Lineare Algebra: eine Einführung
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
München
Hanser
[2021]
|
Ausgabe: | 5., überarbeitete Auflage |
Schriftenreihe: | Mathematik-Studienhilfen
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 249 Seiten Diagramme 21 cm |
ISBN: | 9783446471887 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047421798 | ||
003 | DE-604 | ||
005 | 20240424 | ||
007 | t| | ||
008 | 210816s2021 gw |||| |||| 00||| ger d | ||
016 | 7 | |a 1237006783 |2 DE-101 | |
020 | |a 9783446471887 |9 978-3-446-47188-7 | ||
035 | |a (OCoLC)1286271847 | ||
035 | |a (DE-599)DNB1237006783 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a ger | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-706 |a DE-210 |a DE-19 |a DE-634 |a DE-12 |a DE-384 |a DE-29T |a DE-703 |a DE-1050 |a DE-83 |a DE-92 |a DE-523 |a DE-739 |a DE-355 |a DE-91G |a DE-1049 | ||
084 | |a SM 617 |0 (DE-625)143299: |2 rvk | ||
084 | |a QH 140 |0 (DE-625)141533: |2 rvk | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a MAT 150 |2 stub | ||
084 | |a 15-01 |2 msc | ||
084 | |a MAT 021 |2 stub | ||
084 | |a 00A06 |2 msc | ||
100 | 1 | |a Gramlich, Günter M. |d 1958- |0 (DE-588)121817059 |4 aut | |
245 | 1 | 0 | |a Lineare Algebra |b eine Einführung |c Günter M. Gramlich |
250 | |a 5., überarbeitete Auflage | ||
264 | 1 | |a München |b Hanser |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 249 Seiten |b Diagramme |c 21 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Mathematik-Studienhilfen | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
653 | |a Analytische Geometrie | ||
653 | |a Lineare Gleichungssysteme | ||
653 | |a Matrizen | ||
653 | |a Numerische Mathematik | ||
653 | |a Tupel | ||
653 | |a Vektorräume | ||
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-446-47216-7 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032824397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032824397 |
Datensatz im Suchindex
_version_ | 1816427701731328000 |
---|---|
adam_text |
INHALTSVERZEICHNIS
1
REELLE
GEORDNETE
TUPEL
11
1.1
RECHNEN
MIT
REELLEN
TUPELN
.
11
1.2
VISUALISIERUNGEN
VON
REELLEN
TUPELN
.
14
1.3
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
15
1.4
AUFGABEN
.
16
2
REELLE
MATRIZEN
19
2.1
SPEZIELLE
MATRIZEN
.
21
2.2
RECHNEN
MIT
MATRIZEN
.
23
2.3
ISOMORPHISMEN
UND
IDENTIFIKATIONEN
.
33
2.4
ZUM
RECHNEN
MIT
MATRIZEN
.
34
2.5
POTENZEN
VON
MATRIZEN
.
44
2.6
INVERSE
MATRIZEN
.
46
2.7
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
48
2.8
AUFGABEN
.
49
3
REELLE
LINEARE
GLEICHUNGSSYSTEME
53
3.1
GAUSS-VERFAHREN
.
56
3.2
EINE
WEITERE
MATRIZENFORM
.
68
3.3
ZUR
LOESUNGSMENGE
EINES
LINEAREN
GLEICHUNGSSYSTEMS
.
69
3.4
FUEHRENDE
UND
FREIE
VARIABLEN
.
70
3.5
UNTER-,
UEBER
UND
BESTIMMTE
SYSTEME
.
70
3.6
DER
RANG
EINER
MATRIX
.
72
3.7
ZEILEN
UND
SPALTENBILD
.
78
3.8
BEISPIELE
.
78
3.9
QUADRATISCHE
LINEARE
GLEICHUNGSSYSTEME
UND
INVERSE
MATRIZEN
.
82
3.10
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
83
3.11
AUFGABEN
.
84
4
REELLE
VEKTORRAEUME
89
4.1
DIE
VEKTORRAUM-DEFINITION
.
