostasis -- 3.4. Control therapy applications -- 3.4.1. Optimal control -- 3.4.2. Adaptive control -- 3.4.3. Fuzzy logic control -- 4. Future trends and challenges -- 5. Conclusion -- References -- Chapter 2: Mathematical modeling of cholesterol homeostasis -- 1. Introduction -- 2. Circulation of cholesterol in the human body -- 3. Two-compartment model of cholesterol homeostasis -- 4. Estimating the values of the model parameters -- 5. Analysis of the solutions -- 6. Summary and conclusion -- References -- Chapter 3: Adaptive control of artificial pancreas systems for treatment of type 1 diabetes -- 1. Introduction -- 2. Methods -- 2.1. Adaptive-personalized PIC estimator -- 2.2. Recursive subspace-based system identification -- 3. PIC cognizant AL-MPC algorithm -- 3.1. Adaptive glycemic and plasma insulin risk indexes -- 3.2. Plasma insulin concentration bounds -- 3.3. Feature extraction for manipulating constraints -- 3.4. Adaptive-learning MPC formulation -- 4. Results 5. Conclusions -- Acknowledgments -- References -- Chapter 4: Modeling and optimal control of cancer-immune system -- 1. Introduction -- 2. Mathematical models -- 2.1. Boundedness and nonnegativity of the model solutions -- 3. Model with chemotherapy and control -- 4. Numerical simulations -- 4.1. Numerical algorithm -- 5. Conclusion -- Appendix -- A.1. DDEs with optimal control -- A.2. Matlab program for optimal control with DDEs -- References -- Chapter 5: Genetic fuzzy logic based system for arrhythmia classification -- 1. Introduction -- 2. Methodology -- 2.1. Preprocessing -- 2.1.1. ECG signal filtering -- 2.1.2. ECG feature extraction -- 2.2. Fuzzy arrhythmia classification -- 2.2.1. FLC configuration -- 2.2.2. FLC optimization -- 3. Experimental results -- 3.1. Comparison study between the performances before and after the genetic optimization -- 3.2. Comparison analysis with related works -- 4. Conclusion -- References -- Chapter 6: Modeling simple and complex handwriting based on EMG signals -- 1. Introduction -- 2. History of handwriting modeling -- 3. Kalman filter-based model -- 4. Zhang-Kamavuako model (ZK) -- 5. Modeling of cursive writing from two EMG signals -- 5.1. Experimental approach and system presentation -- 5.2. Murata-Kosaku-Sano model (MKS) -- 5.3. Interval observer for robust handwriting characterization -- 6. Discussion -- 7. Conclusion -- References -- Part II: Applications in medical robotics -- Chapter 7: Medical robotics -- 1. Introduction -- 2. Literature review -- 3. Classification of medical robotics -- 4. Advantages and fundamental requirements -- 4.1. Advantages -- 4.2. Fundamental requirements -- 5. Robot-assisted surgery -- 5.1. History -- 5.2. Applications -- 5.3. Commercially available/FDA-approved robotic devices and platforms -- 6. Rehabilitation robotics and assistive technologies -- 6.1. Motivations 6.2. Literature review -- 6.3. A brief history -- 6.4. Classification and related devices -- 7. Robots in medical training as body-part simulators -- 8. Conclusion -- References -- Chapter 8: Wearable mechatronic devices for upper-limb amputees -- 1. Introduction -- 2. Human sensory feedback and physiology of the human skin -- 2.1. Tactile feedback -- 2.2. Kinesthetic feedback -- 3. Wearable device: Preliminary concepts -- 3.1. Definitions -- Wearable device -- Empowering robotic exoskeletons (extenders) -- Orthotic robots -- Prosthetic robots -- 3.2. Features -- 4. Upper-limb prosthetic technologies -- 4.1. Overview -- 4.2. Body-powered prosthesis -- 4.3. Externally powered prosthesis -- 4.4. Myoelectric prostheses -- 4.4.1. EMG control strategies -- 4.4.2. Targeted muscle reinnervation -- 4.5. Sensory feedback prosthesis -- 4.5.1. Sensory substitution feedback -- Vibrotactile -- Electrotactile -- Others -- 4.5.2. Modality-matched feedback -- Mechanotactile -- Direct-neural -- 4.6. Summary of wearable devices -- 5. Challenges -- 6. Conclusion -- References -- Chapter 9: Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality* -- 1. Introduction -- 2. Existing upper limb exoskeletons -- 3. Design requirements and challenges -- Safety -- Comfort of wearing -- Alignment of exoskeleton joints with human joints -- Actuation -- Power transmission mechanism -- Singularity -- Backdrivability -- Sensors -- 4. Control approaches -- 5. Discussion -- 6. Conclusion -- References -- Chapter 10: A double pendulum model for human walking control on the treadmill and stride-to-stride fluctuations: Control ... -- 1. Introduction -- 2. Material and method -- 2.1. Double pendulum model -- 2.2. Controller design -- 2.3. Experimental data -- 2.4. Adding uncertainty to the model -- 3. Results -- 4. Discussion -- 5. Conclusion References -- Chapter 11: Continuum NasoXplorer manipulator with shape memory actuators for transnasal