Perovskite silicon tandem solar cells: : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells
Abstract: Tandem solar cells have the potential to overcome the efficiency limit of single junction solar cells. The aim of this work was the realization of perovskite silicon tandem solar cells. Hybrid organic inorganic metal halide perovskites are a promising tandem partner for silicon due to thei...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Freiburg
Universität
2020
|
Schlagworte: | |
Online-Zugang: | https://doi.org/10.6094/UNIFR/166456 https://nbn-resolving.org/urn:nbn:de:bsz:25-freidok-1664562 https://d-nb.info/1214179703/34 kostenfrei |
Zusammenfassung: | Abstract: Tandem solar cells have the potential to overcome the efficiency limit of single junction solar cells. The aim of this work was the realization of perovskite silicon tandem solar cells. Hybrid organic inorganic metal halide perovskites are a promising tandem partner for silicon due to their electrical and optical properties, especially a tunable bandgap, strong absorption and high single junction solar cell efficiencies. In this work, perovskite single junction solar cells were first optimized with regard to the later application in tandem devices. The regular n-i-p architecture (the electron contact is deposited first followed by the perovskite absorber and the hole contact) was investigated, because in this configuration the highest single junction perovskite solar cell efficiencies were achieved.<br><br>The main results of this work are summarized in the following:<br><br>Development of a low-temperature electron contact: Titanium oxide (TiOx) is widely used as electron contact in perovskite solar cells with regular n-i-p architecture. The standard fabrication route includes spray deposition of a compact TiOx layer and sintering of a mesoporous TiOx scaffold. Both processes require high temperatures ~ 500 °C which damage silicon heterojunction (SHJ) bottom solar cells allowing for high voltages and the interface between silicon and an indium tin oxide (ITO) interconnecting the two sub-cells. Thus, a low-temperature process for TiOx was developed including evaporation and exposure to UV irradiation for the compact and mesoporous TiOx, respectively. Optimization led to a compact TiOx layer thickness of 20 nm and 200 min of UV curing.<br><br>Optimization of the transparent front hole contact: In a tandem configuration the perovskite solar cell needs to be semi-transparent. Therefore the full-area metal contact is typically replaced by a sputtered transparent conductive oxide (TCO). In order to prevent sputter damage, typically a metal oxide buffer layer is usually evaporated. However, the use of a buffer layer requires an additional process step, enhances parasitic absorption and has negative effects on stability. In this work, an ITO sputter process was directly applied on the 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) hole contact without any buffer layer. |
Beschreibung: | Online-Ressource |
DOI: | 10.6094/UNIFR/166456 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047366793 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 210712s2020 gw |||| o||u| ||||||eng d | ||
015 | |a 20,O08 |2 dnb | ||
016 | 7 | |a 1214179703 |2 DE-101 | |
024 | 7 | |a 10.6094/UNIFR/166456 |2 doi | |
024 | 7 | |a urn:nbn:de:bsz:25-freidok-1664562 |2 urn | |
035 | |a (OCoLC)1260143490 | ||
035 | |a (DE-599)DNB1214179703 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-573 | ||
084 | |a 621.31244 |2 sdnb | ||
084 | |a 621.3 |2 sdnb | ||
100 | 1 | |a Bett, Alexander Jürgen |d 1988- |e Verfasser |0 (DE-588)1214769675 |4 aut | |
245 | 1 | 0 | |a Perovskite silicon tandem solar cells |b : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
264 | 1 | |a Freiburg |b Universität |c 2020 | |
300 | |a Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Universität Freiburg |d 2020 | ||
520 | 3 | |a Abstract: Tandem solar cells have the potential to overcome the efficiency limit of single junction solar cells. The aim of this work was the realization of perovskite silicon tandem solar cells. Hybrid organic inorganic metal halide perovskites are a promising tandem partner for silicon due to their electrical and optical properties, especially a tunable bandgap, strong absorption and high single junction solar cell efficiencies. In this work, perovskite single junction solar cells were first optimized with regard to the later application in tandem devices. | |
520 | 3 | |a The regular n-i-p architecture (the electron contact is deposited first followed by the perovskite absorber and the hole contact) was investigated, because in this configuration the highest single junction perovskite solar cell efficiencies were achieved.<br><br>The main results of this work are summarized in the following:<br><br>Development of a low-temperature electron contact: Titanium oxide (TiOx) is widely used as electron contact in perovskite solar cells with regular n-i-p architecture. The standard fabrication route includes spray deposition of a compact TiOx layer and sintering of a mesoporous TiOx scaffold. Both processes require high temperatures ~ 500 °C which damage silicon heterojunction (SHJ) bottom solar cells allowing for high voltages and the interface between silicon and an indium tin oxide (ITO) interconnecting the two sub-cells. | |