89
4.2
DER
VEKTORRAUM
R
N
.
92
4.3
WEITERE
BEISPIELE
VON
REELLEN
VEKTORRAEUMEN
.
93
4.4
UNTERVEKTORRAEUME
.
94
4.5
NULLRAEUME
UND
HOMOGENE
LINEARE
GLEICHUNGSSYSTEME
.
97
4.6
LINEARKOMBINATIONEN,
LINEARE
HUELLE,
ERZEUGENDENSYSTEM
.
100
4.7
SPALTENRAUM
UND
ZEILENRAUM
.
105
4.8
DIE
VIER
FUNDAMENTALRAEUME
EINER
MATRIX
.
105
7
INHALTSVERZEICHNIS
4.9
SPALTENRAEUME
UND
LINEARE
GLEICHUNGSSYSTEME
.
107
4.10
LINEARE
UNABHAENGIGKEIT
UND
ABHAENGIGKEIT
.
109
4.11
BASIS
UND
DIMENSION
.
112
4.12
KOORDINATEN,
KOORDINATENVEKTOREN
UND
KOMPONENTEN
.
117
4.13
LINEARE
GLEICHUNGSSYSTEME
UND
DER
VEKTORRAUM
R
N
.
120
4.14
BASEN
UND
DIMENSIONEN
FUER
DIE
VIER
FUNDAMENTALRAEUME
.
123
4.15
SUMME
UND
DIREKTE
SUMME
VON
UNTERVEKTORRAEUMEN
.
133
4.16
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
135
4.17
AUFGABEN
.
137
5
LINEARE
ABBILDUNGEN
VON
R
N
NACH
R
M
141
5.1
ABBILDUNGEN
.
141
5.2
LINEARE
ABBILDUNGEN
.
142
5.3
WEITERE
BEISPIELE
VON
LINEAREN
ABBILDUNGEN
.
148
5.4
KERN
UND
BILD
LINEARER
ABBILDUNGEN
.
150
5.5
VERKETTUNGEN
UND
MATRIZENMULTIPLIKATIONEN
.
154
5.6
LINEARE
UMKEHRABBILDUNGEN
UND
INVERSE
MATRIZEN
.
156
5.7
WEITERE
VERKNUEPFUNGEN
.
158
5.8
LINEARE
ABBILDUNGEN
UND
LINEARE
GLEICHUNGSSYSTEME
.
159
5.9
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
160
5.10
AUFGABEN
.
161
6
DER
VEKTORRAUM
R
N
MIT
SKALARPRODUKT
163
6.1
LAENGE,
ABSTAND,
WINKEL
UND
PROJEKTION
.
165
6.2
ORTHOGONAL
UND
ORTHONORMALBASEN
.
171
6.3
ORTHOGONALE
TEILMENGEN
UND
ORTHOGONALE
SUMMEN
.
176
6.4
ORTHOGONALE
KOMPLEMENTE
.
178
6.5
UEBER
DIE
VIER
FUNDAMENTALRAEUME
.
180
6.6
DAS
KREUZPRODUKT
IM
R
3
.
183
6.7
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
184
6.8
AUFGABEN
.
185
7
SPEZIELLE
LINEARE
ABBILDUNGEN
VON
R
N
NACH
R
M
187
7.1
TRANSPONIERTE
ABBILDUNGEN
.
187
7.2
SYMMETRISCHE
ABBILDUNGEN
.
189
7.3
ORTHONORMALE
MATRIZEN
.
191
7.4
ORTHONORMALE
ABBILDUNGEN
.
194
7.5
IDEMPOTENTE
ABBILDUNGEN
.
196
7.6
PROJEKTIVE
ABBILDUNGEN
.
197
7.7
ORTHOGONALE
PROJEKTIVE
ABBILDUNGEN
.
200
7.8
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
209
7.9
AUFGABEN
.
210
8
REELLE
DETERMINANTEN
211
8.1
DIE
DETERMINANTE
EINER
(2,2)-MATRIX
.
