Basic probability: what every math student should know
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2021]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | viii, 175 Seiten Diagramme |
ISBN: | 9789811237492 9811237492 9789811238512 9811238510 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047437539 | ||
003 | DE-604 | ||
005 | 20230418 | ||
007 | t | ||
008 | 210824s2021 |||| |||| 00||| eng d | ||
020 | |a 9789811237492 |9 978-981-123-749-2 | ||
020 | |a 9811237492 |9 981-1237-49-2 | ||
020 | |a 9789811238512 |9 978-981-123-851-2 | ||
020 | |a 9811238510 |9 981-1238-51-0 | ||
035 | |a (OCoLC)1284800288 | ||
035 | |a (DE-599)BVBBV047437539 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-739 |a DE-91G |a DE-862 |a DE-703 | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a MAT 600 |2 stub | ||
100 | 1 | |a Tijms, Henk C. |d 1944- |e Verfasser |0 (DE-588)114608474 |4 aut | |
245 | 1 | 0 | |a Basic probability |b what every math student should know |c Henk Tijms |
250 | |a Second edition | ||
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2021] | |
300 | |a viii, 175 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
653 | 0 | |a Probabilities / Textbooks | |
653 | 0 | |a Probabilities | |
653 | 6 | |a Textbooks | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-123-750-8 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032839775&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032839775 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/SK 800 T568(2) |
DE-BY-FWS_katkey | 924513 |
DE-BY-FWS_media_number | 083000524110 |
_version_ | 1806177089889501184 |
adam_text | Contents Preface v Chapter 1. Combinatorics and Calculus for Probability 1 1.1 Factorials and binomial coefficients........................... 1 1.2 Basic results from calculus.......................................... 7 Chapter 2. Basics of Probability 11 2.1 Foundation of probability.......................................... 12 2.2 The concept of conditional probability..................... 21 2.3 The law of conditional probability ............................... 26 2.4 Bayesian probability.................................................... 29 2.5 The concept of random variable................................. 40 2.6 Expected value and standard deviation..................... 42 2.7 Independent random variables and the squareroot law 51 2.8 Generating functions.................................................... 55 Appendix: Proofs for expected value and variance............ 58 Chapter 3. Useful Probability Distributions 63 3.1 The binomial and hypergeometric distributions.... 63 3.2 The Poisson distribution............................................. 70 3.3 The normal probability density................................. 74 3.4 Central limit theorem and the normal distribution . . 80 3.5 The uniform and exponential probability densities . . 85 3.6 The bivariate normal density.................................... 93 3.7 The chi-square test....................................................... 97 Appendix: Poisson and binomial probabilities......................... 101 vii
Contents viii Chapter 4. 4.1 4.2 4.3 4.4 4.5 Real-Life Examples of Poisson Probabilities 103 Fraud in a Canadian lottery..............................................103 Bombs over London in World War II.............................. 105 Winning the lottery twice.................................................107 Santa Claus and a baby whisperer................................. 108 Birthdays and 500 Oldsmobiles........................................110 Chapter 5. Monte Carlo Simulation and Probability 113 5.1 Introduction......................................................................... 113 5.2 Simulation tools ................................................................ 116 5.3 Applications of computer simulation.............................. 123 5.4 Statistical analysis of simulation output........................ 127 Appendix: Python programs for simulation.........................135 Chapter 6. A Primer on Markov Chains 137 6.1 Markov chain model.......................................................... 137 6.2 Absorbing Markov chains.................................................144 6.3 The gambler’s ruin problem..............................................148 6.4 Long-run behavior of Markov chains.............................. 150 6.5 Markov chain Monte Carlo simulation........................... 153 Solutions to Selected Problems 159 Index 173
|
adam_txt |
