Computational nondestructive evaluation handbook: ultrasound modeling techniques
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
[2020]
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxiv, 560 Seiten) Illustrationen, Diagramme |
ISBN: | 9780429853135 9780429456909 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047441698 | ||
003 | DE-604 | ||
005 | 20220422 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780429853135 |9 978-0-429-85313-5 | ||
020 | |a 9780429456909 |9 978-0-429-45690-9 | ||
035 | |a (ZDB-30-PQE)EBC6216665 | ||
035 | |a (ZDB-30-PAD)EBC6216665 | ||
035 | |a (ZDB-89-EBL)EBL6216665 | ||
035 | |a (OCoLC)1157078034 | ||
035 | |a (DE-599)BVBBV047441698 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 620.11274028499997 | |
084 | |a ZM 3700 |0 (DE-625)157028: |2 rvk | ||
100 | 1 | |a Banerjee, Sourav |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational nondestructive evaluation handbook |b ultrasound modeling techniques |c authored by Sourav Banerjee and Cara A.C. Leckey |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (xxiv, 560 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Author -- Chapter 1: Computational Nondestructive Evaluation (CNDE) -- 1.1. Introduction -- 1.1.1. Various NDE Methods -- 1.1.2. Computational Ultrasonic NDE -- 1.2. Physics and Apparatus for Ultrasonic Technique -- 1.2.1. Ultrasonic NDE -- 1.2.2. Ultrasonic in situ NDE or SHM Method -- 1.2.3. Ultrasonic NDE/SHM of Metals vs Composites -- 1.3. Historical Background of CNDE -- 1.4. Overview of the Chapters -- 1.5. Summary -- Chapter 2: Vector Fields and Tensor Analysis -- 2.1. Understanding Vectors -- 2.2. A Brief Review of Index Notation -- 2.2.1. Dot Product of Two Vectors -- 2.2.2. Cross Product of Two Vectors -- 2.3. Understanding the Vector Field -- 2.3.1. Gradient Operator -- 2.3.2. Divergence of a Vector Field -- 2.3.3. Curl of a Vector Field -- 2.4. Concept of Tensor and Tensor Analysis in Brief -- 2.4.1. First-Order and Second-Order Tensors -- 2.4.2. Transformation Laws of Tensors -- 2.5. Covariant, Contravariant Tensors, and Jacobian Matrix -- 2.5.1. Transformation of Scalar and Vector Objects and Covariant Vectors -- 2.5.2. Transformation of Basis, Contravariant Vectors, and Jacobian -- 2.6. Examples on Index Notations -- 2.7. Summary -- 2.8. Appendix -- 2.8.1. Divergence Theorem -- 2.8.2. Stokes Theorem -- Chapter 3: Mechanics of Continua -- 3.1. Coordinate System -- 3.1.1. Lagrangian Coordinate or Material Coordinate System -- 3.1.2. Eulerian Coordinate or Spatial Coordinate System -- 3.2. Motion of a Deformable Body -- 3.2.1. Material Derivatives -- 3.2.1.1. Material Derivative of Displacement Gradient -- 3.2.1.2. Material Derivative of Jacobian -- 3.2.1.3. Material Derivative of Square of an Arc Length -- 3.2.1.4. Material Derivative of Element of an Area | |
505 | 8 | |a 3.2.1.5. Material Derivatives of Line (l) and Surface (s) Integral of a Scalar Field ϕ -- 3.2.1.6. Material Derivatives of Surface (s) Integral of a Vector Field -- 3.2.2. Path Lines and Stream Lines -- 3.3. Deformation and Strain in a Deformable Body -- 3.3.1. Cauchys and Greens Deformation Tensor -- 3.3.2. Description of Strain in a Deformable body -- 3.3.3. Strain in terms of Displacement -- 3.4. Mass, Momentum, and Energy -- 3.4.1. Mass of a Body -- 3.4.2. Momentum of a Deformable Body -- 3.4.3. Angular Momentum of a Deformable Body -- 3.4.4. Kinetic Energy Stored in a Deformable Body -- 3.5. Fundamental Axiom of Continuum Mechanics -- 3.5.1. Axiom 1: Principle of Conservation of Mass -- 3.5.2. Axiom 2: Principle of Balance of Momentum -- 3.5.3. Axiom 3: Principle of Balance of Angular Momentum -- 3.5.4. Axiom 4: Principle of Conservation of Energy -- 3.6. Internal Stress State in a Deformable Body -- 3.7. External and Internal Load on a Deformable Body -- 3.8. Fundamental Elastodynamic Equation -- 3.9. Thermodynamics of Continua -- 3.9.1. Conservation of Local Energy -- 3.9.2. Conservation of Mechanical Energy (Kinetic, Internal, and Potential Energy) -- 3.9.3. Internal Energy and Strain Energy -- 3.10. Constitutive Law of Continua -- 3.10.1. Materials with One Plane of Symmetry: Monoclinic Materials -- 3.10.2. Materials with Two Planes of Symmetry: Orthotropic Materials -- 3.10.3. Materials with Three Planes of Symmetry and One Plane of Isotropy: Transversely Isotropic Materials -- 3.10.4. Materials with Three Planes and Three Axes of Symmetry: Isotropic Materials -- 3.11. Appendix -- 3.11.1. Important Equations in Cartesian Coordinate System -- 3.11.2. Important Equations in Cylindrical Coordinate System -- 3.11.2.1. Transformation to Cylindrical Coordinate System -- 3.11.2.2. Gradient Operator in Cylindrical Coordinate System | |
505 | 8 | |a 3.11.2.3. Strain-Displacement Relation in Cylindrical Coordinate System -- 3.11.2.4. Governing Differential Equations of Motion in Cylindrical Coordinate System -- 3.11.3. Important Equations in Spherical Coordinate System -- 3.11.3.1. Gradient Operator in Spherical Coordinate System -- 3.11.3.2. Strain-Displacement Relation in Spherical Coordinate System -- 3.11.3.3. Governing Differential Equations of Motion in Spherical Coordinate System -- 3.11.4. Fundamental Concept of Classical Mechanics -- 3.12. Summary -- Chapter 4: Acoustic and Ultrasonic Waves in Elastic Media -- 4.1. Basic Terminologies in Wave Propagation -- 4.1.1. Wave Fronts, Rays, and Plane Waves -- 4.1.2. Phase Wave Velocity -- 4.1.3. Plane Harmonic Wave -- 4.1.4. Wave Groups and Group Wave Velocity -- 4.1.5. Wave Dispersion -- 4.2. Wave Propagation in Fluid Media -- 4.2.1. Pressure Potential in Fluid -- 4.2.2. Generalized Wave Potential in Fluid -- 4.3. Wave Propagation in Bulk Isotropic Solid Media -- 4.3.1. Naviers Equation of Motion -- 4.3.2. Solving Naviers Equation of Motion: Solution of Wave Propagation in Isotropic Solids -- 4.3.2.1. Helmholtz Decomposition -- 4.3.2.2. Naviers Equation of Motion to Helmholtz Equation -- 4.3.2.3. Generalized Wave Potentials in Isotropic Solids -- 4.3.2.4. Longitudinal Waves and Shear Waves in Isotropic Solids -- 4.3.2.5. In Plane and Out of Plane Shear Waves in Isotropic Solids -- 4.3.2.6. Wave Potentials for P, SV, and SH Waves and Their Relation -- 4.3.3. Wave Interactions at the Bulk Isotropic Interfaces -- 4.3.3.1. P-Wave Incident at the Interface -- 4.3.3.2. SH-Wave Incident at the Interface -- 4.4. Wave Propagation in Bulk Anisotropic Solid Media -- 4.4.1. Governing Elastodynamic Equation in Anisotropic Media -- 4.4.2. Wave Modes in all Possible Directions of Wave Propagation inD. | |