211
8
INHAL
TSVERZEICHNIS
8.2
VERALLGEMEINERUNG
AUF
(N,
N
J-MATRIZEN
.
213
8.3
DETERMINANTEN,
INVERTIERBARKEIT
UND
LINEARE
GLEICHUNGSSYSTEME
.
217
8.4
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
219
8.5
AUFGABEN
.
219
9
REELLE
EIGENWERTE
UND
EIGENVEKTOREN
221
9.1
DEFINITIONEN
UND
ERSTE
EIGENSCHAFTEN
.
221
9.2
BESTIMMUNG
VON
EIGENWERTEN
UND
EIGENVEKTOREN
.
224
9.3
EIGENRAEUME
UND
BASEN
VON
EIGENVEKTOREN
.
228
9.4
BASEN
VON
EIGENVEKTOREN
UND
DIAGONALISIERBARKEIT
.
232
9.5
ORTHONORMALE
BASEN
VON
EIGENVEKTOREN
.
235
9.6
ORTHOGONALE
BASEN
VON
EIGENVEKTOREN
UND
ORTHOGONALE
EIGENRAEUME
.
239
9.7
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
239
9.8
AUFGABEN
.
240
LITERATURVERZEICHNIS
243
STICHWORTVERZEICHNIS
245
9 |
adam_txt |
INHALTSVERZEICHNIS
1
REELLE
GEORDNETE
TUPEL
11
1.1
RECHNEN
MIT
REELLEN
TUPELN
.
11
1.2
VISUALISIERUNGEN
VON
REELLEN
TUPELN
.
14
1.3
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
15
1.4
AUFGABEN
.
16
2
REELLE
MATRIZEN
19
2.1
SPEZIELLE
MATRIZEN
.
21
2.2
RECHNEN
MIT
MATRIZEN
.
23
2.3
ISOMORPHISMEN
UND
IDENTIFIKATIONEN
.
33
2.4
ZUM
RECHNEN
MIT
MATRIZEN
.
34
2.5
POTENZEN
VON
MATRIZEN
.
44
2.6
INVERSE
MATRIZEN
.
46
2.7
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
48
2.8
AUFGABEN
.
49
3
REELLE
LINEARE
GLEICHUNGSSYSTEME
53
3.1
GAUSS-VERFAHREN
.
56
3.2
EINE
WEITERE
MATRIZENFORM
.
68
3.3
ZUR
LOESUNGSMENGE
EINES
LINEAREN
GLEICHUNGSSYSTEMS
.
69
3.4
FUEHRENDE
UND
FREIE
VARIABLEN
.
70
3.5
UNTER-,
UEBER
UND
BESTIMMTE
SYSTEME
.
70
3.6
DER
RANG
EINER
MATRIX
.
72
3.7
ZEILEN
UND
SPALTENBILD
.
78
3.8
BEISPIELE
.
78
3.9
QUADRATISCHE
LINEARE
GLEICHUNGSSYSTEME
UND
INVERSE
MATRIZEN
.
82
3.10
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
83
3.11
AUFGABEN
.
84
4
REELLE
VEKTORRAEUME
89
4.1
DIE
VEKTORRAUM-DEFINITION
.
89
4.2
DER
VEKTORRAUM
R
N
.
92
4.3
WEITERE
BEISPIELE
VON
REELLEN
VEKTORRAEUMEN
.
93
4.4
UNTERVEKTORRAEUME
.
94
4.5
NULLRAEUME
UND
HOMOGENE
LINEARE
GLEICHUNGSSYSTEME
.
97
4.6
LINEARKOMBINATIONEN,
LINEARE
HUELLE,
ERZEUGENDENSYSTEM
.
100
4.7
SPALTENRAUM
UND
ZEILENRAUM
.
105
4.8
DIE
VIER
FUNDAMENTALRAEUME
EINER
MATRIX
.
105
7
INHALTSVERZEICHNIS
4.9
SPALTENRAEUME
UND
LINEARE
GLEICHUNGSSYSTEME
.