520 | 3 | |a Thus, a low-temperature process for TiOx was developed including evaporation and exposure to UV irradiation for the compact and mesoporous TiOx, respectively. Optimization led to a compact TiOx layer thickness of 20 nm and 200 min of UV curing.<br><br>Optimization of the transparent front hole contact: In a tandem configuration the perovskite solar cell needs to be semi-transparent. Therefore the full-area metal contact is typically replaced by a sputtered transparent conductive oxide (TCO). In order to prevent sputter damage, typically a metal oxide buffer layer is usually evaporated. However, the use of a buffer layer requires an additional process step, enhances parasitic absorption and has negative effects on stability. In this work, an ITO sputter process was directly applied on the 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) hole contact without any buffer layer. | |
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |8 1\p |a Solar cells |0 (DLC)sh85124492 |0 http://id.loc.gov/authorities/subjects/sh85124492 |2 lcsh |
650 | 0 | 7 | |8 2\p |a Perovskite |0 (DLC)sh88007689 |0 http://id.loc.gov/authorities/subjects/sh88007689 |2 lcsh |
650 | 0 | 7 | |8 3\p |a Silicon |0 (DLC)sh85122512 |0 http://id.loc.gov/authorities/subjects/sh85122512 |2 lcsh |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
700 | 1 | |a Glunz, Stefan |d 1966- |0 (DE-588)1128653699 |4 dgs | |
710 | 2 | |a Albert-Ludwigs-Universität Freiburg |b Fakultät für Angewandte Wissenschaften |0 (DE-588)5299644-X |4 dgg | |
856 | 4 | 0 | |u https://doi.org/10.6094/UNIFR/166456 |x Resolving-System |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bsz:25-freidok-1664562 |x Resolving-System |
856 | 4 | 0 | |u https://d-nb.info/1214179703/34 |x Langzeitarchivierung Nationalbibliothek |
856 | 4 | 0 | |q application/pdf |u https://freidok.uni-freiburg.de/data/166456 |z kostenfrei |
999 | |a oai:aleph.bib-bvb.de:BVB01-032768661 | ||
883 | 0 | |8 1\p |a maschinell gebildet |c 0,07143 |d 20200721 |q DE-101 | |
883 | 0 | |8 2\p |a maschinell gebildet |c 0,05867 |d 20200721 |q DE-101 | |
883 | 0 | |8 3\p |a maschinell gebildet |c 0,04847 |d 20200721 |q DE-101 |
Datensatz im Suchindex
_version_ | 1804182602362388480 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bett, Alexander Jürgen 1988- |
author_GND | (DE-588)1214769675 (DE-588)1128653699 |
author_facet | Bett, Alexander Jürgen 1988- |
author_role | aut |
author_sort | Bett, Alexander Jürgen 1988- |
author_variant | a j b aj ajb |
building | Verbundindex |
bvnumber | BV047366793 |
ctrlnum | (OCoLC)1260143490 (DE-599)DNB1214179703 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.6094/UNIFR/166456 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04717nmm a2200553zc 4500</leader><controlfield tag="001">BV047366793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210712s2020 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,O08</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1214179703</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.6094/UNIFR/166456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bsz:25-freidok-1664562</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1260143490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1214179703</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.31244</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.3</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bett, Alexander Jürgen</subfield><subfield code="d">1988-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1214769675</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perovskite silicon tandem solar cells</subfield><subfield code="b">: two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Freiburg</subfield><subfield code="b">Universität</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität Freiburg</subfield><subfield code="d">2020</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: Tandem solar cells have the potential to overcome the efficiency limit of single junction solar cells. The aim of this work was the realization of perovskite silicon tandem solar cells. Hybrid organic inorganic metal halide perovskites are a promising tandem partner for silicon due to their electrical and optical properties, especially a tunable bandgap, strong absorption and high single junction solar cell efficiencies. In this work, perovskite single junction solar cells were first optimized with regard to the later application in tandem devices. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The regular n-i-p architecture (the electron contact is deposited first followed by the perovskite absorber and the hole contact) was investigated, because in this configuration the highest single junction perovskite solar cell efficiencies were achieved.