505 | 8 | |a 4.4.2.1. Comparison between Isotropic and Anisotropic Slowness Profiles -- 4.4.2.2. Slowness Profiles for Monoclinic Material -- 4.4.2.3. Slowness Profiles for Fully Orthotropic Material -- 4.4.2.4. Slowness Profiles for Transversely Isotropic -- 4.4.3. Wave Interactions at the Bulk Anisotropic Interfaces -- 4.4.3.1. Geometrical Understanding of Reflection and Refraction in Anisotropic Solid -- 4.5. Appendix -- 4.5.1. Energy Flux & -- Group Velocity -- 4.5.2. Integral Approach to Obtain Governing Elastodynamic Equation based on Classical Mechanics -- 4.5.3. Understanding the Snells Law in Isotropic and Anisotropic Media -- 4.5.3.1. Snells Law at Isotropic Material Interface -- 4.5.3.2. Snells Law at Anisotropic Material Interface -- 4.5.4. Slowness, Group Velocity and Steering Angle -- 4.6. Summary -- Chapter 5: Wave Propagation in Bounded Structures -- 5.1. Basic Understanding of Guided Waves and its Application in NDE -- 5.2. Guided Waves in Isotropic Plates using Classical Approach -- 5.2.1. Guided SH Wave Modes in Isotropic Plate -- 5.2.2. Guided Rayleigh-Lamb Wave Modes in Isotropic Plate -- 5.2.3. Generalized Guided Wave Modes in Isotropic Plate with Perturbed Geometry -- 5.2.3.1. Motivation -- 5.2.3.2. Generalized Formulation -- 5.2.3.3. Boundary Conditions -- 5.2.3.4. Discussions on Generalized Rayleigh Lamb and SH Modes -- 5.2.4. Exercise: Guided Waves in Isotropic Plate with Experimental NDE Situations -- 5.3. Guided Waves Propagation in Anisotropic Plates -- 5.3.1. Analytical Approach for Single-Layered General Anisotropic Plate -- 5.3.2. Analytical Approach for Multilayered General Anisotropic Plate -- 5.3.3. Semianalytical Approach for Single- and Multilayered Anisotropic Plates -- 5.3.3.1. Hamiltons Principle and the Governing Equation -- 5.3.3.2. Discretization of Plate Thickness -- 5.3.3.3. Element Strain Equation | |
505 | 8 | |a 5.3.3.4. Governing Wave Equation -- 5.3.3.5. Eigen Value Problem: Wave Dispersion Solution and Phase Velocity -- 5.3.3.6. Dispersion Behavior -- 5.3.3.7. Group Velocity of Propagating Wave Modes -- 5.4. Guided Wave Propagation in Cylindrical Rods and Pipes -- 5.4.1. Torsional Wave Modes in Cylindrical Wave Guides -- 5.4.2. Exercise: Longitudinal and Flexural Wave Modes in Cylindrical Structures -- 5.4.2.1. Longitudinal Wave -- 5.4.2.2. Flexural Wave -- 5.5. Summary -- Chapter 6: Overview of Basic Numerical Methods and Parallel Computing -- 6.1. Understanding Error -- 6.2. Error Propagation: Taylor Series -- 6.2.1. Taylor Series Expansion -- 6.2.2. Stability Condition -- 6.2.3. Summary from Error Propagation -- 6.3. Finite Difference Method (FDM) -- 6.3.1. FD Formula with O(Δx2) -- 6.3.2. BD Formula with O(Δx2) -- 6.3.3. CD Formula with O(Δx2) -- 6.3.4.CD Formula with O(Δx4) -- 6.4. Time Integration: Explicit FDM Solution of Differential Equations -- 6.5. Time Integration: Explicit Solution of Multidegrees-of-Freedom System -- 6.5.1. Explicit Solution Algorithm for Multidegrees-of-Freedom System [3] -- 6.5.2. Runge-Kutta (RK4) Algorithm for Multidegrees-of-Freedom System -- 6.6. Time Integration: Implicit FDM Solution of Differential Equations -- 6.6.1. Implicit Solution Algorithm (Houbolt Method) [3, 4] -- 6.6.2. Implicit Newmark β Method -- 6.6.3. Implicit Wilson θ Method -- 6.7. Velocity Verlet Integration Scheme -- 6.8. Overview of Parallel Computing for CNDE -- 6.8.1. What is Parallel Computing -- 6.8.2. Historical Background of Parallel Computing -- 6.8.3. Serial vs Parallel Computing for CNDE -- 6.8.4. Methods for Parallel Programs -- 6.8.4.1. Task-Parallelism -- 6.8.4.2. Data-Parallelism -- 6.8.4.3. Simple Example of Parallelization -- 6.8.5. Understanding the Patterns in Parallel Program Structure -- 6.8.6. Types of Parallel Hardware | |
505 | 8 | |a 6.8.6.1. Single Instruction, Single Data (SISD) | |
650 | 4 | |a Ultrasonic testing-Handbooks, manuals, etc | |
650 | 0 | 7 | |a Zerstörungsfreie Werkstoffprüfung |0 (DE-588)4067689-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zerstörungsfreie Werkstoffprüfung |0 (DE-588)4067689-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Leckey, Cara A.C. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Banerjee, Sourav |t Computational Nondestructive Evaluation Handbook |d Milton : Taylor & Francis Group,c2020 |n Druck-Ausgabe, Hardcover |z 978-1-138-31454-2 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032843850 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6216665 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182734649688064 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Banerjee, Sourav Leckey, Cara A.C |
author_facet | Banerjee, Sourav Leckey, Cara A.C |
author_role | aut aut |
author_sort | Banerjee, Sourav |
author_variant | s b sb c a l ca cal |
building | Verbundindex |
bvnumber | BV047441698 |
classification_rvk | ZM 3700 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Author -- Chapter 1: Computational Nondestructive Evaluation (CNDE) -- 1.1. Introduction -- 1.1.1. Various NDE Methods -- 1.1.2. Computational Ultrasonic NDE -- 1.2. Physics and Apparatus for Ultrasonic Technique -- 1.2.1. Ultrasonic NDE -- 1.2.2. Ultrasonic in situ NDE or SHM Method -- 1.2.3. Ultrasonic NDE/SHM of Metals vs Composites -- 1.3. Historical Background of CNDE -- 1.4. Overview of the Chapters -- 1.5. Summary -- Chapter 2: Vector Fields and Tensor Analysis -- 2.1. Understanding Vectors -- 2.2. A Brief Review of Index Notation -- 2.2.1. Dot Product of Two Vectors -- 2.2.2. Cross Product of Two Vectors -- 2.3. Understanding the Vector Field -- 2.3.1. Gradient Operator -- 2.3.2. Divergence of a Vector Field -- 2.3.3. Curl of a Vector Field -- 2.4. Concept of Tensor and Tensor Analysis in Brief -- 2.4.1. First-Order and Second-Order Tensors -- 2.4.2. Transformation Laws of Tensors -- 2.5. Covariant, Contravariant Tensors, and Jacobian Matrix -- 2.5.1. Transformation of Scalar and Vector Objects and Covariant Vectors -- 2.5.2. Transformation of Basis, Contravariant Vectors, and Jacobian -- 2.6. Examples on Index Notations -- 2.7. Summary -- 2.8. Appendix -- 2.8.1. Divergence Theorem -- 2.8.2. Stokes Theorem -- Chapter 3: Mechanics of Continua -- 3.1. Coordinate System -- 3.1.1. Lagrangian Coordinate or Material Coordinate System -- 3.1.2. Eulerian Coordinate or Spatial Coordinate System -- 3.2. Motion of a Deformable Body -- 3.2.1. Material Derivatives -- 3.2.1.1. Material Derivative of Displacement Gradient -- 3.2.1.2. Material Derivative of Jacobian -- 3.2.1.3. Material Derivative of Square of an Arc Length -- 3.2.1.4. Material Derivative of Element of an Area 3.2.1.5. Material Derivatives of Line (l) and Surface (s) Integral of a Scalar Field ϕ -- 3.2.1.6. Material Derivatives of Surface (s) Integral of a Vector Field -- 3.2.2. Path Lines and Stream Lines -- 3.3. Deformation and Strain in a Deformable Body -- 3.3.1. Cauchys and Greens Deformation Tensor -- 3.3.2. Description of Strain in a Deformable body -- 3.3.3. Strain in terms of Displacement -- 3.4. Mass, Momentum, and Energy -- 3.4.1. Mass of a Body -- 3.4.2. Momentum of a Deformable Body -- 3.4.3. Angular Momentum of a Deformable Body -- 3.4.4. Kinetic Energy Stored in a Deformable Body -- 3.5. Fundamental Axiom of Continuum Mechanics -- 3.5.1. Axiom 1: Principle of Conservation of Mass -- 3.5.2. Axiom 2: Principle of Balance of Momentum -- 3.5.3. Axiom 3: Principle of Balance of Angular Momentum -- 3.5.4. Axiom 4: Principle of Conservation of Energy -- 3.6. Internal Stress State in a Deformable Body -- 3.7. External and Internal Load on a Deformable Body -- 3.8. Fundamental Elastodynamic Equation -- 3.9. Thermodynamics of Continua -- 3.9.1. Conservation of Local Energy -- 3.9.2. Conservation of Mechanical Energy (Kinetic, Internal, and Potential Energy) -- 3.9.3. Internal Energy and Strain Energy -- 3.10. Constitutive Law of Continua -- 3.10.1. Materials with One Plane of Symmetry: Monoclinic Materials -- 3.10.2. Materials with Two Planes of Symmetry: Orthotropic Materials -- 3.10.3. Materials with Three Planes of Symmetry and One Plane of Isotropy: Transversely Isotropic Materials -- 3.10.4. Materials with Three Planes and Three Axes of Symmetry: Isotropic Materials -- 3.11. Appendix -- 3.11.1. Important Equations in Cartesian Coordinate System -- 3.11.2. Important Equations in Cylindrical Coordinate System -- 3.11.2.1. Transformation to Cylindrical Coordinate System -- 3.11.2.2. Gradient Operator in Cylindrical Coordinate System 3.11.2.3. Strain-Displacement Relation in Cylindrical Coordinate System -- 3.11.2.4. Governing Differential Equations of Motion in Cylindrical Coordinate System -- 3.11.3. Important Equations in Spherical Coordinate System -- 3.11.3.1. Gradient Operator in Spherical Coordinate System -- 3.11.3.2. Strain-Displacement Relation in Spherical Coordinate System -- 3.11.3.3. Governing Differential Equations of Motion in Spherical Coordinate System -- 3.11.4. Fundamental Concept of Classical Mechanics -- 3.12. Summary -- Chapter 4: Acoustic and Ultrasonic Waves in Elastic Media -- 4.1. Basic Terminologies in Wave Propagation -- 4.1.1. Wave Fronts, Rays, and Plane Waves -- 4.1.2. Phase Wave Velocity -- 4.1.3. Plane Harmonic Wave -- 4.1.4. Wave Groups and Group Wave Velocity -- 4.1.5. Wave Dispersion -- 4.2. Wave Propagation in Fluid Media -- 4.2.1. Pressure Potential in Fluid -- 4.2.2. Generalized Wave Potential in Fluid -- 4.3. Wave Propagation in Bulk Isotropic Solid Media -- 4.3.1. Naviers Equation of Motion -- 4.3.2. Solving Naviers Equation of Motion: Solution of Wave Propagation in Isotropic Solids -- 4.3.2.1. Helmholtz Decomposition -- 4.3.2.2. Naviers Equation of Motion to Helmholtz Equation -- 4.3.2.3. Generalized Wave Potentials in Isotropic Solids -- 4.3.2.4. Longitudinal Waves and Shear Waves in Isotropic Solids -- 4.3.2.5. In Plane and Out of Plane Shear Waves in Isotropic Solids -- 4.3.2.6. Wave Potentials for P, SV, and SH Waves and Their Relation -- 4.3.3. Wave Interactions at the Bulk Isotropic Interfaces -- 4.3.3.1. P-Wave Incident at the Interface -- 4.3.3.2. SH-Wave Incident at the Interface -- 4.4. Wave Propagation in Bulk Anisotropic Solid Media -- 4.4.1. Governing Elastodynamic Equation in Anisotropic Media -- 4.4.2. Wave Modes in all Possible Directions of Wave Propagation inD. 4.4.2.1. Comparison between Isotropic and Anisotropic Slowness Profiles -- 4.4.2.2. Slowness Profiles for Monoclinic Material -- 4.4.2.3. Slowness Profiles for Fully Orthotropic Material -- 4.4.2.4. Slowness Profiles for Transversely Isotropic -- 4.4.3. Wave Interactions at the Bulk Anisotropic Interfaces -- 4.4.3.1. Geometrical Understanding of Reflection and Refraction in Anisotropic Solid -- 4.5. Appendix -- 4.5.1. Energy Flux & -- Group Velocity -- 4.5.2. Integral Approach to Obtain Governing Elastodynamic Equation based on Classical Mechanics -- 4.5.3. Understanding the Snells Law in Isotropic and Anisotropic Media -- 4.5.3.1. Snells Law at Isotropic Material Interface -- 4.5.3.2. Snells Law at Anisotropic Material Interface -- 4.5.4. Slowness, Group Velocity and Steering Angle -- 4.6. Summary -- Chapter 5: Wave Propagation in Bounded Structures -- 5.1. Basic Understanding of Guided Waves and its Application in NDE -- 5.2. Guided Waves in Isotropic Plates using Classical Approach -- 5.2.1. Guided SH Wave Modes in Isotropic Plate -- 5.2.2. Guided Rayleigh-Lamb Wave Modes in Isotropic Plate -- 5.2.3. Generalized Guided Wave Modes in Isotropic Plate with Perturbed Geometry -- 5.2.3.1. Motivation -- 5.2.3.2. Generalized Formulation -- 5.2.3.3. Boundary Conditions -- 5.2.3.4. Discussions on Generalized Rayleigh Lamb and SH Modes -- 5.2.4. Exercise: Guided Waves in Isotropic Plate with Experimental NDE Situations -- 5.3. Guided Waves Propagation in Anisotropic Plates -- 5.3.1. Analytical Approach for Single-Layered General Anisotropic Plate -- 5.3.2. Analytical Approach for Multilayered General Anisotropic Plate -- 5.3.3. Semianalytical Approach for Single- and Multilayered Anisotropic Plates -- 5.3.3.1. Hamiltons Principle and the Governing Equation -- 5.3.3.2. Discretization of Plate Thickness -- 5.3.3.3. Element Strain Equation 5.3.3.4. Governing Wave Equation -- 5.3.3.5. Eigen Value Problem: Wave Dispersion Solution and Phase Velocity -- 5.3.3.6. Dispersion Behavior -- 5.3.3.7. Group Velocity of Propagating Wave Modes -- 5.4. Guided Wave Propagation in Cylindrical Rods and Pipes -- 5.4.1. Torsional Wave Modes in Cylindrical Wave Guides -- 5.4.2. Exercise: Longitudinal and Flexural Wave Modes in Cylindrical Structures -- 5.4.2.1. Longitudinal Wave -- 5.4.2.2. Flexural Wave -- 5.5. Summary -- Chapter 6: Overview of Basic Numerical Methods and Parallel Computing -- 6.1. Understanding Error -- 6.2. Error Propagation: Taylor Series -- 6.2.1. Taylor Series Expansion -- 6.2.2. Stability Condition -- 6.2.3. Summary from Error Propagation -- 6.3. Finite Difference Method (FDM) -- 6.3.1. FD Formula with O(Δx2) -- 6.3.2. BD Formula with O(Δx2) -- 6.3.3. CD Formula with O(Δx2) -- 6.3.4.CD Formula with O(Δx4) -- 6.4. Time Integration: Explicit FDM Solution of Differential Equations -- 6.5. Time Integration: Explicit Solution of Multidegrees-of-Freedom System -- 6.5.1. Explicit Solution Algorithm for Multidegrees-of-Freedom System [3] -- 6.5.2. Runge-Kutta (RK4) Algorithm for Multidegrees-of-Freedom System -- 6.6. Time Integration: Implicit FDM Solution of Differential Equations -- 6.6.1. Implicit Solution Algorithm (Houbolt Method) [3, 4] -- 6.6.2. Implicit Newmark β Method -- 6.6.3. Implicit Wilson θ Method -- 6.7. Velocity Verlet Integration Scheme -- 6.8. Overview of Parallel Computing for CNDE -- 6.8.1. What is Parallel Computing -- 6.8.2. Historical Background of Parallel Computing -- 6.8.3. Serial vs Parallel Computing for CNDE -- 6.8.4. Methods for Parallel Programs -- 6.8.4.1. Task-Parallelism -- 6.8.4.2. Data-Parallelism -- 6.8.4.3. Simple Example of Parallelization -- 6.8.5. Understanding the Patterns in Parallel Program Structure -- 6.8.6. Types of Parallel Hardware 6.8.6.1. Single Instruction, Single Data (SISD) |