107
4.10
LINEARE
UNABHAENGIGKEIT
UND
ABHAENGIGKEIT
.
109
4.11
BASIS
UND
DIMENSION
.
112
4.12
KOORDINATEN,
KOORDINATENVEKTOREN
UND
KOMPONENTEN
.
117
4.13
LINEARE
GLEICHUNGSSYSTEME
UND
DER
VEKTORRAUM
R
N
.
120
4.14
BASEN
UND
DIMENSIONEN
FUER
DIE
VIER
FUNDAMENTALRAEUME
.
123
4.15
SUMME
UND
DIREKTE
SUMME
VON
UNTERVEKTORRAEUMEN
.
133
4.16
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
135
4.17
AUFGABEN
.
137
5
LINEARE
ABBILDUNGEN
VON
R
N
NACH
R
M
141
5.1
ABBILDUNGEN
.
141
5.2
LINEARE
ABBILDUNGEN
.
142
5.3
WEITERE
BEISPIELE
VON
LINEAREN
ABBILDUNGEN
.
148
5.4
KERN
UND
BILD
LINEARER
ABBILDUNGEN
.
150
5.5
VERKETTUNGEN
UND
MATRIZENMULTIPLIKATIONEN
.
154
5.6
LINEARE
UMKEHRABBILDUNGEN
UND
INVERSE
MATRIZEN
.
156
5.7
WEITERE
VERKNUEPFUNGEN
.
158
5.8
LINEARE
ABBILDUNGEN
UND
LINEARE
GLEICHUNGSSYSTEME
.
159
5.9
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
160
5.10
AUFGABEN
.
161
6
DER
VEKTORRAUM
R
N
MIT
SKALARPRODUKT
163
6.1
LAENGE,
ABSTAND,
WINKEL
UND
PROJEKTION
.
165
6.2
ORTHOGONAL
UND
ORTHONORMALBASEN
.
171
6.3
ORTHOGONALE
TEILMENGEN
UND
ORTHOGONALE
SUMMEN
.
176
6.4
ORTHOGONALE
KOMPLEMENTE
.
178
6.5
UEBER
DIE
VIER
FUNDAMENTALRAEUME
.
180
6.6
DAS
KREUZPRODUKT
IM
R
3
.
183
6.7
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
184
6.8
AUFGABEN
.
185
7
SPEZIELLE
LINEARE
ABBILDUNGEN
VON
R
N
NACH
R
M
187
7.1
TRANSPONIERTE
ABBILDUNGEN
.
187
7.2
SYMMETRISCHE
ABBILDUNGEN
.
189
7.3
ORTHONORMALE
MATRIZEN
.
191
7.4
ORTHONORMALE
ABBILDUNGEN
.
194
7.5
IDEMPOTENTE
ABBILDUNGEN
.
196
7.6
PROJEKTIVE
ABBILDUNGEN
.
197
7.7
ORTHOGONALE
PROJEKTIVE
ABBILDUNGEN
.
200
7.8
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
209
7.9
AUFGABEN
.
210
8
REELLE
DETERMINANTEN
211
8.1
DIE
DETERMINANTE
EINER
(2,2)-MATRIX
.
211
8
INHAL
TSVERZEICHNIS
8.2
VERALLGEMEINERUNG
AUF
(N,
N
J-MATRIZEN
.
213
8.3
DETERMINANTEN,
INVERTIERBARKEIT
UND
LINEARE
GLEICHUNGSSYSTEME
.
217
8.4
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
219
8.5
AUFGABEN
.
219
9
REELLE
EIGENWERTE
UND
EIGENVEKTOREN
221
9.1
DEFINITIONEN
UND
ERSTE
EIGENSCHAFTEN
.
221
9.2
BESTIMMUNG
VON
EIGENWERTEN
UND
EIGENVEKTOREN
.
224
9.3
EIGENRAEUME
UND
BASEN
VON
EIGENVEKTOREN
.
228
9.4
BASEN
VON
EIGENVEKTOREN
UND
DIAGONALISIERBARKEIT
.