exploration -- 1. Clinical needs and intended engineering design objectives -- 2. Methods -- 2.1. Device specifications from anatomical considerations -- 2.1.1. Anatomical variations in shape -- 2.1.2. Anatomical variations in size -- 2.1.3. Anatomical variations based on age and gender -- 2.1.4. Estimation of the distance between nasal inlet to the channel -- 2.1.5. Estimation of area of narrowest path in the nasopharynx region -- 2.1.6. Device design specifications -- 2.2. Overall design -- 2.3. Design components and design rationale -- 2.3.1. Optical zooming segment and camera -- 2.3.2. Actuation and control of the bending segment -- 2.3.3. Stiffness modulation -- 3. Design verification -- 3.1. Bending capability: Determine the bending angle -- 3.2. Temperature monitoring during both actuation and retraction -- 3.3. Dynamic force test with changes in temperature -- 3.4. Insertion test -- 4. Design review -- 4.1. Failure mode analysis -- 4.2. Remarks on the prior comparative art -- 4.3. Satisfaction benchmarking in clinical needs -- 4.4. Target metrics -- 4.5. Needs-metrics mapping matrix -- 4.6. Metrics benchmarking -- 5. Conclusion and future work -- Appendix: Supplementary material -- References -- Chapter 12: Tunable stiffness using negative Poisson's ratio toward load-bearing continuum tubular mechanisms in medical ... -- 1. Background -- 2. Literature review/concept evaluation -- 2.1. Electro/magneto-rheological fluids -- 2.2. Phase change materials -- 2.3. Jamming methods -- 2.4. Negative pressure jamming -- 3. Concept combining jamming and continuum metamaterials with negative Poisson's ratio materials (auxetics) -- 4. Concentric continuum metastructures -- 5. Fabrication methodology -- 5.1. Rolling two-dimensional sheets 5.2. 3D printed auxetics -- 5.2.1. Material filaments -- 5.3. Auxetic material designs -- 5.3.1. Hexagonal re-entrant honeycomb structure -- 5.3.2. Chiral structure -- 5.3.3. Star honeycomb structure -- 5.3.4. Missing rib structure -- 5.3.5. Double arrowhead structure -- 6. Continuum metastructural test -- 6.1. Mechanical test specifications -- 6.2. Continuum metastructural tests -- 6.2.1. Re-entrant honeycomb structure tests -- 6.2.2. Missing rib structure tests -- 6.2.3. Double arrow honeycomb structure tests -- 6.2.4. Chiral structure tests -- 6.2.5. Star structure tests -- 6.3. Results discussions -- 7. Kirigami and origami methods -- 7.1. Kirigami methods -- 7.1.1. Cardboard paper -- 7.1.2. Silicone rubber -- 7.1.3. High-density foam -- 7.2. Origami methods -- 7.2.1. Collapsible origami structure -- 7.2.2. Miura origami structure -- 7.2.3. Waterbomb tube -- 8. Conclusion -- References -- Appendices for Chapter 2 -- Index |
ctrlnum | (ZDB-30-PQE)EBC6242916 (ZDB-30-PAD)EBC6242916 (ZDB-89-EBL)EBL6242916 (OCoLC)1163951656 (DE-599)BVBBV047441742 |
dewey-full | 629.83119999999997 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.83119999999997 |
dewey-search | 629.83119999999997 |
dewey-sort | 3629.83119999999997 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Medizintechnik Medizin Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Informatik Medizintechnik Medizin Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10654nmm a2200565zc 4500</leader><controlfield tag="001">BV047441742</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128226216</subfield><subfield code="9">978-0-12-822621-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6242916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6242916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6242916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1163951656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441742</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.83119999999997</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 9950</subfield><subfield code="0">(DE-625)158196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XC 4003</subfield><subfield code="0">(DE-625)152514:12909</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 815</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MED 370</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Control theory in biomedical engineering</subfield><subfield code="b">applications in physiology and medical robotics</subfield><subfield code="c">edited by Olfa Boubaker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlingtdon, Oxford, United Kingdom</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 378 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics -- Copyright -- Contents -- Contributors -- Preface -- Part I: Applications in physiology -- Chapter 1: Modeling and control in physiology -- 1. Introduction -- 2. Mathematical modeling in physiology -- 2.1. Modeling methodology -- 2.2. Modeling approaches -- 2.2.1. Compartmental