Contents Preface v Chapter 1. Combinatorics and Calculus for Probability 1 1.1 Factorials and binomial coefficients. 1 1.2 Basic results from calculus. 7 Chapter 2. Basics of Probability 11 2.1 Foundation of probability. 12 2.2 The concept of conditional probability. 21 2.3 The law of conditional probability . 26 2.4 Bayesian probability. 29 2.5 The concept of random variable. 40 2.6 Expected value and standard deviation. 42 2.7 Independent random variables and the squareroot law 51 2.8 Generating functions. 55 Appendix: Proofs for expected value and variance. 58 Chapter 3. Useful Probability Distributions 63 3.1 The binomial and hypergeometric distributions. 63 3.2 The Poisson distribution. 70 3.3 The normal probability density. 74 3.4 Central limit theorem and the normal distribution . . 80 3.5 The uniform and exponential probability densities . . 85 3.6 The bivariate normal density. 93 3.7 The chi-square test. 97 Appendix: Poisson and binomial probabilities. 101 vii
Contents viii Chapter 4. 4.1 4.2 4.3 4.4 4.5 Real-Life Examples of Poisson Probabilities 103 Fraud in a Canadian lottery.103 Bombs over London in World War II. 105 Winning the lottery twice.107 Santa Claus and a baby whisperer. 108 Birthdays and 500 Oldsmobiles.110 Chapter 5. Monte Carlo Simulation and Probability 113 5.1 Introduction. 113 5.2 Simulation tools . 116 5.3 Applications of computer simulation. 123 5.4 Statistical analysis of simulation output. 127 Appendix: Python programs for simulation.135 Chapter 6. A Primer on Markov Chains 137 6.1 Markov chain model. 137 6.2 Absorbing Markov chains.144 6.3 The gambler’s ruin problem.148 6.4 Long-run behavior of Markov chains. 150 6.5 Markov chain Monte Carlo simulation. 153 Solutions to Selected Problems 159 Index 173 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tijms, Henk C. 1944- |
author_GND | (DE-588)114608474 |
author_facet | Tijms, Henk C. 1944- |
author_role | aut |
author_sort | Tijms, Henk C. 1944- |
author_variant | h c t hc hct |
building | Verbundindex |
bvnumber | BV047437539 |
classification_rvk | SK 800 |
classification_tum | MAT 600 |
ctrlnum | (OCoLC)1284800288 (DE-599)BVBBV047437539 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01725nam a22004218c 4500</leader><controlfield tag="001">BV047437539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230418 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210824s2021 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811237492</subfield><subfield code="9">978-981-123-749-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811237492</subfield><subfield code="9">981-1237-49-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811238512</subfield><subfield code="9">978-981-123-851-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811238510</subfield><subfield code="9">981-1238-51-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1284800288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047437539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tijms, Henk C.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114608474</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic probability</subfield><subfield code="b">what every math student should know</subfield><subfield code="c">Henk Tijms</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 175 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities / Textbooks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Textbooks</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-123-750-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032839775&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032839775</subfield></datafield></record></collection> |
id | DE-604.BV047437539 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:00:10Z |
indexdate | 2024-08-01T11:31:40Z |
institution | BVB |
isbn | 9789811237492 9811237492 9789811238512 9811238510 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032839775 |
oclc_num | 1284800288 |
open_access_boolean | |
owner | DE-634 DE-739 DE-91G DE-BY-TUM DE-862 DE-BY-FWS DE-703 |
owner_facet | DE-634 DE-739 DE-91G DE-BY-TUM DE-862 DE-BY-FWS DE-703 |
physical | viii, 175 Seiten Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
spellingShingle | Tijms, Henk C. 1944- Basic probability what every math student should know Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4079013-7 |
title | Basic probability what every math student should know |
title_auth | Basic probability what every math student should know |
title_exact_search | Basic probability what every math student should know |
title_exact_search_txtP | Basic probability what every math student should know |
title_full | Basic probability what every math student should know Henk Tijms |
title_fullStr | Basic probability what every math student should know Henk Tijms |
title_full_unstemmed | Basic probability what every math student should know Henk Tijms |
title_short | Basic probability |
title_sort | basic probability what every math student should know |
title_sub | what every math student should know |
topic | Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Wahrscheinlichkeitstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032839775&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tijmshenkc basicprobabilitywhateverymathstudentshouldknow |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 SK 800 T568(2) |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |