Computer age statistical inference: algorithms, evidence, and data science
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern scien...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore
Cambridge University Press
2021
|
Ausgabe: | Student edition |
Schriftenreihe: | Institute of Mathematical Statistics monographs
6 |
Schlagworte: | |
Zusammenfassung: | The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science. |
Beschreibung: | Auf dem Cover: "with exercises" |
Beschreibung: | xix, 491 Seiten Illustrationen, Diagramme (farbig) |
ISBN: | 9781108823418 1108823416 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047350276 | ||
003 | DE-604 | ||
005 | 20220511 | ||
007 | t | ||
008 | 210630s2021 a||| |||| 00||| eng d | ||
020 | |a 9781108823418 |c Paperback |9 978-1-108-82341-8 | ||
020 | |a 1108823416 |9 1108823416 | ||
035 | |a (OCoLC)1257570644 | ||
035 | |a (DE-599)BVBBV047350276 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-20 |a DE-11 |a DE-703 |a DE-N2 |a DE-188 |a DE-1043 | ||
084 | |a QH 235 |0 (DE-625)141550: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Efron, Bradley |d 1938- |e Verfasser |0 (DE-588)142290718 |4 aut | |
245 | 1 | 0 | |a Computer age statistical inference |b algorithms, evidence, and data science |c Bradley Efron (Stanford University, California), Trevor Hastie (Stanford University, California) |
250 | |a Student edition | ||
264 | 1 | |a Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore |b Cambridge University Press |c 2021 | |
300 | |a xix, 491 Seiten |b Illustrationen, Diagramme (farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Institute of Mathematical Statistics monographs |v 6 | |
500 | |a Auf dem Cover: "with exercises" | ||
520 | 3 | |a The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science. | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
653 | 0 | |a Mathematical statistics / Data processing | |
689 | 0 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 2 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 0 | 3 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 4 | |a Geschichte |A z |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hastie, Trevor |d 1953- |e Verfasser |0 (DE-588)172128242 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1017/9781108914062 |
830 | 0 | |a Institute of Mathematical Statistics monographs |v 6 |w (DE-604)BV037337077 |9 6 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032752489 |
Datensatz im Suchindex
_version_ | 1804182573355630592 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Efron, Bradley 1938- Hastie, Trevor 1953- |
author_GND | (DE-588)142290718 (DE-588)172128242 |
author_facet | Efron, Bradley 1938- Hastie, Trevor 1953- |
author_role | aut aut |
author_sort | Efron, Bradley 1938- |
author_variant | b e be t h th |
building | Verbundindex |
bvnumber | BV047350276 |
classification_rvk | QH 235 SK 830 |
ctrlnum | (OCoLC)1257570644 (DE-599)BVBBV047350276 |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | Student edition |
era | Geschichte gnd |
era_facet | Geschichte |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03220nam a2200517 cb4500</leader><controlfield tag="001">BV047350276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220511 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210630s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108823418</subfield><subfield code="c">Paperback</subfield><subfield code="9">978-1-108-82341-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108823416</subfield><subfield code="9">1108823416</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1257570644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047350276</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-1043</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 235</subfield><subfield code="0">(DE-625)141550:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Efron, Bradley</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142290718</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer age statistical inference</subfield><subfield code="b">algorithms, evidence, and data science</subfield><subfield code="c">Bradley Efron (Stanford University, California), Trevor Hastie (Stanford University, California)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Student edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 491 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Institute of Mathematical Statistics monographs</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf dem Cover: "with exercises"</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical statistics / Data processing</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hastie, Trevor</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172128242</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1017/9781108914062</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Institute of Mathematical Statistics monographs</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV037337077</subfield><subfield code="9">6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032752489</subfield></datafield></record></collection> |
id | DE-604.BV047350276 |
illustrated | Illustrated |
index_date | 2024-07-03T17:37:38Z |
indexdate | 2024-07-10T09:09:42Z |
institution | BVB |
isbn | 9781108823418 1108823416 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032752489 |
oclc_num | 1257570644 |
open_access_boolean | |
owner | DE-706 DE-20 DE-11 DE-703 DE-N2 DE-188 DE-1043 |
owner_facet | DE-706 DE-20 DE-11 DE-703 DE-N2 DE-188 DE-1043 |
physical | xix, 491 Seiten Illustrationen, Diagramme (farbig) |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
series | Institute of Mathematical Statistics monographs |
series2 | Institute of Mathematical Statistics monographs |
spelling | Efron, Bradley 1938- Verfasser (DE-588)142290718 aut Computer age statistical inference algorithms, evidence, and data science Bradley Efron (Stanford University, California), Trevor Hastie (Stanford University, California) Student edition Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore Cambridge University Press 2021 xix, 491 Seiten Illustrationen, Diagramme (farbig) txt rdacontent n rdamedia nc rdacarrier Institute of Mathematical Statistics monographs 6 Auf dem Cover: "with exercises" The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science. Geschichte gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 gnd rswk-swf Mathematical statistics / Data processing Algorithmus (DE-588)4001183-5 s Statistik (DE-588)4056995-0 s Statistische Schlussweise (DE-588)4182963-3 s Big Data (DE-588)4802620-7 s Geschichte z DE-604 Hastie, Trevor 1953- Verfasser (DE-588)172128242 aut Erscheint auch als Online-Ausgabe 10.1017/9781108914062 Institute of Mathematical Statistics monographs 6 (DE-604)BV037337077 6 |
spellingShingle | Efron, Bradley 1938- Hastie, Trevor 1953- Computer age statistical inference algorithms, evidence, and data science Institute of Mathematical Statistics monographs Big Data (DE-588)4802620-7 gnd Statistik (DE-588)4056995-0 gnd Algorithmus (DE-588)4001183-5 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
subject_GND | (DE-588)4802620-7 (DE-588)4056995-0 (DE-588)4001183-5 (DE-588)4182963-3 |
title | Computer age statistical inference algorithms, evidence, and data science |
title_auth | Computer age statistical inference algorithms, evidence, and data science |
title_exact_search | Computer age statistical inference algorithms, evidence, and data science |
title_exact_search_txtP | Computer age statistical inference algorithms, evidence, and data science |
title_full | Computer age statistical inference algorithms, evidence, and data science Bradley Efron (Stanford University, California), Trevor Hastie (Stanford University, California) |
title_fullStr | Computer age statistical inference algorithms, evidence, and data science Bradley Efron (Stanford University, California), Trevor Hastie (Stanford University, California) |
title_full_unstemmed | Computer age statistical inference algorithms, evidence, and data science Bradley Efron (Stanford University, California), Trevor Hastie (Stanford University, California) |
title_short | Computer age statistical inference |
title_sort | computer age statistical inference algorithms evidence and data science |
title_sub | algorithms, evidence, and data science |
topic | Big Data (DE-588)4802620-7 gnd Statistik (DE-588)4056995-0 gnd Algorithmus (DE-588)4001183-5 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
topic_facet | Big Data Statistik Algorithmus Statistische Schlussweise |
volume_link | (DE-604)BV037337077 |
work_keys_str_mv | AT efronbradley computeragestatisticalinferencealgorithmsevidenceanddatascience AT hastietrevor computeragestatisticalinferencealgorithmsevidenceanddatascience |