modeling approach -- 2.2.2. Equivalent modeling approach -- 2.2.3. Data-driven modeling approach -- 2.3. Classification of mathematical models -- 2.4. Structural identifiability -- 2.5. Practical identifiability -- 2.6. Application examples -- 2.6.1. The endocrine system models -- 2.6.2. The tumor-immune system model -- 2.6.3. The cardiovascular system -- 2.7. Chaos in physiology -- 3. Control in physiology -- 3.1. The homeostasis principal -- 3.2. Homeostasis examples -- 3.3. Control strategies in homeostasis -- 3.4. Control therapy applications -- 3.4.1. Optimal control -- 3.4.2. Adaptive control -- 3.4.3. Fuzzy logic control -- 4. Future trends and challenges -- 5. Conclusion -- References -- Chapter 2: Mathematical modeling of cholesterol homeostasis -- 1. Introduction -- 2. Circulation of cholesterol in the human body -- 3. Two-compartment model of cholesterol homeostasis -- 4. Estimating the values of the model parameters -- 5. Analysis of the solutions -- 6. Summary and conclusion -- References -- Chapter 3: Adaptive control of artificial pancreas systems for treatment of type 1 diabetes -- 1. Introduction -- 2. Methods -- 2.1. Adaptive-personalized PIC estimator -- 2.2. Recursive subspace-based system identification -- 3. PIC cognizant AL-MPC algorithm -- 3.1. Adaptive glycemic and plasma insulin risk indexes -- 3.2. Plasma insulin concentration bounds -- 3.3. Feature extraction for manipulating constraints -- 3.4. Adaptive-learning MPC formulation -- 4. Results</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Conclusions -- Acknowledgments -- References -- Chapter 4: Modeling and optimal control of cancer-immune system -- 1. Introduction -- 2. Mathematical models -- 2.1. Boundedness and nonnegativity of the model solutions -- 3. Model with chemotherapy and control -- 4. Numerical simulations -- 4.1. Numerical algorithm -- 5. Conclusion -- Appendix -- A.1. DDEs with optimal control -- A.2. Matlab program for optimal control with DDEs -- References -- Chapter 5: Genetic fuzzy logic based system for arrhythmia classification -- 1. Introduction -- 2. Methodology -- 2.1. Preprocessing -- 2.1.1. ECG signal filtering -- 2.1.2. ECG feature extraction -- 2.2. Fuzzy arrhythmia classification -- 2.2.1. FLC configuration -- 2.2.2. FLC optimization -- 3. Experimental results -- 3.1. Comparison study between the performances before and after the genetic optimization -- 3.2. Comparison analysis with related works -- 4. Conclusion -- References -- Chapter 6: Modeling simple and complex handwriting based on EMG signals -- 1. Introduction -- 2. History of handwriting modeling -- 3. Kalman filter-based model -- 4. Zhang-Kamavuako model (ZK) -- 5. Modeling of cursive writing from two EMG signals -- 5.1. Experimental approach and system presentation -- 5.2. Murata-Kosaku-Sano model (MKS) -- 5.3. Interval observer for robust handwriting characterization -- 6. Discussion -- 7. Conclusion -- References -- Part II: Applications in medical robotics -- Chapter 7: Medical robotics -- 1. Introduction -- 2. Literature review -- 3. Classification of medical robotics -- 4. Advantages and fundamental requirements -- 4.1. Advantages -- 4.2. Fundamental requirements -- 5. Robot-assisted surgery -- 5.1. History -- 5.2. Applications -- 5.3. Commercially available/FDA-approved robotic devices and platforms -- 6. Rehabilitation robotics and assistive technologies -- 6.1. Motivations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2. Literature review -- 6.3. A brief history -- 6.4. Classification and related devices -- 7. Robots in medical training as body-part simulators -- 8. Conclusion -- References -- Chapter 8: Wearable mechatronic devices for upper-limb amputees -- 1. Introduction -- 2. Human sensory feedback and physiology of the human skin -- 2.1. Tactile feedback -- 2.2. Kinesthetic feedback -- 3. Wearable device: Preliminary concepts -- 3.1. Definitions -- Wearable device -- Empowering robotic exoskeletons (extenders) -- Orthotic robots -- Prosthetic robots -- 3.2. Features -- 4. Upper-limb prosthetic technologies -- 4.1. Overview -- 4.2. Body-powered prosthesis -- 4.3. Externally powered prosthesis -- 4.4. Myoelectric prostheses -- 4.4.1. EMG control strategies -- 4.4.2. Targeted muscle reinnervation -- 4.5. Sensory feedback prosthesis -- 4.5.1. Sensory substitution feedback -- Vibrotactile -- Electrotactile -- Others -- 4.5.2. Modality-matched feedback -- Mechanotactile -- Direct-neural -- 4.6. Summary of wearable devices -- 5. Challenges -- 6. Conclusion -- References -- Chapter 9: Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality* -- 1. Introduction -- 2. Existing upper limb exoskeletons -- 3. Design requirements and challenges -- Safety -- Comfort of wearing -- Alignment of exoskeleton joints with human joints -- Actuation -- Power transmission mechanism -- Singularity -- Backdrivability -- Sensors -- 4. Control approaches -- 5. Discussion -- 6. Conclusion -- References -- Chapter 10: A double pendulum model for human walking control on the treadmill and stride-to-stride fluctuations: Control ... -- 1. Introduction -- 2. Material and method -- 2.1. Double pendulum model -- 2.2. Controller design -- 2.3. Experimental data -- 2.4. Adding uncertainty to the model -- 3. Results -- 4. Discussion -- 5. Conclusion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 11: Continuum NasoXplorer manipulator with shape memory actuators for transnasal exploration -- 1. Clinical needs and intended engineering design objectives -- 2. Methods -- 2.1. Device specifications from anatomical considerations -- 2.1.1. Anatomical variations in shape -- 2.1.2. Anatomical variations in size -- 2.1.3. Anatomical variations based on age and gender -- 2.1.4. Estimation of the distance between nasal inlet to the channel -- 2.1.5. Estimation of area of narrowest path in the nasopharynx region -- 2.1.6. Device design specifications -- 2.2. Overall design -- 2.3. Design components and design rationale -- 2.3.1. Optical zooming segment and camera -- 2.3.2. Actuation and control of the bending segment -- 2.3.3. Stiffness modulation -- 3. Design verification -- 3.1. Bending capability: Determine the bending angle -- 3.2. Temperature monitoring during both actuation and retraction -- 3.3. Dynamic force test with changes in temperature -- 3.4. Insertion test -- 4. Design review -- 4.1. Failure mode analysis -- 4.2. Remarks on the prior comparative art -- 4.3. Satisfaction benchmarking in clinical needs -- 4.4. Target metrics -- 4.5. Needs-metrics mapping matrix -- 4.6. Metrics benchmarking -- 5. Conclusion and future work -- Appendix: Supplementary material -- References -- Chapter 12: Tunable stiffness using negative Poisson's ratio toward load-bearing continuum tubular mechanisms in medical ... -- 1. Background -- 2. Literature review/concept evaluation -- 2.1. Electro/magneto-rheological fluids -- 2.2. Phase change materials -- 2.3. Jamming methods -- 2.4. Negative pressure jamming -- 3. Concept combining jamming and continuum metamaterials with negative Poisson's ratio materials (auxetics) -- 4. Concentric continuum metastructures -- 5. Fabrication methodology -- 5.1. Rolling two-dimensional sheets</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2. 3D printed auxetics -- 5.2.1. Material filaments -- 5.3. Auxetic material designs -- 5.3.1. Hexagonal re-entrant honeycomb structure -- 5.3.2. Chiral structure -- 5.3.3. Star honeycomb structure -- 5.3.4. Missing rib structure -- 5.3.5. Double arrowhead structure -- 6. Continuum metastructural test -- 6.1. Mechanical test specifications -- 6.2. Continuum metastructural tests -- 6.2.1. Re-entrant honeycomb structure tests -- 6.2.2. Missing rib structure tests -- 6.2.3. Double arrow honeycomb structure tests -- 6.2.4. Chiral structure tests -- 6.2.5. Star structure tests -- 6.3. Results discussions -- 7. Kirigami and origami methods -- 7.1. Kirigami methods -- 7.1.1. Cardboard paper -- 7.1.2. Silicone rubber -- 7.1.3. High-density foam -- 7.2. Origami methods -- 7.2.1. Collapsible origami structure -- 7.2.2. Miura origami structure -- 7.2.3. Waterbomb tube -- 8. Conclusion -- References -- Appendices for Chapter 2 -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomedizinische Technik</subfield><subfield code="0">(DE-588)4006882-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelungstheorie</subfield><subfield code="0">(DE-588)4122327-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biomedizinische Technik</subfield><subfield code="0">(DE-588)4006882-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Regelungstheorie</subfield><subfield code="0">(DE-588)4122327-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boubaker, Olfa</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Boubaker, Olfa</subfield><subfield code="t">Control Theory in Biomedical Engineering</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2020</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-821350-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843894</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6242916</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047441742 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-07-10T09:12:15Z |
institution | BVB |
isbn | 9780128226216 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032843894 |
