Equivariant Poincaré Duality on G-Manifolds: Equivariant Gysin Morphism and Equivariant Euler Classes
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing
2021
Cham Springer |
Ausgabe: | 1st ed. 2021 |
Schriftenreihe: | Lecture Notes in Mathematics
2288 |
Schlagworte: | |
Online-Zugang: | BTU01 FAB01 FHD01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBA01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XV, 376 p. 272 illus., 2 illus. in color) |
ISBN: | 9783030704407 |
ISSN: | 0075-8434 |
DOI: | 10.1007/978-3-030-70440-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047389642 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210728s2021 |||| o||u| ||||||eng d | ||
020 | |a 9783030704407 |c Online |9 978-3-030-70440-7 | ||
024 | 7 | |a 10.1007/978-3-030-70440-7 |2 doi | |
035 | |a (ZDB-2-SMA)9783030704407 | ||
035 | |a (ZDB-2-LNM)9783030704407 | ||
035 | |a (OCoLC)1263264498 | ||
035 | |a (DE-599)BVBBV047389642 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-1043 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-384 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Arabia, Alberto |e Verfasser |4 aut | |
245 | 1 | 0 | |a Equivariant Poincaré Duality on G-Manifolds |b Equivariant Gysin Morphism and Equivariant Euler Classes |c by Alberto Arabia |
250 | |a 1st ed. 2021 | ||
264 | 1 | |a Cham |b Springer International Publishing |c 2021 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (XV, 376 p. 272 illus., 2 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Mathematics |v 2288 |x 0075-8434 | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Topology | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Topology | |
650 | 4 | |a Category theory (Mathematics) | |
650 | 4 | |a Homological algebra | |
650 | 4 | |a Group theory | |
650 | 4 | |a Algebra | |
650 | 4 | |a Field theory (Physics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-70439-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-70441-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-70440-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
940 | 1 | |q ZDB-2-SMA_2021_Fremddaten | |
940 | 1 | |q ZDB-2-LNM_2021_Fremddaten | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032790977 | ||
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l BTU01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l FAB01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l FHD01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l FHN01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l FHR01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l FRO01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l FWS01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l FWS02 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l HTW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l TUM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l UBA01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l UBM01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l UBT01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l UBW01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l UBY01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l UEI01 |p ZDB-2-LNM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-70440-7 |l UPA01 |p ZDB-2-LNM |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 914871 |
---|---|
_version_ | 1806194858602266624 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Arabia, Alberto |
author_facet | Arabia, Alberto |
author_role | aut |
author_sort | Arabia, Alberto |
author_variant | a a aa |
building | Verbundindex |
bvnumber | BV047389642 |
classification_rvk | SI 850 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (ZDB-2-SMA)9783030704407 (ZDB-2-LNM)9783030704407 (OCoLC)1263264498 (DE-599)BVBBV047389642 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-030-70440-7 |
edition | 1st ed. 2021 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03745nmm a2200781zcb4500</leader><controlfield tag="001">BV047389642</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210728s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030704407</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-70440-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-70440-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030704407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-LNM)9783030704407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1263264498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047389642</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arabia, Alberto</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equivariant Poincaré Duality on G-Manifolds</subfield><subfield code="b">Equivariant Gysin Morphism and Equivariant Euler Classes</subfield><subfield code="c">by Alberto Arabia</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 376 p. 272 illus., 2 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Mathematics</subfield><subfield code="v">2288</subfield><subfield code="x">0075-8434</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homological algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-70439-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-70441-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2021_Fremddaten</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-LNM_2021_Fremddaten</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032790977</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-70440-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-LNM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047389642 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:49:57Z |
indexdate | 2024-08-01T16:14:06Z |
institution | BVB |
isbn | 9783030704407 |
issn | 0075-8434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032790977 |
oclc_num | 1263264498 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1043 DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1043 DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-384 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (XV, 376 p. 272 illus., 2 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-LNM ZDB-2-SMA_2021_Fremddaten ZDB-2-LNM_2021_Fremddaten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer International Publishing Springer |
record_format | marc |
series2 | Lecture Notes in Mathematics |
spellingShingle | Arabia, Alberto Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes Algebraic Topology Topology Category Theory, Homological Algebra Group Theory and Generalizations Field Theory and Polynomials Algebraic topology Category theory (Mathematics) Homological algebra Group theory Algebra Field theory (Physics) |
title | Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes |
title_auth | Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes |
title_exact_search | Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes |
title_exact_search_txtP | Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes |
title_full | Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes by Alberto Arabia |
title_fullStr | Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes by Alberto Arabia |
title_full_unstemmed | Equivariant Poincaré Duality on G-Manifolds Equivariant Gysin Morphism and Equivariant Euler Classes by Alberto Arabia |
title_short | Equivariant Poincaré Duality on G-Manifolds |
title_sort | equivariant poincare duality on g manifolds equivariant gysin morphism and equivariant euler classes |
title_sub | Equivariant Gysin Morphism and Equivariant Euler Classes |
topic | Algebraic Topology Topology Category Theory, Homological Algebra Group Theory and Generalizations Field Theory and Polynomials Algebraic topology Category theory (Mathematics) Homological algebra Group theory Algebra Field theory (Physics) |
topic_facet | Algebraic Topology Topology Category Theory, Homological Algebra Group Theory and Generalizations Field Theory and Polynomials Algebraic topology Category theory (Mathematics) Homological algebra Group theory Algebra Field theory (Physics) |
url | https://doi.org/10.1007/978-3-030-70440-7 |
work_keys_str_mv | AT arabiaalberto equivariantpoincaredualityongmanifoldsequivariantgysinmorphismandequivarianteulerclasses |