ctrlnum | (ZDB-30-PQE)EBC6216665 (ZDB-30-PAD)EBC6216665 (ZDB-89-EBL)EBL6216665 (OCoLC)1157078034 (DE-599)BVBBV047441698 |
dewey-full | 620.11274028499997 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.11274028499997 |
dewey-search | 620.11274028499997 |
dewey-sort | 3620.11274028499997 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Werkstoffwissenschaften / Fertigungstechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11255nmm a2200517zc 4500</leader><controlfield tag="001">BV047441698</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220422 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429853135</subfield><subfield code="9">978-0-429-85313-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429456909</subfield><subfield code="9">978-0-429-45690-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6216665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6216665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6216665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1157078034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047441698</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11274028499997</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3700</subfield><subfield code="0">(DE-625)157028:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Banerjee, Sourav</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational nondestructive evaluation handbook</subfield><subfield code="b">ultrasound modeling techniques</subfield><subfield code="c">authored by Sourav Banerjee and Cara A.C. Leckey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 560 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Author -- Chapter 1: Computational Nondestructive Evaluation (CNDE) -- 1.1. Introduction -- 1.1.1. Various NDE Methods -- 1.1.2. Computational Ultrasonic NDE -- 1.2. Physics and Apparatus for Ultrasonic Technique -- 1.2.1. Ultrasonic NDE -- 1.2.2. Ultrasonic in situ NDE or SHM Method -- 1.2.3. Ultrasonic NDE/SHM of Metals vs Composites -- 1.3. Historical Background of CNDE -- 1.4. Overview of the Chapters -- 1.5. Summary -- Chapter 2: Vector Fields and Tensor Analysis -- 2.1. Understanding Vectors -- 2.2. A Brief Review of Index Notation -- 2.2.1. Dot Product of Two Vectors -- 2.2.2. Cross Product of Two Vectors -- 2.3. Understanding the Vector Field -- 2.3.1. Gradient Operator -- 2.3.2. Divergence of a Vector Field -- 2.3.3. Curl of a Vector Field -- 2.4. Concept of Tensor and Tensor Analysis in Brief -- 2.4.1. First-Order and Second-Order Tensors -- 2.4.2. Transformation Laws of Tensors -- 2.5. Covariant, Contravariant Tensors, and Jacobian Matrix -- 2.5.1. Transformation of Scalar and Vector Objects and Covariant Vectors -- 2.5.2. Transformation of Basis, Contravariant Vectors, and Jacobian -- 2.6. Examples on Index Notations -- 2.7. Summary -- 2.8. Appendix -- 2.8.1. Divergence Theorem -- 2.8.2. Stokes Theorem -- Chapter 3: Mechanics of Continua -- 3.1. Coordinate System -- 3.1.1. Lagrangian Coordinate or Material Coordinate System -- 3.1.2. Eulerian Coordinate or Spatial Coordinate System -- 3.2. Motion of a Deformable Body -- 3.2.1. Material Derivatives -- 3.2.1.1. Material Derivative of Displacement Gradient -- 3.2.1.2. Material Derivative of Jacobian -- 3.2.1.3. Material Derivative of Square of an Arc Length -- 3.2.1.4. Material Derivative of Element of an Area</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.1.5. Material Derivatives of Line (l) and Surface (s) Integral of a Scalar Field ϕ -- 3.2.1.6. Material Derivatives of Surface (s) Integral of a Vector Field -- 3.2.2. Path Lines and Stream Lines -- 3.3. Deformation and Strain in a Deformable Body -- 3.3.1. Cauchys and Greens Deformation Tensor -- 3.3.2. Description of Strain in a Deformable body -- 3.3.3. Strain in terms of Displacement -- 3.4. Mass, Momentum, and Energy -- 3.4.1. Mass of a Body -- 3.4.2. Momentum of a Deformable Body -- 3.4.3. Angular Momentum of a Deformable Body -- 3.4.4. Kinetic Energy Stored in a Deformable Body -- 3.5. Fundamental Axiom of Continuum Mechanics -- 3.5.1. Axiom 1: Principle of Conservation of Mass -- 3.5.2. Axiom 2: Principle of Balance of Momentum -- 3.5.3. Axiom 3: Principle of Balance of Angular Momentum -- 3.5.4. Axiom 4: Principle of Conservation of Energy -- 3.6. Internal Stress State in a Deformable Body -- 3.7. External and Internal Load on a Deformable Body -- 3.8. Fundamental Elastodynamic Equation -- 3.9. Thermodynamics of Continua -- 3.9.1. Conservation of Local Energy -- 3.9.2. Conservation of Mechanical Energy (Kinetic, Internal, and Potential Energy) -- 3.9.3. Internal Energy and Strain Energy -- 3.10. Constitutive Law of Continua -- 3.10.1. Materials with One Plane of Symmetry: Monoclinic Materials -- 3.10.2. Materials with Two Planes of Symmetry: Orthotropic Materials -- 3.10.3. Materials with Three Planes of Symmetry and One Plane of Isotropy: Transversely Isotropic Materials -- 3.10.4. Materials with Three Planes and Three Axes of Symmetry: Isotropic Materials -- 3.11. Appendix -- 3.11.1. Important Equations in Cartesian Coordinate System -- 3.11.2. Important Equations in Cylindrical Coordinate System -- 3.11.2.1. Transformation to Cylindrical Coordinate System -- 3.11.2.2. Gradient Operator in Cylindrical Coordinate System</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.11.2.3. Strain-Displacement Relation in Cylindrical Coordinate System -- 3.11.2.4. Governing Differential Equations of Motion in Cylindrical Coordinate System -- 3.11.3. Important Equations in Spherical Coordinate System -- 3.11.3.1. Gradient Operator in Spherical Coordinate System -- 3.11.3.2. Strain-Displacement Relation in Spherical Coordinate System -- 3.11.3.3. Governing Differential Equations of Motion in Spherical Coordinate System -- 3.11.4. Fundamental Concept of Classical Mechanics -- 3.12. Summary -- Chapter 4: Acoustic and Ultrasonic Waves in Elastic Media -- 4.1. Basic Terminologies in Wave Propagation -- 4.1.1. Wave Fronts, Rays, and Plane Waves -- 4.1.2. Phase Wave Velocity -- 4.1.3. Plane Harmonic Wave -- 4.1.4. Wave Groups and Group Wave Velocity -- 4.1.5. Wave Dispersion -- 4.2. Wave Propagation in Fluid Media -- 4.2.1. Pressure Potential in Fluid -- 4.2.2. Generalized Wave Potential in Fluid -- 4.3. Wave Propagation in Bulk Isotropic Solid Media -- 4.3.1. Naviers Equation of Motion -- 4.3.2. Solving Naviers Equation of Motion: Solution of Wave Propagation in Isotropic Solids -- 4.3.2.1. Helmholtz Decomposition -- 4.3.2.2. Naviers Equation of Motion to Helmholtz Equation -- 4.3.2.3. Generalized Wave Potentials in Isotropic Solids -- 4.3.2.4. Longitudinal Waves and Shear Waves in Isotropic Solids -- 4.3.2.5. In Plane and Out of Plane Shear Waves in Isotropic Solids -- 4.3.2.6. Wave Potentials for P, SV, and SH Waves and Their Relation -- 4.3.3. Wave Interactions at the Bulk Isotropic Interfaces -- 4.3.3.1. P-Wave Incident at the Interface -- 4.3.3.2. SH-Wave Incident at the Interface -- 4.4. Wave Propagation in Bulk Anisotropic Solid Media -- 4.4.1. Governing Elastodynamic Equation in Anisotropic Media -- 4.4.2. Wave Modes in all Possible Directions of Wave Propagation inD.