oclc_num | 1163951656 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xvii, 378 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spelling | Control theory in biomedical engineering applications in physiology and medical robotics edited by Olfa Boubaker London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlingtdon, Oxford, United Kingdom Academic Press, an imprint of Elsevier [2020] © 2020 1 Online-Ressource (xvii, 378 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Intro -- Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics -- Copyright -- Contents -- Contributors -- Preface -- Part I: Applications in physiology -- Chapter 1: Modeling and control in physiology -- 1. Introduction -- 2. Mathematical modeling in physiology -- 2.1. Modeling methodology -- 2.2. Modeling approaches -- 2.2.1. Compartmental modeling approach -- 2.2.2. Equivalent modeling approach -- 2.2.3. Data-driven modeling approach -- 2.3. Classification of mathematical models -- 2.4. Structural identifiability -- 2.5. Practical identifiability -- 2.6. Application examples -- 2.6.1. The endocrine system models -- 2.6.2. The tumor-immune system model -- 2.6.3. The cardiovascular system -- 2.7. Chaos in physiology -- 3. Control in physiology -- 3.1. The homeostasis principal -- 3.2. Homeostasis examples -- 3.3. Control strategies in homeostasis -- 3.4. Control therapy applications -- 3.4.1. Optimal control -- 3.4.2. Adaptive control -- 3.4.3. Fuzzy logic control -- 4. Future trends and challenges -- 5. Conclusion -- References -- Chapter 2: Mathematical modeling of cholesterol homeostasis -- 1. Introduction -- 2. Circulation of cholesterol in the human body -- 3. Two-compartment model of cholesterol homeostasis -- 4. Estimating the values of the model parameters -- 5. Analysis of the solutions -- 6. Summary and conclusion -- References -- Chapter 3: Adaptive control of artificial pancreas systems for treatment of type 1 diabetes -- 1. Introduction -- 2. Methods -- 2.1. Adaptive-personalized PIC estimator -- 2.2. Recursive subspace-based system identification -- 3. PIC cognizant AL-MPC algorithm -- 3.1. Adaptive glycemic and plasma insulin risk indexes -- 3.2. Plasma insulin concentration bounds -- 3.3. Feature extraction for manipulating constraints -- 3.4. Adaptive-learning MPC formulation -- 4. Results 5. Conclusions -- Acknowledgments -- References -- Chapter 4: Modeling and optimal control of cancer-immune system -- 1. Introduction -- 2. Mathematical models -- 2.1. Boundedness and nonnegativity of the model solutions -- 3. Model with chemotherapy and control -- 4. Numerical simulations -- 4.1. Numerical algorithm -- 5. Conclusion -- Appendix -- A.1. DDEs with optimal control -- A.2. Matlab program for optimal control with DDEs -- References -- Chapter 5: Genetic fuzzy logic based system for arrhythmia classification -- 1. Introduction -- 2. Methodology -- 2.1. Preprocessing -- 2.1.1. ECG signal filtering -- 2.1.2. ECG feature extraction -- 2.2. Fuzzy arrhythmia classification -- 2.2.1. FLC configuration -- 2.2.2. FLC optimization -- 3. Experimental results -- 3.1. Comparison study between the performances before and after the genetic optimization -- 3.2. Comparison analysis with related works -- 4. Conclusion -- References -- Chapter 6: Modeling simple and complex handwriting based on EMG signals -- 1. Introduction -- 2. History of handwriting modeling -- 3. Kalman filter-based model -- 4. Zhang-Kamavuako model (ZK) -- 5. Modeling of cursive writing from two EMG signals -- 5.1. Experimental approach and system presentation -- 5.2. Murata-Kosaku-Sano model (MKS) -- 5.3. Interval observer for robust handwriting characterization -- 6. Discussion -- 7. Conclusion -- References -- Part II: Applications in medical robotics -- Chapter 7: Medical robotics -- 1. Introduction -- 2. Literature review -- 3. Classification of medical robotics -- 4. Advantages and fundamental requirements -- 4.1. Advantages -- 4.2. Fundamental requirements -- 5. Robot-assisted surgery -- 5.1. History -- 5.2. Applications -- 5.3. Commercially available/FDA-approved robotic devices and platforms -- 6. Rehabilitation robotics and assistive technologies -- 6.1. Motivations 6.2. Literature review -- 6.3. A brief history -- 6.4. Classification and related devices -- 7. Robots in medical training as body-part simulators -- 8. Conclusion -- References -- Chapter 8: Wearable mechatronic devices for upper-limb amputees -- 1. Introduction -- 2. Human sensory feedback and physiology of the human skin -- 2.1. Tactile feedback -- 2.2. Kinesthetic feedback -- 3. Wearable device: Preliminary concepts -- 3.1. Definitions -- Wearable device -- Empowering robotic exoskeletons (extenders) -- Orthotic robots -- Prosthetic robots -- 3.2. Features -- 4. Upper-limb prosthetic technologies -- 4.1. Overview -- 4.2. Body-powered prosthesis -- 4.3. Externally powered prosthesis -- 4.4. Myoelectric prostheses -- 4.4.1. EMG control strategies -- 4.4.2. Targeted muscle reinnervation -- 4.5. Sensory feedback prosthesis -- 4.5.1. Sensory