<br><br>The main results of this work are summarized in the following:<br><br>Development of a low-temperature electron contact: Titanium oxide (TiOx) is widely used as electron contact in perovskite solar cells with regular n-i-p architecture. The standard fabrication route includes spray deposition of a compact TiOx layer and sintering of a mesoporous TiOx scaffold. Both processes require high temperatures ~ 500 °C which damage silicon heterojunction (SHJ) bottom solar cells allowing for high voltages and the interface between silicon and an indium tin oxide (ITO) interconnecting the two sub-cells. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Thus, a low-temperature process for TiOx was developed including evaporation and exposure to UV irradiation for the compact and mesoporous TiOx, respectively. Optimization led to a compact TiOx layer thickness of 20 nm and 200 min of UV curing.<br><br>Optimization of the transparent front hole contact: In a tandem configuration the perovskite solar cell needs to be semi-transparent. Therefore the full-area metal contact is typically replaced by a sputtered transparent conductive oxide (TCO). In order to prevent sputter damage, typically a metal oxide buffer layer is usually evaporated. However, the use of a buffer layer requires an additional process step, enhances parasitic absorption and has negative effects on stability. In this work, an ITO sputter process was directly applied on the 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) hole contact without any buffer layer. </subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">1\p</subfield><subfield code="a">Solar cells</subfield><subfield code="0">(DLC)sh85124492</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85124492</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">2\p</subfield><subfield code="a">Perovskite</subfield><subfield code="0">(DLC)sh88007689</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88007689</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">3\p</subfield><subfield code="a">Silicon</subfield><subfield code="0">(DLC)sh85122512</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85122512</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glunz, Stefan</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)1128653699</subfield><subfield code="4">dgs</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Albert-Ludwigs-Universität Freiburg</subfield><subfield code="b">Fakultät für Angewandte Wissenschaften</subfield><subfield code="0">(DE-588)5299644-X</subfield><subfield code="4">dgg</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.6094/UNIFR/166456</subfield><subfield code="x">Resolving-System</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bsz:25-freidok-1664562</subfield><subfield code="x">Resolving-System</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1214179703/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://freidok.uni-freiburg.de/data/166456</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032768661</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">maschinell gebildet</subfield><subfield code="c">0,07143</subfield><subfield code="d">20200721</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">maschinell gebildet</subfield><subfield code="c">0,05867</subfield><subfield code="d">20200721</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">maschinell gebildet</subfield><subfield code="c">0,04847</subfield><subfield code="d">20200721</subfield><subfield code="q">DE-101</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047366793 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:43:16Z |
indexdate | 2024-07-10T09:10:09Z |
institution | BVB |
institution_GND | (DE-588)5299644-X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032768661 |
oclc_num | 1260143490 |
open_access_boolean | 1 |
owner | DE-573 |
owner_facet | DE-573 |
physical | Online-Ressource |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Universität |
record_format | marc |
spelling | Bett, Alexander Jürgen 1988- Verfasser (DE-588)1214769675 aut Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells Freiburg Universität 2020 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Dissertation Universität Freiburg 2020 Abstract: Tandem solar cells have the potential to overcome the efficiency limit of single junction solar cells. The aim of this work was the realization of perovskite silicon tandem solar cells. Hybrid organic inorganic metal halide perovskites are a promising tandem partner for silicon due to their electrical and optical properties, especially a tunable bandgap, strong absorption and high single junction solar cell efficiencies. In this work, perovskite single junction solar cells were first optimized with regard to the later application in tandem devices. The regular n-i-p architecture (the electron contact is deposited first followed by the perovskite absorber and the hole contact) was investigated, because in this configuration the highest single junction perovskite solar cell efficiencies were achieved.