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.2.1. Comparison between Isotropic and Anisotropic Slowness Profiles -- 4.4.2.2. Slowness Profiles for Monoclinic Material -- 4.4.2.3. Slowness Profiles for Fully Orthotropic Material -- 4.4.2.4. Slowness Profiles for Transversely Isotropic -- 4.4.3. Wave Interactions at the Bulk Anisotropic Interfaces -- 4.4.3.1. Geometrical Understanding of Reflection and Refraction in Anisotropic Solid -- 4.5. Appendix -- 4.5.1. Energy Flux &amp -- Group Velocity -- 4.5.2. Integral Approach to Obtain Governing Elastodynamic Equation based on Classical Mechanics -- 4.5.3. Understanding the Snells Law in Isotropic and Anisotropic Media -- 4.5.3.1. Snells Law at Isotropic Material Interface -- 4.5.3.2. Snells Law at Anisotropic Material Interface -- 4.5.4. Slowness, Group Velocity and Steering Angle -- 4.6. Summary -- Chapter 5: Wave Propagation in Bounded Structures -- 5.1. Basic Understanding of Guided Waves and its Application in NDE -- 5.2. Guided Waves in Isotropic Plates using Classical Approach -- 5.2.1. Guided SH Wave Modes in Isotropic Plate -- 5.2.2. Guided Rayleigh-Lamb Wave Modes in Isotropic Plate -- 5.2.3. Generalized Guided Wave Modes in Isotropic Plate with Perturbed Geometry -- 5.2.3.1. Motivation -- 5.2.3.2. Generalized Formulation -- 5.2.3.3. Boundary Conditions -- 5.2.3.4. Discussions on Generalized Rayleigh Lamb and SH Modes -- 5.2.4. Exercise: Guided Waves in Isotropic Plate with Experimental NDE Situations -- 5.3. Guided Waves Propagation in Anisotropic Plates -- 5.3.1. Analytical Approach for Single-Layered General Anisotropic Plate -- 5.3.2. Analytical Approach for Multilayered General Anisotropic Plate -- 5.3.3. Semianalytical Approach for Single- and Multilayered Anisotropic Plates -- 5.3.3.1. Hamiltons Principle and the Governing Equation -- 5.3.3.2. Discretization of Plate Thickness -- 5.3.3.3. Element Strain Equation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.3.4. Governing Wave Equation -- 5.3.3.5. Eigen Value Problem: Wave Dispersion Solution and Phase Velocity -- 5.3.3.6. Dispersion Behavior -- 5.3.3.7. Group Velocity of Propagating Wave Modes -- 5.4. Guided Wave Propagation in Cylindrical Rods and Pipes -- 5.4.1. Torsional Wave Modes in Cylindrical Wave Guides -- 5.4.2. Exercise: Longitudinal and Flexural Wave Modes in Cylindrical Structures -- 5.4.2.1. Longitudinal Wave -- 5.4.2.2. Flexural Wave -- 5.5. Summary -- Chapter 6: Overview of Basic Numerical Methods and Parallel Computing -- 6.1. Understanding Error -- 6.2. Error Propagation: Taylor Series -- 6.2.1. Taylor Series Expansion -- 6.2.2. Stability Condition -- 6.2.3. Summary from Error Propagation -- 6.3. Finite Difference Method (FDM) -- 6.3.1. FD Formula with O(Δx2) -- 6.3.2. BD Formula with O(Δx2) -- 6.3.3. CD Formula with O(Δx2) -- 6.3.4.CD Formula with O(Δx4) -- 6.4. Time Integration: Explicit FDM Solution of Differential Equations -- 6.5. Time Integration: Explicit Solution of Multidegrees-of-Freedom System -- 6.5.1. Explicit Solution Algorithm for Multidegrees-of-Freedom System [3] -- 6.5.2. Runge-Kutta (RK4) Algorithm for Multidegrees-of-Freedom System -- 6.6. Time Integration: Implicit FDM Solution of Differential Equations -- 6.6.1. Implicit Solution Algorithm (Houbolt Method) [3, 4] -- 6.6.2. Implicit Newmark β Method -- 6.6.3. Implicit Wilson θ Method -- 6.7. Velocity Verlet Integration Scheme -- 6.8. Overview of Parallel Computing for CNDE -- 6.8.1. What is Parallel Computing -- 6.8.2. Historical Background of Parallel Computing -- 6.8.3. Serial vs Parallel Computing for CNDE -- 6.8.4. Methods for Parallel Programs -- 6.8.4.1. Task-Parallelism -- 6.8.4.2. Data-Parallelism -- 6.8.4.3. Simple Example of Parallelization -- 6.8.5. Understanding the Patterns in Parallel Program Structure -- 6.8.6. Types of Parallel Hardware</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.8.6.1. Single Instruction, Single Data (SISD)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic testing-Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zerstörungsfreie Werkstoffprüfung</subfield><subfield code="0">(DE-588)4067689-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zerstörungsfreie Werkstoffprüfung</subfield><subfield code="0">(DE-588)4067689-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leckey, Cara A.C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Banerjee, Sourav</subfield><subfield code="t">Computational Nondestructive Evaluation Handbook</subfield><subfield code="d">Milton : Taylor & Francis Group,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-138-31454-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032843850</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6216665</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047441698 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:01:23Z |
indexdate | 2024-07-10T09:12:15Z |
institution | BVB |
isbn | 9780429853135 9780429456909 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032843850 |
oclc_num | 1157078034 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxiv, 560 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | CRC Press |
record_format | marc |