substitution feedback -- Vibrotactile -- Electrotactile -- Others -- 4.5.2. Modality-matched feedback -- Mechanotactile -- Direct-neural -- 4.6. Summary of wearable devices -- 5. Challenges -- 6. Conclusion -- References -- Chapter 9: Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality* -- 1. Introduction -- 2. Existing upper limb exoskeletons -- 3. Design requirements and challenges -- Safety -- Comfort of wearing -- Alignment of exoskeleton joints with human joints -- Actuation -- Power transmission mechanism -- Singularity -- Backdrivability -- Sensors -- 4. Control approaches -- 5. Discussion -- 6. Conclusion -- References -- Chapter 10: A double pendulum model for human walking control on the treadmill and stride-to-stride fluctuations: Control ... -- 1. Introduction -- 2. Material and method -- 2.1. Double pendulum model -- 2.2. Controller design -- 2.3. Experimental data -- 2.4. Adding uncertainty to the model -- 3. Results -- 4. Discussion -- 5. Conclusion References -- Chapter 11: Continuum NasoXplorer manipulator with shape memory actuators for transnasal exploration -- 1. Clinical needs and intended engineering design objectives -- 2. Methods -- 2.1. Device specifications from anatomical considerations -- 2.1.1. Anatomical variations in shape -- 2.1.2. Anatomical variations in size -- 2.1.3. Anatomical variations based on age and gender -- 2.1.4. Estimation of the distance between nasal inlet to the channel -- 2.1.5. Estimation of area of narrowest path in the nasopharynx region -- 2.1.6. Device design specifications -- 2.2. Overall design -- 2.3. Design components and design rationale -- 2.3.1. Optical zooming segment and camera -- 2.3.2. Actuation and control of the bending segment -- 2.3.3. Stiffness modulation -- 3. Design verification -- 3.1. Bending capability: Determine the bending angle -- 3.2. Temperature monitoring during both actuation and retraction -- 3.3. Dynamic force test with changes in temperature -- 3.4. Insertion test -- 4. Design review -- 4.1. Failure mode analysis -- 4.2. Remarks on the prior comparative art -- 4.3. Satisfaction benchmarking in clinical needs -- 4.4. Target metrics -- 4.5. Needs-metrics mapping matrix -- 4.6. Metrics benchmarking -- 5. Conclusion and future work -- Appendix: Supplementary material -- References -- Chapter 12: Tunable stiffness using negative Poisson's ratio toward load-bearing continuum tubular mechanisms in medical ... -- 1. Background -- 2. Literature review/concept evaluation -- 2.1. Electro/magneto-rheological fluids -- 2.2. Phase change materials -- 2.3. Jamming methods -- 2.4. Negative pressure jamming -- 3. Concept combining jamming and continuum metamaterials with negative Poisson's ratio materials (auxetics) -- 4. Concentric continuum metastructures -- 5. Fabrication methodology -- 5.1. Rolling two-dimensional sheets 5.2. 3D printed auxetics -- 5.2.1. Material filaments -- 5.3. Auxetic material designs -- 5.3.1. Hexagonal re-entrant honeycomb structure -- 5.3.2. Chiral structure -- 5.3.3. Star honeycomb structure -- 5.3.4. Missing rib structure -- 5.3.5. Double arrowhead structure -- 6. Continuum metastructural test -- 6.1. Mechanical test specifications -- 6.2. Continuum metastructural tests -- 6.2.1. Re-entrant honeycomb structure tests -- 6.2.2. Missing rib structure tests -- 6.2.3. Double arrow honeycomb structure tests -- 6.2.4. Chiral structure tests -- 6.2.5. Star structure tests -- 6.3. Results discussions -- 7. Kirigami and origami methods -- 7.1. Kirigami methods -- 7.1.1. Cardboard paper -- 7.1.2. Silicone rubber -- 7.1.3. High-density foam -- 7.2. Origami methods -- 7.2.1. Collapsible origami structure -- 7.2.2. Miura origami structure -- 7.2.3. Waterbomb tube -- 8. Conclusion -- References -- Appendices for Chapter 2 -- Index Control theory Biomedizinische Technik (DE-588)4006882-1 gnd rswk-swf Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Regelungstheorie (DE-588)4122327-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Biomedizinische Technik (DE-588)4006882-1 s Kontrolltheorie (DE-588)4032317-1 s Regelungstheorie (DE-588)4122327-5 s DE-604 Boubaker, Olfa edt Erscheint auch als Boubaker, Olfa Control Theory in Biomedical Engineering San Diego : Elsevier Science & Technology,c2020 Druck-Ausgabe 978-0-12-821350-6 |
