How algorithms create and prevent fake news: exploring the impacts of social media, deepfakes, GPT-3, and more
From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell whats real and whats not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Berkeley]
Apress
[2021]
|
Schlagworte: | |
Zusammenfassung: | From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell whats real and whats not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning--especially when it comes to discerning the truth and differentiating fact from fiction. This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and whats at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics. How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias which gets amplified in harmful data feedback loops. Dont be afraid: with this book you'll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope. |
Beschreibung: | xii, 235 Seiten Illustrationen 24 cm |
ISBN: | 9781484271544 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047425650 | ||
003 | DE-604 | ||
005 | 20220310 | ||
007 | t | ||
008 | 210818s2021 a||| b||| 00||| eng d | ||
020 | |a 9781484271544 |c paperback |9 978-1-4842-7154-4 | ||
035 | |a (OCoLC)1268994368 | ||
035 | |a (DE-599)BVBBV047425650 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-824 |a DE-355 |a DE-N32 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
084 | |a AP 15950 |0 (DE-625)6960: |2 rvk | ||
100 | 1 | |a Giansiracusa, Noah |e Verfasser |0 (DE-588)1240280645 |4 aut | |
245 | 1 | 0 | |a How algorithms create and prevent fake news |b exploring the impacts of social media, deepfakes, GPT-3, and more |c Noah Giansiracusa |
246 | 1 | 0 | |a Exploring the impacts of social media, deepfakes, GPT-3, and more |
264 | 1 | |a [Berkeley] |b Apress |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a xii, 235 Seiten |b Illustrationen |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Introduction -- 1. Perils of Pageview -- 2. Crafted by Computer -- 3. Deepfake Deception -- 4. Autoplay the Autocrats -- 5. Prevarication and the Polygraph -- 6. Gravitating to Google -- 7. Avarice of Advertising -- 8. Social Spread -- 9. Tools for Truth | |
520 | 3 | |a From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell whats real and whats not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning--especially when it comes to discerning the truth and differentiating fact from fiction. This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and whats at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics. How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias which gets amplified in harmful data feedback loops. Dont be afraid: with this book you'll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope. | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Falschmeldung |0 (DE-588)4294308-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Social Media |0 (DE-588)4639271-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Fake news / Prevention | |
653 | 0 | |a Deepfakes / Prevention | |
653 | 0 | |a Computer algorithms | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Social media | |
689 | 0 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 3 | |a Falschmeldung |0 (DE-588)4294308-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 1 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 3 | |a Social Media |0 (DE-588)4639271-3 |D s |
689 | 1 | 4 | |a Falschmeldung |0 (DE-588)4294308-5 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4842-7155-1 |
940 | 1 | |q BSB_NED_20211208 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032828154 | ||
942 | 1 | 1 | |c 070.9 |e 22/bsb |f 0905 |
Datensatz im Suchindex
_version_ | 1804182707462209536 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Giansiracusa, Noah |
author_GND | (DE-588)1240280645 |
author_facet | Giansiracusa, Noah |
author_role | aut |
author_sort | Giansiracusa, Noah |
author_variant | n g ng |
building | Verbundindex |
bvnumber | BV047425650 |
classification_rvk | ST 302 ST 134 AP 15950 |
contents | Introduction -- 1. Perils of Pageview -- 2. Crafted by Computer -- 3. Deepfake Deception -- 4. Autoplay the Autocrats -- 5. Prevarication and the Polygraph -- 6. Gravitating to Google -- 7. Avarice of Advertising -- 8. Social Spread -- 9. Tools for Truth |
ctrlnum | (OCoLC)1268994368 (DE-599)BVBBV047425650 |
discipline | Allgemeines Informatik |
discipline_str_mv | Allgemeines Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04281nam a2200637 c 4500</leader><controlfield tag="001">BV047425650</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220310 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210818s2021 a||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484271544</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-4842-7154-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268994368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047425650</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-N32</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AP 15950</subfield><subfield code="0">(DE-625)6960:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giansiracusa, Noah</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1240280645</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How algorithms create and prevent fake news</subfield><subfield code="b">exploring the impacts of social media, deepfakes, GPT-3, and more</subfield><subfield code="c">Noah Giansiracusa</subfield></datafield><datafield tag="246" ind1="1" ind2="0"><subfield code="a">Exploring the impacts of social media, deepfakes, GPT-3, and more</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Berkeley]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 235 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- 1. Perils of Pageview -- 2. Crafted by Computer -- 3. Deepfake Deception -- 4. Autoplay the Autocrats -- 5. Prevarication and the Polygraph -- 6. Gravitating to Google -- 7. Avarice of Advertising -- 8. Social Spread -- 9. Tools for Truth</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell whats real and whats not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning--especially when it comes to discerning the truth and differentiating fact from fiction. This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and whats at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics. How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias which gets amplified in harmful data feedback loops. Dont be afraid: with this book you'll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Falschmeldung</subfield><subfield code="0">(DE-588)4294308-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Social Media</subfield><subfield code="0">(DE-588)4639271-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fake news / Prevention</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Deepfakes / Prevention</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social media</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Falschmeldung</subfield><subfield code="0">(DE-588)4294308-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Social Media</subfield><subfield code="0">(DE-588)4639271-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Falschmeldung</subfield><subfield code="0">(DE-588)4294308-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4842-7155-1</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">BSB_NED_20211208</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032828154</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">070.9</subfield><subfield code="e">22/bsb</subfield><subfield code="f">0905</subfield></datafield></record></collection> |
id | DE-604.BV047425650 |
illustrated | Illustrated |
index_date | 2024-07-03T17:57:57Z |
indexdate | 2024-07-10T09:11:50Z |
institution | BVB |
isbn | 9781484271544 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032828154 |
oclc_num | 1268994368 |
open_access_boolean | |
owner | DE-12 DE-824 DE-355 DE-BY-UBR DE-N32 |
owner_facet | DE-12 DE-824 DE-355 DE-BY-UBR DE-N32 |
physical | xii, 235 Seiten Illustrationen 24 cm |
psigel | BSB_NED_20211208 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Apress |
record_format | marc |
spelling | Giansiracusa, Noah Verfasser (DE-588)1240280645 aut How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more Noah Giansiracusa Exploring the impacts of social media, deepfakes, GPT-3, and more [Berkeley] Apress [2021] © 2021 xii, 235 Seiten Illustrationen 24 cm txt rdacontent n rdamedia nc rdacarrier Introduction -- 1. Perils of Pageview -- 2. Crafted by Computer -- 3. Deepfake Deception -- 4. Autoplay the Autocrats -- 5. Prevarication and the Polygraph -- 6. Gravitating to Google -- 7. Avarice of Advertising -- 8. Social Spread -- 9. Tools for Truth From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell whats real and whats not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning--especially when it comes to discerning the truth and differentiating fact from fiction. This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and whats at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics. How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias which gets amplified in harmful data feedback loops. Dont be afraid: with this book you'll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope. Data Mining (DE-588)4428654-5 gnd rswk-swf Falschmeldung (DE-588)4294308-5 gnd rswk-swf Social Media (DE-588)4639271-3 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Fake news / Prevention Deepfakes / Prevention Computer algorithms Machine learning Social media Algorithmus (DE-588)4001183-5 s Künstliche Intelligenz (DE-588)4033447-8 s Maschinelles Lernen (DE-588)4193754-5 s Falschmeldung (DE-588)4294308-5 s DE-604 Data Mining (DE-588)4428654-5 s Social Media (DE-588)4639271-3 s Erscheint auch als Online-Ausgabe 978-1-4842-7155-1 |
spellingShingle | Giansiracusa, Noah How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more Introduction -- 1. Perils of Pageview -- 2. Crafted by Computer -- 3. Deepfake Deception -- 4. Autoplay the Autocrats -- 5. Prevarication and the Polygraph -- 6. Gravitating to Google -- 7. Avarice of Advertising -- 8. Social Spread -- 9. Tools for Truth Data Mining (DE-588)4428654-5 gnd Falschmeldung (DE-588)4294308-5 gnd Social Media (DE-588)4639271-3 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Algorithmus (DE-588)4001183-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4294308-5 (DE-588)4639271-3 (DE-588)4033447-8 (DE-588)4001183-5 (DE-588)4193754-5 |
title | How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more |
title_alt | Exploring the impacts of social media, deepfakes, GPT-3, and more |
title_auth | How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more |
title_exact_search | How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more |
title_exact_search_txtP | How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more |
title_full | How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more Noah Giansiracusa |
title_fullStr | How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more Noah Giansiracusa |
title_full_unstemmed | How algorithms create and prevent fake news exploring the impacts of social media, deepfakes, GPT-3, and more Noah Giansiracusa |
title_short | How algorithms create and prevent fake news |
title_sort | how algorithms create and prevent fake news exploring the impacts of social media deepfakes gpt 3 and more |
title_sub | exploring the impacts of social media, deepfakes, GPT-3, and more |
topic | Data Mining (DE-588)4428654-5 gnd Falschmeldung (DE-588)4294308-5 gnd Social Media (DE-588)4639271-3 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Algorithmus (DE-588)4001183-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Data Mining Falschmeldung Social Media Künstliche Intelligenz Algorithmus Maschinelles Lernen |
work_keys_str_mv | AT giansiracusanoah howalgorithmscreateandpreventfakenewsexploringtheimpactsofsocialmediadeepfakesgpt3andmore AT giansiracusanoah exploringtheimpactsofsocialmediadeepfakesgpt3andmore |