spelling | Banerjee, Sourav Verfasser aut Computational nondestructive evaluation handbook ultrasound modeling techniques authored by Sourav Banerjee and Cara A.C. Leckey Boca Raton ; London ; New York CRC Press [2020] © 2020 1 Online-Ressource (xxiv, 560 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Author -- Chapter 1: Computational Nondestructive Evaluation (CNDE) -- 1.1. Introduction -- 1.1.1. Various NDE Methods -- 1.1.2. Computational Ultrasonic NDE -- 1.2. Physics and Apparatus for Ultrasonic Technique -- 1.2.1. Ultrasonic NDE -- 1.2.2. Ultrasonic in situ NDE or SHM Method -- 1.2.3. Ultrasonic NDE/SHM of Metals vs Composites -- 1.3. Historical Background of CNDE -- 1.4. Overview of the Chapters -- 1.5. Summary -- Chapter 2: Vector Fields and Tensor Analysis -- 2.1. Understanding Vectors -- 2.2. A Brief Review of Index Notation -- 2.2.1. Dot Product of Two Vectors -- 2.2.2. Cross Product of Two Vectors -- 2.3. Understanding the Vector Field -- 2.3.1. Gradient Operator -- 2.3.2. Divergence of a Vector Field -- 2.3.3. Curl of a Vector Field -- 2.4. Concept of Tensor and Tensor Analysis in Brief -- 2.4.1. First-Order and Second-Order Tensors -- 2.4.2. Transformation Laws of Tensors -- 2.5. Covariant, Contravariant Tensors, and Jacobian Matrix -- 2.5.1. Transformation of Scalar and Vector Objects and Covariant Vectors -- 2.5.2. Transformation of Basis, Contravariant Vectors, and Jacobian -- 2.6. Examples on Index Notations -- 2.7. Summary -- 2.8. Appendix -- 2.8.1. Divergence Theorem -- 2.8.2. Stokes Theorem -- Chapter 3: Mechanics of Continua -- 3.1. Coordinate System -- 3.1.1. Lagrangian Coordinate or Material Coordinate System -- 3.1.2. Eulerian Coordinate or Spatial Coordinate System -- 3.2. Motion of a Deformable Body -- 3.2.1. Material Derivatives -- 3.2.1.1. Material Derivative of Displacement Gradient -- 3.2.1.2. Material Derivative of Jacobian -- 3.2.1.3. Material Derivative of Square of an Arc Length -- 3.2.1.4. Material Derivative of Element of an Area 3.2.1.5. Material Derivatives of Line (l) and Surface (s) Integral of a Scalar Field ϕ -- 3.2.1.6. Material Derivatives of Surface (s) Integral of a Vector Field -- 3.2.2. Path Lines and Stream Lines -- 3.3. Deformation and Strain in a Deformable Body -- 3.3.1. Cauchys and Greens Deformation Tensor -- 3.3.2. Description of Strain in a Deformable body -- 3.3.3. Strain in terms of Displacement -- 3.4. Mass, Momentum, and Energy -- 3.4.1. Mass of a Body -- 3.4.2. Momentum of a Deformable Body -- 3.4.3. Angular Momentum of a Deformable Body -- 3.4.4. Kinetic Energy Stored in a Deformable Body -- 3.5. Fundamental Axiom of Continuum Mechanics -- 3.5.1. Axiom 1: Principle of Conservation of Mass -- 3.5.2. Axiom 2: Principle of Balance of Momentum -- 3.5.3. Axiom 3: Principle of Balance of Angular Momentum -- 3.5.4. Axiom 4: Principle of Conservation of Energy -- 3.6. Internal Stress State in a Deformable Body -- 3.7. External and Internal Load on a Deformable Body -- 3.8. Fundamental Elastodynamic Equation -- 3.9. Thermodynamics of Continua -- 3.9.1. Conservation of Local Energy -- 3.9.2. Conservation of Mechanical Energy (Kinetic, Internal, and Potential Energy) -- 3.9.3. Internal Energy and Strain Energy -- 3.10. Constitutive Law of Continua -- 3.10.1. Materials with One Plane of Symmetry: Monoclinic Materials -- 3.10.2. Materials with Two Planes of Symmetry: Orthotropic Materials -- 3.10.3. Materials with Three Planes of Symmetry and One Plane of Isotropy: Transversely Isotropic Materials -- 3.10.4. Materials with Three Planes and Three Axes of Symmetry: Isotropic Materials -- 3.11. Appendix -- 3.11.1. Important Equations in Cartesian Coordinate System -- 3.11.2. Important Equations in Cylindrical Coordinate System -- 3.11.2.1. Transformation to Cylindrical Coordinate System -- 3.11.2.2. Gradient Operator in Cylindrical Coordinate System 3.11.2.3. Strain-Displacement Relation in Cylindrical Coordinate System -- 3.11.2.4. Governing Differential Equations of Motion in Cylindrical Coordinate System -- 3.11.3. Important Equations in Spherical Coordinate System -- 3.11.3.1. Gradient Operator in Spherical Coordinate System -- 3.11.3.2. Strain-Displacement Relation in Spherical Coordinate System -- 3.11.3.3. Governing Differential Equations of Motion in Spherical Coordinate System -- 3.11.4. Fundamental Concept of Classical Mechanics -- 3.12. Summary -- Chapter 4: Acoustic and Ultrasonic Waves in Elastic Media -- 4.1. Basic Terminologies in Wave Propagation -- 4.1.1. Wave Fronts, Rays, and Plane Waves -- 4.1.2. Phase Wave Velocity -- 4.1.3. Plane Harmonic Wave -- 4.1.4. Wave Groups and Group Wave Velocity -- 4.1.5. Wave Dispersion -- 4.2. Wave Propagation in Fluid Media -- 4.2.1. Pressure Potential in Fluid -- 4.2.2. Generalized Wave Potential in Fluid -- 4.3. Wave Propagation in Bulk Isotropic Solid Media -- 4.3.1. Naviers Equation of Motion -- 4.3.2. Solving Naviers Equation of Motion: Solution of Wave Propagation in Isotropic Solids -- 4.3.2.1. Helmholtz Decomposition -- 4.3.2.2. Naviers Equation of Motion to Helmholtz Equation -- 4.3.2.3. Generalized Wave Potentials in Isotropic Solids -- 4.3.2.4. Longitudinal Waves and Shear Waves in Isotropic Solids -- 4.3.2.5. In Plane and Out of Plane Shear Waves in Isotropic Solids -- 4.3.2.6. Wave Potentials for P, SV, and SH Waves and Their Relation -- 4.3.3. Wave Interactions at the Bulk Isotropic Interfaces -- 4.3.3.1. P-Wave Incident at the Interface -- 4.3.3.2. SH-Wave Incident at the Interface -- 4.4. Wave Propagation in Bulk Anisotropic Solid Media -- 4.4.1. Governing Elastodynamic Equation in Anisotropic Media -- 4.4.2. Wave Modes in all Possible Directions of Wave Propagation inD. 4.4.2.1. Comparison between Isotropic and Anisotropic Slowness Profiles -- 4.4.2.2. Slowness Profiles for Monoclinic Material -- 4.4.2.3. Slowness Profiles for Fully Orthotropic Material -- 4.4.2.4. Slowness Profiles for Transversely Isotropic -- 4.4.3. Wave Interactions at the Bulk Anisotropic Interfaces -- 4.4.3.1. Geometrical Understanding of Reflection and Refraction in Anisotropic Solid -- 4.5. Appendix -- 4.5.1. Energy Flux & -- Group Velocity -- 4.5.2. Integral Approach to Obtain Governing Elastodynamic Equation based on Classical Mechanics -- 4.5.3. Understanding the Snells Law in Isotropic and Anisotropic Media -- 4.5.3.1. Snells Law at Isotropic Material Interface -- 4.5.3.2. Snells Law at Anisotropic Material Interface -- 4.5.4. Slowness, Group Velocity and Steering Angle -- 4.6. Summary -- Chapter 5: Wave Propagation in Bounded Structures -- 5.1. Basic Understanding of Guided Waves and its Application in NDE -- 5.2. Guided Waves in Isotropic Plates using Classical Approach -- 5.2.1. Guided SH Wave Modes in Isotropic Plate -- 5.2.2. Guided Rayleigh-Lamb Wave Modes in Isotropic Plate -- 5.2.3. Generalized Guided Wave Modes in Isotropic Plate with Perturbed Geometry -- 5.2.3.1. Motivation -- 5.2.3.2. Generalized Formulation -- 5.2.3.3. Boundary Conditions -- 5.2.3.4. Discussions on Generalized Rayleigh Lamb and SH Modes -- 5.2.4. Exercise: Guided Waves in Isotropic Plate with Experimental NDE Situations -- 5.3. Guided Waves Propagation in Anisotropic Plates -- 5.3.1. Analytical Approach for Single-Layered General Anisotropic Plate -- 5.3.2. Analytical Approach for Multilayered General Anisotropic Plate -- 5.3.3. Semianalytical Approach for Single- and Multilayered Anisotropic Plates -- 5.3.3.1. Hamiltons Principle and the Governing Equation -- 5.3.3.2. Discretization of Plate Thickness -- 5.3.3.3. Element Strain Equation 5.3.3.4. Governing Wave Equation -- 5.3.3.5. Eigen Value Problem: Wave Dispersion Solution and Phase Velocity -- 5.3.3.6. Dispersion Behavior -- 5.3.3.7. Group Velocity of Propagating Wave Modes -- 5.4. Guided Wave Propagation in Cylindrical Rods and Pipes -- 5.4.1. Torsional Wave Modes in Cylindrical Wave Guides -- 5.4.2. Exercise: Longitudinal and Flexural Wave Modes in Cylindrical Structures -- 5.4.2.1. Longitudinal Wave -- 5.4.2.2. Flexural Wave -- 5.5. Summary -- Chapter 6: Overview of Basic Numerical Methods and Parallel Computing -- 6.1. Understanding Error -- 6.2. Error Propagation: Taylor Series -- 6.2.1. Taylor Series Expansion -- 6.2.2. Stability Condition -- 6.2.3. Summary from Error Propagation -- 6.3. Finite Difference Method (FDM) -- 6.3.1. FD Formula with O(Δx2) -- 6.3.2. BD Formula with O(Δx2) -- 6.3.3. CD Formula with O(Δx2) -- 6.3.4.CD Formula with O(Δx4) -- 6.4. Time Integration: Explicit FDM Solution of Differential Equations -- 6.5. Time Integration: Explicit Solution of Multidegrees-of-Freedom System -- 6.5.1. Explicit Solution Algorithm for Multidegrees-of-Freedom System [3] -- 6.5.2. Runge-Kutta (RK4) Algorithm for Multidegrees-of-Freedom System -- 6.6. Time Integration: Implicit FDM Solution of Differential Equations -- 6.6.1. Implicit Solution Algorithm (Houbolt Method) [3, 4] -- 6.6.2. Implicit Newmark β Method -- 6.6.3. Implicit Wilson θ Method -- 6.7. Velocity Verlet Integration Scheme -- 6.8. Overview of Parallel Computing for CNDE -- 6.8.1. What is Parallel Computing -- 6.8.2. Historical Background of Parallel Computing -- 6.8.3. Serial vs Parallel Computing for CNDE -- 6.8.4. Methods for Parallel Programs -- 6.8.4.1. Task-Parallelism -- 6.8.4.2. Data-Parallelism -- 6.8.4.3. Simple Example of Parallelization -- 6.8.5. Understanding the Patterns in Parallel Program Structure -- 6.8.6. Types of Parallel Hardware 6.8.6.1. Single Instruction, Single Data (SISD) Ultrasonic testing-Handbooks, manuals, etc Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 gnd rswk-swf Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 s DE-604 Leckey, Cara A.C. Verfasser aut Erscheint auch als Banerjee, Sourav Computational Nondestructive Evaluation Handbook Milton : Taylor & Francis Group,c2020 Druck-Ausgabe, Hardcover 978-1-138-31454-2 |
spellingShingle | Banerjee, Sourav Leckey, Cara A.C Computational nondestructive evaluation handbook ultrasound modeling techniques Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Author -- Chapter 1: Computational Nondestructive Evaluation (CNDE) -- 1.1. Introduction -- 1.1.1. Various NDE Methods -- 1.1.2. Computational Ultrasonic NDE -- 1.2. Physics and Apparatus for Ultrasonic Technique -- 1.2.1. Ultrasonic NDE -- 1.2.2. Ultrasonic in situ NDE or SHM Method -- 1.2.3. Ultrasonic NDE/SHM of Metals vs Composites -- 1.3. Historical Background of CNDE -- 1.4. Overview of the Chapters -- 1.5. Summary -- Chapter 2: Vector Fields and Tensor Analysis -- 2.1. Understanding Vectors -- 2.2. A Brief Review of Index Notation -- 2.2.1. Dot Product of Two Vectors -- 2.2.2. Cross Product of Two Vectors -- 2.3. Understanding the Vector Field -- 2.3.1. Gradient Operator -- 2.3.2. Divergence of a Vector Field -- 2.3.3. Curl of a Vector Field -- 2.4. Concept of Tensor and Tensor Analysis in Brief -- 2.4.1. First-Order and Second-Order Tensors -- 2.4.2. Transformation Laws of Tensors -- 2.5. Covariant, Contravariant Tensors, and Jacobian Matrix -- 2.5.1. Transformation of Scalar and Vector Objects and Covariant Vectors -- 2.5.2. Transformation of Basis, Contravariant Vectors, and Jacobian -- 2.6. Examples on Index Notations -- 2.7. Summary -- 2.8. Appendix -- 2.8.1. Divergence Theorem -- 2.8.2. Stokes Theorem -- Chapter 3: Mechanics of Continua -- 3.1. Coordinate System -- 3.1.1. Lagrangian Coordinate or Material Coordinate System -- 3.1.2. Eulerian Coordinate or Spatial Coordinate System -- 3.2. Motion of a Deformable Body -- 3.2.1. Material Derivatives -- 3.2.1.1. Material Derivative of Displacement Gradient -- 3.2.1.2. Material Derivative of Jacobian -- 3.2.1.3. Material Derivative of Square of an Arc Length -- 3.2.1.4. Material Derivative of Element of an Area 3.2.1.5. Material Derivatives of Line (l) and Surface (s) Integral of a Scalar Field ϕ -- 3.2.1.6. Material Derivatives of Surface (s) Integral of a Vector Field -- 3.2.2. Path Lines and Stream Lines -- 3.3. Deformation and Strain in a Deformable Body -- 3.3.1. Cauchys and Greens Deformation Tensor -- 3.3.2. Description of Strain in a Deformable body -- 3.3.3. Strain in terms of Displacement -- 3.4. Mass, Momentum, and Energy -- 3.4.1. Mass of a Body -- 3.4.2. Momentum of a Deformable Body -- 3.4.3. Angular Momentum of a Deformable Body -- 3.4.4. Kinetic Energy Stored in a Deformable Body -- 3.5. Fundamental Axiom of Continuum Mechanics -- 3.5.1. Axiom 1: Principle of Conservation of Mass -- 3.5.2. Axiom 2: Principle of Balance of Momentum -- 3.5.3. Axiom 3: Principle of Balance of Angular Momentum -- 3.5.4. Axiom 4: Principle of Conservation of Energy -- 3.6. Internal Stress State in a Deformable Body -- 3.7. External and Internal Load on a Deformable Body -- 3.8. Fundamental Elastodynamic Equation -- 3.9. Thermodynamics of Continua -- 3.9.1. Conservation of Local Energy -- 3.9.2. Conservation of Mechanical Energy (Kinetic, Internal, and Potential Energy) -- 3.9.3. Internal Energy and Strain Energy -- 3.10. Constitutive Law of Continua -- 3.10.1. Materials with One Plane of Symmetry: Monoclinic Materials -- 3.10.2. Materials with Two Planes of Symmetry: Orthotropic Materials -- 3.10.3. Materials with Three Planes of Symmetry and One Plane of Isotropy: Transversely Isotropic Materials -- 3.10.4. Materials with Three Planes and Three Axes of Symmetry: Isotropic Materials -- 3.11. Appendix -- 3.11.1. Important Equations in Cartesian Coordinate System -- 3.11.2. Important Equations in Cylindrical Coordinate System -- 3.11.2.1. Transformation to Cylindrical Coordinate System -- 3.11.2.2. Gradient Operator in Cylindrical Coordinate System 3.11.2.3. Strain-Displacement Relation in Cylindrical Coordinate System -- 3.11.2.4. Governing Differential Equations of Motion in Cylindrical Coordinate System -- 3.11.3. Important Equations in Spherical Coordinate System -- 3.11.3.1. Gradient Operator in Spherical Coordinate System -- 3.11.3.2. Strain-Displacement Relation in Spherical Coordinate System -- 3.11.3.3. Governing Differential Equations of Motion in Spherical Coordinate System -- 3.11.4. Fundamental