spellingShingle | Control theory in biomedical engineering applications in physiology and medical robotics Intro -- Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics -- Copyright -- Contents -- Contributors -- Preface -- Part I: Applications in physiology -- Chapter 1: Modeling and control in physiology -- 1. Introduction -- 2. Mathematical modeling in physiology -- 2.1. Modeling methodology -- 2.2. Modeling approaches -- 2.2.1. Compartmental modeling approach -- 2.2.2. Equivalent modeling approach -- 2.2.3. Data-driven modeling approach -- 2.3. Classification of mathematical models -- 2.4. Structural identifiability -- 2.5. Practical identifiability -- 2.6. Application examples -- 2.6.1. The endocrine system models -- 2.6.2. The tumor-immune system model -- 2.6.3. The cardiovascular system -- 2.7. Chaos in physiology -- 3. Control in physiology -- 3.1. The homeostasis principal -- 3.2. Homeostasis examples -- 3.3. Control strategies in homeostasis -- 3.4. Control therapy applications -- 3.4.1. Optimal control -- 3.4.2. Adaptive control -- 3.4.3. Fuzzy logic control -- 4. Future trends and challenges -- 5. Conclusion -- References -- Chapter 2: Mathematical modeling of cholesterol homeostasis -- 1. Introduction -- 2. Circulation of cholesterol in the human body -- 3. Two-compartment model of cholesterol homeostasis -- 4. Estimating the values of the model parameters -- 5. Analysis of the solutions -- 6. Summary and conclusion -- References -- Chapter 3: Adaptive control of artificial pancreas systems for treatment of type 1 diabetes -- 1. Introduction -- 2. Methods -- 2.1. Adaptive-personalized PIC estimator -- 2.2. Recursive subspace-based system identification -- 3. PIC cognizant AL-MPC algorithm -- 3.1. Adaptive glycemic and plasma insulin risk indexes -- 3.2. Plasma insulin concentration bounds -- 3.3. Feature extraction for manipulating constraints -- 3.4. Adaptive-learning MPC formulation -- 4. Results 5. Conclusions -- Acknowledgments -- References -- Chapter 4: Modeling and optimal control of cancer-immune system -- 1. Introduction -- 2. Mathematical models -- 2.1. Boundedness and nonnegativity of the model solutions -- 3. Model with chemotherapy and control -- 4. Numerical simulations -- 4.1. Numerical algorithm -- 5. Conclusion -- Appendix -- A.1. DDEs with optimal control -- A.2. Matlab program for optimal control with DDEs -- References -- Chapter 5: Genetic fuzzy logic based system for arrhythmia classification -- 1. Introduction -- 2. Methodology -- 2.1. Preprocessing -- 2.1.1. ECG signal filtering -- 2.1.2. ECG feature extraction -- 2.2. Fuzzy arrhythmia classification -- 2.2.1. FLC configuration -- 2.2.2. FLC optimization -- 3. Experimental results -- 3.1. Comparison study between the performances before and after the genetic optimization -- 3.2. Comparison analysis with related works -- 4. Conclusion -- References -- Chapter 6: Modeling simple and complex handwriting based on EMG signals -- 1. Introduction -- 2. History of handwriting modeling -- 3. Kalman filter-based model -- 4. Zhang-Kamavuako model (ZK) -- 5. Modeling of cursive writing from two EMG signals -- 5.1. Experimental approach and system presentation -- 5.2. Murata-Kosaku-Sano model (MKS) -- 5.3. Interval observer for robust handwriting characterization -- 6. Discussion -- 7. Conclusion -- References -- Part II: Applications in medical robotics -- Chapter 7: Medical robotics -- 1. Introduction -- 2. Literature review -- 3. Classification of medical robotics -- 4. Advantages and fundamental requirements -- 4.1. Advantages -- 4.2. Fundamental requirements -- 5. Robot-assisted surgery -- 5.1. History -- 5.2. Applications -- 5.3. Commercially available/FDA-approved robotic devices and platforms -- 6. Rehabilitation robotics and assistive technologies -- 6.1. Motivations 6.2. Literature review -- 6.3. A brief history -- 6.4. Classification and related devices -- 7. Robots in medical training as body-part simulators -- 8. Conclusion -- References -- Chapter 8: Wearable mechatronic devices for upper-limb amputees -- 1. Introduction -- 2. Human sensory feedback and physiology of the human skin -- 2.1. Tactile feedback -- 2.2. Kinesthetic feedback -- 3. Wearable device: Preliminary concepts -- 3.1. Definitions -- Wearable device -- Empowering robotic exoskeletons (extenders) -- Orthotic robots -- Prosthetic robots -- 3.2. Features -- 4. Upper-limb prosthetic technologies -- 4.1. Overview -- 4.2. Body-powered prosthesis -- 4.3. Externally powered prosthesis -- 4.4. Myoelectric prostheses -- 4.4.1. EMG control strategies -- 4.4.2. Targeted muscle reinnervation -- 4.5. Sensory feedback prosthesis -- 4.5.1. Sensory substitution feedback -- Vibrotactile -- Electrotactile -- Others -- 4.5.2. Modality-matched feedback -- Mechanotactile -- Direct-neural -- 4.6. Summary of wearable devices -- 5. Challenges -- 6. Conclusion -- References -- Chapter 9: Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality* -- 1. Introduction -- 2. Existing upper limb exoskeletons -- 3. Design requirements and challenges -- Safety -- Comfort of wearing -- Alignment of exoskeleton joints with human joints -- Actuation -- Power transmission mechanism -- Singularity -- Backdrivability -- Sensors -- 4. Control approaches -- 5. Discussion -- 6. Conclusion -- References -- Chapter 10: A double pendulum model for human walking control on the treadmill and stride-to-stride fluctuations: Control ... -- 1. Introduction -- 2. Material and method -- 2.1. Double pendulum model -- 2.2. Controller design -- 2.3. Experimental data -- 2.4. Adding uncertainty to the model -- 3. Results -- 4. Discussion -- 5. Conclusion References -- Chapter 11: Continuum NasoXplorer manipulator with shape memory actuators for transnasal exploration -- 1. Clinical needs and intended engineering design objectives -- 2. Methods -- 2.1. Device specifications from anatomical considerations -- 2.1.1. Anatomical variations in shape -- 2.1.2. Anatomical variations in size -- 2.1.3. Anatomical variations based on age and gender -- 2.1.4. Estimation of the distance between nasal inlet to the channel -- 2.1.5. Estimation of area of narrowest path in the nasopharynx region -- 2.1.6. Device design specifications -- 2.2. Overall design -- 2.3. Design components and design rationale -- 2.3.1. Optical zooming segment and camera -- 2.3.2. Actuation and control of the bending segment -- 2.3.3. Stiffness modulation -- 3. Design verification -- 3.1. Bending capability: Determine the bending angle -- 3.2. Temperature monitoring during both actuation and retraction -- 3.3. Dynamic force test with changes in temperature -- 3.4. Insertion test -- 4. Design review -- 4.1. Failure mode analysis -- 4.2. Remarks on the prior comparative art -- 4.3. Satisfaction benchmarking in clinical needs -- 4.4. Target metrics -- 4.5. Needs-metrics mapping matrix -- 4.6. Metrics benchmarking -- 5. Conclusion and future work -- Appendix: Supplementary material -- References -- Chapter 12: Tunable stiffness using negative Poisson's ratio toward load-bearing continuum tubular mechanisms in medical ... -- 1. Background -- 2. Literature review/concept evaluation -- 2.1. Electro/magneto-rheological fluids -- 2.2. Phase change materials -- 2.3. Jamming methods -- 2.4. Negative pressure jamming -- 3. Concept combining jamming and continuum metamaterials with negative Poisson's ratio materials (auxetics) -- 4. Concentric continuum metastructures -- 5. Fabrication methodology -- 5.1. Rolling two-dimensional sheets 5.2. 3D printed auxetics -- 5.2.1. Material filaments -- 5.3. Auxetic material designs -- 5.3.1. Hexagonal re-entrant honeycomb structure -- 5.3.2. Chiral structure -- 5.3.3. Star honeycomb structure -- 5.3.4. Missing rib structure -- 5.3.5. Double arrowhead structure -- 6. Continuum metastructural test -- 6.1. Mechanical test specifications -- 6.2. Continuum metastructural tests -- 6.2.1. Re-entrant honeycomb structure tests -- 6.2.2. Missing rib structure tests -- 6.2.3. Double arrow honeycomb structure tests -- 6.2.4. Chiral structure tests -- 6.2.5. Star structure tests -- 6.3. Results discussions -- 7. Kirigami and origami methods -- 7.1. Kirigami methods -- 7.1.1. Cardboard paper -- 7.1.2. Silicone rubber -- 7.1.3. High-density foam -- 7.2. Origami methods -- 7.2.1. Collapsible origami structure -- 7.2.2. Miura origami structure -- 7.2.3. Waterbomb tube -- 8. Conclusion -- References -- Appendices for Chapter 2 -- Index Control theory Biomedizinische Technik (DE-588)4006882-1 gnd Kontrolltheorie (DE-588)4032317-1 gnd Regelungstheorie (DE-588)4122327-5 gnd |
subject_GND | (DE-588)4006882-1 (DE-588)4032317-1 (DE-588)4122327-5 (DE-588)4143413-4 |
title | Control theory in biomedical engineering applications in physiology and medical robotics |
title_auth | Control theory in biomedical engineering applications in physiology and medical robotics |
title_exact_search | Control theory in biomedical engineering applications in physiology and medical robotics |
title_exact_search_txtP | Control theory in biomedical engineering applications in physiology and medical robotics |
title_full | Control theory in biomedical engineering applications in physiology and medical robotics edited by Olfa Boubaker |
title_fullStr | Control theory in biomedical engineering applications in physiology and medical robotics edited by Olfa Boubaker |
title_full_unstemmed | Control theory in biomedical engineering applications in physiology and medical robotics edited by Olfa Boubaker |
title_short | Control theory in biomedical engineering |
title_sort | control theory in biomedical engineering applications in physiology and medical robotics |
title_sub | applications in physiology and medical robotics |
topic | Control theory Biomedizinische Technik (DE-588)4006882-1 gnd Kontrolltheorie (DE-588)4032317-1 gnd Regelungstheorie (DE-588)4122327-5 gnd |
topic_facet | Control theory Biomedizinische Technik Kontrolltheorie Regelungstheorie Aufsatzsammlung |
work_keys_str_mv | AT boubakerolfa controltheoryinbiomedicalengineeringapplicationsinphysiologyandmedicalrobotics |