<br><br>The main results of this work are summarized in the following:<br><br>Development of a low-temperature electron contact: Titanium oxide (TiOx) is widely used as electron contact in perovskite solar cells with regular n-i-p architecture. The standard fabrication route includes spray deposition of a compact TiOx layer and sintering of a mesoporous TiOx scaffold. Both processes require high temperatures ~ 500 °C which damage silicon heterojunction (SHJ) bottom solar cells allowing for high voltages and the interface between silicon and an indium tin oxide (ITO) interconnecting the two sub-cells. Thus, a low-temperature process for TiOx was developed including evaporation and exposure to UV irradiation for the compact and mesoporous TiOx, respectively. Optimization led to a compact TiOx layer thickness of 20 nm and 200 min of UV curing.<br><br>Optimization of the transparent front hole contact: In a tandem configuration the perovskite solar cell needs to be semi-transparent. Therefore the full-area metal contact is typically replaced by a sputtered transparent conductive oxide (TCO). In order to prevent sputter damage, typically a metal oxide buffer layer is usually evaporated. However, the use of a buffer layer requires an additional process step, enhances parasitic absorption and has negative effects on stability. In this work, an ITO sputter process was directly applied on the 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) hole contact without any buffer layer. Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager 1\p Solar cells (DLC)sh85124492 http://id.loc.gov/authorities/subjects/sh85124492 lcsh 2\p Perovskite (DLC)sh88007689 http://id.loc.gov/authorities/subjects/sh88007689 lcsh 3\p Silicon (DLC)sh85122512 http://id.loc.gov/authorities/subjects/sh85122512 lcsh (DE-588)4113937-9 Hochschulschrift gnd-content Glunz, Stefan 1966- (DE-588)1128653699 dgs Albert-Ludwigs-Universität Freiburg Fakultät für Angewandte Wissenschaften (DE-588)5299644-X dgg https://doi.org/10.6094/UNIFR/166456 Resolving-System https://nbn-resolving.org/urn:nbn:de:bsz:25-freidok-1664562 Resolving-System https://d-nb.info/1214179703/34 Langzeitarchivierung Nationalbibliothek application/pdf https://freidok.uni-freiburg.de/data/166456 kostenfrei 1\p maschinell gebildet 0,07143 20200721 DE-101 2\p maschinell gebildet 0,05867 20200721 DE-101 3\p maschinell gebildet 0,04847 20200721 DE-101 |
spellingShingle | Bett, Alexander Jürgen 1988- Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells 1\p Solar cells (DLC)sh85124492 http://id.loc.gov/authorities/subjects/sh85124492 lcsh 2\p Perovskite (DLC)sh88007689 http://id.loc.gov/authorities/subjects/sh88007689 lcsh 3\p Silicon (DLC)sh85122512 http://id.loc.gov/authorities/subjects/sh85122512 lcsh |
subject_GND | (DLC)sh85124492 http://id.loc.gov/authorities/subjects/sh85124492 (DLC)sh88007689 http://id.loc.gov/authorities/subjects/sh88007689 (DLC)sh85122512 http://id.loc.gov/authorities/subjects/sh85122512 (DE-588)4113937-9 |
title | Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
title_auth | Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
title_exact_search | Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
title_exact_search_txtP | Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
title_full | Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
title_fullStr | Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
title_full_unstemmed | Perovskite silicon tandem solar cells : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
title_short | Perovskite silicon tandem solar cells |
title_sort | perovskite silicon tandem solar cells two terminal perovskite silicon tandem solar cells using optimized n i p perovskite solar cells |
title_sub | : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells |
topic | 1\p Solar cells (DLC)sh85124492 http://id.loc.gov/authorities/subjects/sh85124492 lcsh 2\p Perovskite (DLC)sh88007689 http://id.loc.gov/authorities/subjects/sh88007689 lcsh 3\p Silicon (DLC)sh85122512 http://id.loc.gov/authorities/subjects/sh85122512 lcsh |
topic_facet | Solar cells Perovskite Silicon Hochschulschrift |
url | https://doi.org/10.6094/UNIFR/166456 https://nbn-resolving.org/urn:nbn:de:bsz:25-freidok-1664562 https://d-nb.info/1214179703/34 https://freidok.uni-freiburg.de/data/166456 |
work_keys_str_mv | AT bettalexanderjurgen perovskitesilicontandemsolarcellstwoterminalperovskitesilicontandemsolarcellsusingoptimizednipperovskitesolarcells AT glunzstefan perovskitesilicontandemsolarcellstwoterminalperovskitesilicontandemsolarcellsusingoptimizednipperovskitesolarcells AT albertludwigsuniversitatfreiburgfakultatfurangewandtewissenschaften perovskitesilicontandemsolarcellstwoterminalperovskitesilicontandemsolarcellsusingoptimizednipperovskitesolarcells |