232
9.5
ORTHONORMALE
BASEN
VON
EIGENVEKTOREN
.
235
9.6
ORTHOGONALE
BASEN
VON
EIGENVEKTOREN
UND
ORTHOGONALE
EIGENRAEUME
.
239
9.7
WEITERE
BEMERKUNGEN
UND
HINWEISE
.
239
9.8
AUFGABEN
.
240
LITERATURVERZEICHNIS
243
STICHWORTVERZEICHNIS
245
9 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Gramlich, Günter M. 1958- |
author_GND | (DE-588)121817059 |
author_facet | Gramlich, Günter M. 1958- |
author_role | aut |
author_sort | Gramlich, Günter M. 1958- |
author_variant | g m g gm gmg |
building | Verbundindex |
bvnumber | BV047421798 |
classification_rvk | SM 617 QH 140 SK 220 |
classification_tum | MAT 150 MAT 021 |
ctrlnum | (OCoLC)1286271847 (DE-599)DNB1237006783 |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | 5., überarbeitete Auflage |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV047421798</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240424</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210816s2021 gw |||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1237006783</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783446471887</subfield><subfield code="9">978-3-446-47188-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1286271847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1237006783</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-1049</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SM 617</subfield><subfield code="0">(DE-625)143299:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 140</subfield><subfield code="0">(DE-625)141533:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 021</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00A06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gramlich, Günter M.</subfield><subfield code="d">1958-</subfield><subfield code="0">(DE-588)121817059</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="b">eine Einführung</subfield><subfield code="c">Günter M. Gramlich</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5., überarbeitete Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="b">Hanser</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">249 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematik-Studienhilfen</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytische Geometrie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lineare Gleichungssysteme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrizen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Numerische Mathematik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tupel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vektorräume</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-446-47216-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032824397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032824397</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV047421798 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:56:54Z |
indexdate | 2024-11-22T13:00:46Z |
institution | BVB |
isbn | 9783446471887 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032824397 |
oclc_num | 1286271847 |
open_access_boolean | |
owner | DE-706 DE-210 DE-19 DE-BY-UBM DE-634 DE-12 DE-384 DE-29T DE-703 DE-1050 DE-83 DE-92 DE-523 DE-739 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-1049 |
owner_facet | DE-706 DE-210 DE-19 DE-BY-UBM DE-634 DE-12 DE-384 DE-29T DE-703 DE-1050 DE-83 DE-92 DE-523 DE-739 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-1049 |
physical | 249 Seiten Diagramme 21 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Hanser |
record_format | marc |
series2 | Mathematik-Studienhilfen |
spelling | Gramlich, Günter M. 1958- (DE-588)121817059 aut Lineare Algebra eine Einführung Günter M. Gramlich 5., überarbeitete Auflage München Hanser [2021] © 2021 249 Seiten Diagramme 21 cm txt rdacontent n rdamedia nc rdacarrier Mathematik-Studienhilfen Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Analytische Geometrie Lineare Gleichungssysteme Matrizen Numerische Mathematik Tupel Vektorräume (DE-588)4123623-3 Lehrbuch gnd-content Lineare Algebra (DE-588)4035811-2 s DE-604 Erscheint auch als Online-Ausgabe 978-3-446-47216-7 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032824397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gramlich, Günter M. 1958- Lineare Algebra eine Einführung Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4123623-3 |
title | Lineare Algebra eine Einführung |
title_auth | Lineare Algebra eine Einführung |
title_exact_search | Lineare Algebra eine Einführung |
title_exact_search_txtP | Lineare Algebra eine Einführung |
title_full | Lineare Algebra eine Einführung Günter M. Gramlich |
title_fullStr | Lineare Algebra eine Einführung Günter M. Gramlich |
title_full_unstemmed | Lineare Algebra eine Einführung Günter M. Gramlich |
title_short | Lineare Algebra |
title_sort | lineare algebra eine einfuhrung |
title_sub | eine Einführung |
topic | Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Lineare Algebra Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032824397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gramlichgunterm linearealgebraeineeinfuhrung |