Equivariant stable homotopy theory and the Kervaire invariant problem:
The long-standing Kervaire invariant problem in homotopy theory arose from geometric and differential topology in the 1960s and was quickly recognised as one of the most important problems in the field. In 2009 the authors of this book announced a solution to the problem, which was published to wide...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York, NY
Cambridge University Press
2021
|
Schriftenreihe: | New mathematical monographs
40 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The long-standing Kervaire invariant problem in homotopy theory arose from geometric and differential topology in the 1960s and was quickly recognised as one of the most important problems in the field. In 2009 the authors of this book announced a solution to the problem, which was published to wide acclaim in a landmark Annals of Mathematics paper. The proof is long and involved, using many sophisticated tools of modern (equivariant) stable homotopy theory that are unfamiliar to non-experts. This book presents the proof together with a full development of all the background material to make it accessible to a graduate student with an elementary algebraic topology knowledge. There are explicit examples of constructions used in solving the problem. Also featuring a motivating history of the problem and numerous conceptual and expository improvements on the proof, this is the definitive account of the resolution of the Kervaire invariant problem |
Beschreibung: | Title from publisher's bibliographic system (viewed on 22 Feb 2021) |
Beschreibung: | 1 Online-Ressource (ix, 870 Seiten) |
ISBN: | 9781108917278 |
DOI: | 10.1017/9781108917278 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047387757 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210727s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781108917278 |c Online |9 978-1-108-91727-8 | ||
024 | 7 | |a 10.1017/9781108917278 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108917278 | ||
035 | |a (OCoLC)1263262903 | ||
035 | |a (DE-599)BVBBV047387757 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.24 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Hill, Michael A. |d 1980- |0 (DE-588)1237728525 |4 aut | |
245 | 1 | 0 | |a Equivariant stable homotopy theory and the Kervaire invariant problem |c Michael A. Hill, Michael J. Hopkins, Douglas C. Ravenel |
264 | 1 | |a Cambridge, UK ; New York, NY |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (ix, 870 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs | |
490 | 0 | |a 40 | |
500 | |a Title from publisher's bibliographic system (viewed on 22 Feb 2021) | ||
520 | |a The long-standing Kervaire invariant problem in homotopy theory arose from geometric and differential topology in the 1960s and was quickly recognised as one of the most important problems in the field. In 2009 the authors of this book announced a solution to the problem, which was published to wide acclaim in a landmark Annals of Mathematics paper. The proof is long and involved, using many sophisticated tools of modern (equivariant) stable homotopy theory that are unfamiliar to non-experts. This book presents the proof together with a full development of all the background material to make it accessible to a graduate student with an elementary algebraic topology knowledge. There are explicit examples of constructions used in solving the problem. Also featuring a motivating history of the problem and numerous conceptual and expository improvements on the proof, this is the definitive account of the resolution of the Kervaire invariant problem | ||
650 | 4 | |a Homotopy theory | |
700 | 1 | |a Hopkins, Michael J. |d 1958- |0 (DE-588)1237728711 |4 aut | |
700 | 1 | |a Ravenel, Douglas C. |d 1947- |0 (DE-588)1237728789 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-83144-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108917278 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032789140 | ||
966 | e | |u https://doi.org/10.1017/9781108917278 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108917278 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182638322253824 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hill, Michael A. 1980- Hopkins, Michael J. 1958- Ravenel, Douglas C. 1947- |
author_GND | (DE-588)1237728525 (DE-588)1237728711 (DE-588)1237728789 |
author_facet | Hill, Michael A. 1980- Hopkins, Michael J. 1958- Ravenel, Douglas C. 1947- |
author_role | aut aut aut |
author_sort | Hill, Michael A. 1980- |
author_variant | m a h ma mah m j h mj mjh d c r dc dcr |
building | Verbundindex |
bvnumber | BV047387757 |
classification_rvk | SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108917278 (OCoLC)1263262903 (DE-599)BVBBV047387757 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108917278 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02725nmm a2200445zc 4500</leader><controlfield tag="001">BV047387757</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210727s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108917278</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-91727-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108917278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108917278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1263262903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047387757</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hill, Michael A.</subfield><subfield code="d">1980-</subfield><subfield code="0">(DE-588)1237728525</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equivariant stable homotopy theory and the Kervaire invariant problem</subfield><subfield code="c">Michael A. Hill, Michael J. Hopkins, Douglas C. Ravenel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 870 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">40</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 22 Feb 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The long-standing Kervaire invariant problem in homotopy theory arose from geometric and differential topology in the 1960s and was quickly recognised as one of the most important problems in the field. In 2009 the authors of this book announced a solution to the problem, which was published to wide acclaim in a landmark Annals of Mathematics paper. The proof is long and involved, using many sophisticated tools of modern (equivariant) stable homotopy theory that are unfamiliar to non-experts. This book presents the proof together with a full development of all the background material to make it accessible to a graduate student with an elementary algebraic topology knowledge. There are explicit examples of constructions used in solving the problem. Also featuring a motivating history of the problem and numerous conceptual and expository improvements on the proof, this is the definitive account of the resolution of the Kervaire invariant problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hopkins, Michael J.</subfield><subfield code="d">1958-</subfield><subfield code="0">(DE-588)1237728711</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ravenel, Douglas C.</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)1237728789</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-83144-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108917278</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032789140</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108917278</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108917278</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047387757 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:49:31Z |
indexdate | 2024-07-10T09:10:44Z |
institution | BVB |
isbn | 9781108917278 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032789140 |
oclc_num | 1263262903 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 Online-Ressource (ix, 870 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs 40 |
spelling | Hill, Michael A. 1980- (DE-588)1237728525 aut Equivariant stable homotopy theory and the Kervaire invariant problem Michael A. Hill, Michael J. Hopkins, Douglas C. Ravenel Cambridge, UK ; New York, NY Cambridge University Press 2021 1 Online-Ressource (ix, 870 Seiten) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 40 Title from publisher's bibliographic system (viewed on 22 Feb 2021) The long-standing Kervaire invariant problem in homotopy theory arose from geometric and differential topology in the 1960s and was quickly recognised as one of the most important problems in the field. In 2009 the authors of this book announced a solution to the problem, which was published to wide acclaim in a landmark Annals of Mathematics paper. The proof is long and involved, using many sophisticated tools of modern (equivariant) stable homotopy theory that are unfamiliar to non-experts. This book presents the proof together with a full development of all the background material to make it accessible to a graduate student with an elementary algebraic topology knowledge. There are explicit examples of constructions used in solving the problem. Also featuring a motivating history of the problem and numerous conceptual and expository improvements on the proof, this is the definitive account of the resolution of the Kervaire invariant problem Homotopy theory Hopkins, Michael J. 1958- (DE-588)1237728711 aut Ravenel, Douglas C. 1947- (DE-588)1237728789 aut Erscheint auch als Druck-Ausgabe 978-1-108-83144-4 https://doi.org/10.1017/9781108917278 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hill, Michael A. 1980- Hopkins, Michael J. 1958- Ravenel, Douglas C. 1947- Equivariant stable homotopy theory and the Kervaire invariant problem Homotopy theory |
title | Equivariant stable homotopy theory and the Kervaire invariant problem |
title_auth | Equivariant stable homotopy theory and the Kervaire invariant problem |
title_exact_search | Equivariant stable homotopy theory and the Kervaire invariant problem |
title_exact_search_txtP | Equivariant stable homotopy theory and the Kervaire invariant problem |
title_full | Equivariant stable homotopy theory and the Kervaire invariant problem Michael A. Hill, Michael J. Hopkins, Douglas C. Ravenel |
title_fullStr | Equivariant stable homotopy theory and the Kervaire invariant problem Michael A. Hill, Michael J. Hopkins, Douglas C. Ravenel |
title_full_unstemmed | Equivariant stable homotopy theory and the Kervaire invariant problem Michael A. Hill, Michael J. Hopkins, Douglas C. Ravenel |
title_short | Equivariant stable homotopy theory and the Kervaire invariant problem |
title_sort | equivariant stable homotopy theory and the kervaire invariant problem |
topic | Homotopy theory |
topic_facet | Homotopy theory |
url | https://doi.org/10.1017/9781108917278 |
work_keys_str_mv | AT hillmichaela equivariantstablehomotopytheoryandthekervaireinvariantproblem AT hopkinsmichaelj equivariantstablehomotopytheoryandthekervaireinvariantproblem AT raveneldouglasc equivariantstablehomotopytheoryandthekervaireinvariantproblem |