Concept of Classical Mechanics -- 3.12. Summary -- Chapter 4: Acoustic and Ultrasonic Waves in Elastic Media -- 4.1. Basic Terminologies in Wave Propagation -- 4.1.1. Wave Fronts, Rays, and Plane Waves -- 4.1.2. Phase Wave Velocity -- 4.1.3. Plane Harmonic Wave -- 4.1.4. Wave Groups and Group Wave Velocity -- 4.1.5. Wave Dispersion -- 4.2. Wave Propagation in Fluid Media -- 4.2.1. Pressure Potential in Fluid -- 4.2.2. Generalized Wave Potential in Fluid -- 4.3. Wave Propagation in Bulk Isotropic Solid Media -- 4.3.1. Naviers Equation of Motion -- 4.3.2. Solving Naviers Equation of Motion: Solution of Wave Propagation in Isotropic Solids -- 4.3.2.1. Helmholtz Decomposition -- 4.3.2.2. Naviers Equation of Motion to Helmholtz Equation -- 4.3.2.3. Generalized Wave Potentials in Isotropic Solids -- 4.3.2.4. Longitudinal Waves and Shear Waves in Isotropic Solids -- 4.3.2.5. In Plane and Out of Plane Shear Waves in Isotropic Solids -- 4.3.2.6. Wave Potentials for P, SV, and SH Waves and Their Relation -- 4.3.3. Wave Interactions at the Bulk Isotropic Interfaces -- 4.3.3.1. P-Wave Incident at the Interface -- 4.3.3.2. SH-Wave Incident at the Interface -- 4.4. Wave Propagation in Bulk Anisotropic Solid Media -- 4.4.1. Governing Elastodynamic Equation in Anisotropic Media -- 4.4.2. Wave Modes in all Possible Directions of Wave Propagation inD. 4.4.2.1. Comparison between Isotropic and Anisotropic Slowness Profiles -- 4.4.2.2. Slowness Profiles for Monoclinic Material -- 4.4.2.3. Slowness Profiles for Fully Orthotropic Material -- 4.4.2.4. Slowness Profiles for Transversely Isotropic -- 4.4.3. Wave Interactions at the Bulk Anisotropic Interfaces -- 4.4.3.1. Geometrical Understanding of Reflection and Refraction in Anisotropic Solid -- 4.5. Appendix -- 4.5.1. Energy Flux & -- Group Velocity -- 4.5.2. Integral Approach to Obtain Governing Elastodynamic Equation based on Classical Mechanics -- 4.5.3. Understanding the Snells Law in Isotropic and Anisotropic Media -- 4.5.3.1. Snells Law at Isotropic Material Interface -- 4.5.3.2. Snells Law at Anisotropic Material Interface -- 4.5.4. Slowness, Group Velocity and Steering Angle -- 4.6. Summary -- Chapter 5: Wave Propagation in Bounded Structures -- 5.1. Basic Understanding of Guided Waves and its Application in NDE -- 5.2. Guided Waves in Isotropic Plates using Classical Approach -- 5.2.1. Guided SH Wave Modes in Isotropic Plate -- 5.2.2. Guided Rayleigh-Lamb Wave Modes in Isotropic Plate -- 5.2.3. Generalized Guided Wave Modes in Isotropic Plate with Perturbed Geometry -- 5.2.3.1. Motivation -- 5.2.3.2. Generalized Formulation -- 5.2.3.3. Boundary Conditions -- 5.2.3.4. Discussions on Generalized Rayleigh Lamb and SH Modes -- 5.2.4. Exercise: Guided Waves in Isotropic Plate with Experimental NDE Situations -- 5.3. Guided Waves Propagation in Anisotropic Plates -- 5.3.1. Analytical Approach for Single-Layered General Anisotropic Plate -- 5.3.2. Analytical Approach for Multilayered General Anisotropic Plate -- 5.3.3. Semianalytical Approach for Single- and Multilayered Anisotropic Plates -- 5.3.3.1. Hamiltons Principle and the Governing Equation -- 5.3.3.2. Discretization of Plate Thickness -- 5.3.3.3. Element Strain Equation 5.3.3.4. Governing Wave Equation -- 5.3.3.5. Eigen Value Problem: Wave Dispersion Solution and Phase Velocity -- 5.3.3.6. Dispersion Behavior -- 5.3.3.7. Group Velocity of Propagating Wave Modes -- 5.4. Guided Wave Propagation in Cylindrical Rods and Pipes -- 5.4.1. Torsional Wave Modes in Cylindrical Wave Guides -- 5.4.2. Exercise: Longitudinal and Flexural Wave Modes in Cylindrical Structures -- 5.4.2.1. Longitudinal Wave -- 5.4.2.2. Flexural Wave -- 5.5. Summary -- Chapter 6: Overview of Basic Numerical Methods and Parallel Computing -- 6.1. Understanding Error -- 6.2. Error Propagation: Taylor Series -- 6.2.1. Taylor Series Expansion -- 6.2.2. Stability Condition -- 6.2.3. Summary from Error Propagation -- 6.3. Finite Difference Method (FDM) -- 6.3.1. FD Formula with O(Δx2) -- 6.3.2. BD Formula with O(Δx2) -- 6.3.3. CD Formula with O(Δx2) -- 6.3.4.CD Formula with O(Δx4) -- 6.4. Time Integration: Explicit FDM Solution of Differential Equations -- 6.5. Time Integration: Explicit Solution of Multidegrees-of-Freedom System -- 6.5.1. Explicit Solution Algorithm for Multidegrees-of-Freedom System [3] -- 6.5.2. Runge-Kutta (RK4) Algorithm for Multidegrees-of-Freedom System -- 6.6. Time Integration: Implicit FDM Solution of Differential Equations -- 6.6.1. Implicit Solution Algorithm (Houbolt Method) [3, 4] -- 6.6.2. Implicit Newmark β Method -- 6.6.3. Implicit Wilson θ Method -- 6.7. Velocity Verlet Integration Scheme -- 6.8. Overview of Parallel Computing for CNDE -- 6.8.1. What is Parallel Computing -- 6.8.2. Historical Background of Parallel Computing -- 6.8.3. Serial vs Parallel Computing for CNDE -- 6.8.4. Methods for Parallel Programs -- 6.8.4.1. Task-Parallelism -- 6.8.4.2. Data-Parallelism -- 6.8.4.3. Simple Example of Parallelization -- 6.8.5. Understanding the Patterns in Parallel Program Structure -- 6.8.6. Types of Parallel Hardware 6.8.6.1. Single Instruction, Single Data (SISD) Ultrasonic testing-Handbooks, manuals, etc Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 gnd |
subject_GND | (DE-588)4067689-4 |
title | Computational nondestructive evaluation handbook ultrasound modeling techniques |
title_auth | Computational nondestructive evaluation handbook ultrasound modeling techniques |
title_exact_search | Computational nondestructive evaluation handbook ultrasound modeling techniques |
title_exact_search_txtP | Computational nondestructive evaluation handbook ultrasound modeling techniques |
title_full | Computational nondestructive evaluation handbook ultrasound modeling techniques authored by Sourav Banerjee and Cara A.C. Leckey |
title_fullStr | Computational nondestructive evaluation handbook ultrasound modeling techniques authored by Sourav Banerjee and Cara A.C. Leckey |
title_full_unstemmed | Computational nondestructive evaluation handbook ultrasound modeling techniques authored by Sourav Banerjee and Cara A.C. Leckey |
title_short | Computational nondestructive evaluation handbook |
title_sort | computational nondestructive evaluation handbook ultrasound modeling techniques |
title_sub | ultrasound modeling techniques |
topic | Ultrasonic testing-Handbooks, manuals, etc Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 gnd |
topic_facet | Ultrasonic testing-Handbooks, manuals, etc Zerstörungsfreie Werkstoffprüfung |
work_keys_str_mv | AT banerjeesourav computationalnondestructiveevaluationhandbookultrasoundmodelingtechniques AT leckeycaraac computationalnondestructiveevaluationhandbookultrasoundmodelingtechniques |