Working with dynamical systems: a toolbox for scientists and engineers
"This book provides working tools for the study and design of dynamical systems, emphasizing qualitative analysis over complex mathematics. The author includes executable Mathematica notebooks and extensive examples for discussion of mechanical models, models of chemical reactions, dynamics of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2021
|
Ausgabe: | First edition |
Schriftenreihe: | Series in computational biophysics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "This book provides working tools for the study and design of dynamical systems, emphasizing qualitative analysis over complex mathematics. The author includes executable Mathematica notebooks and extensive examples for discussion of mechanical models, models of chemical reactions, dynamics of patterns, and dynamical systems in space"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiii, 235 Seiten Illustrationen, Diagramme |
ISBN: | 9781138591714 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047341348 | ||
003 | DE-604 | ||
005 | 20211118 | ||
007 | t | ||
008 | 210623s2021 xxua||| |||| 00||| eng d | ||
020 | |a 9781138591714 |c hbk |9 978-1-138-59171-4 | ||
035 | |a (OCoLC)1268190244 | ||
035 | |a (DE-599)KXP1736798103 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-703 | ||
050 | 0 | |a QA845 | |
082 | 0 | |a 003/.85 | |
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
100 | 1 | |a Pisʹmen, Leonid Michajlovič |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1051929032 |4 aut | |
245 | 1 | 0 | |a Working with dynamical systems |b a toolbox for scientists and engineers |c Professor LM Pismen, Department of Chemical Engineering, Technion - Israel Institute of Technology |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2021 | |
300 | |a xiii, 235 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Series in computational biophysics | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "This book provides working tools for the study and design of dynamical systems, emphasizing qualitative analysis over complex mathematics. The author includes executable Mathematica notebooks and extensive examples for discussion of mechanical models, models of chemical reactions, dynamics of patterns, and dynamical systems in space"-- | |
650 | 0 | 7 | |a Chaostheorie |0 (DE-588)4009754-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Dynamics | |
653 | 0 | |a Chaotic behavior in systems | |
689 | 0 | 0 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |D s |
689 | 0 | 1 | |a Chaostheorie |0 (DE-588)4009754-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-429-48885-6 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032743741&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032743741 |
Datensatz im Suchindex
_version_ | 1804182558048518144 |
---|---|
adam_text | Contents Preface 1 Whence Dynamical Systems 1.1 Classical Mechanics................................................................................ 1.1.1 Conservative Equations of Motion.......................................... 1.1.2 Systems with One Degree of Freedom.................................... 1.1.3 Symmetries and Conservation Laws ....................................... 1.1.4 Interacting Particles................................................................. 1.1.5 Dissipative Motion ................................................................. 1.2 Chemical Kinetics ................................................................................ 1.2.1 Mass Action ............................................................................. 1.2.2 Adsorption and Catalysis........................................................ 1.2.3 Autocatalysis and Self-Inhibition............................................. 1.2.4 Thermal Effects.......................................................................... 1.3 Biological Models................................................................................... 1.3.1 Population Dynamics .............................................................. 1.3.2 Epidemiological Models........................................................... 1.3.3 Neural and Genetic Networks ............................................... 1.4 Electric Currents................................................................................... 1.4.1 Electric Circuits.......................................................................
1.4.2 Electrochemical Reactions........................................................ 1.4.3 Membrane Transport................................................................. 1.5 Spatially Extended Systems .............................................................. 1.5.1 From Time to Coordinate Dependence .............. 1.5.2 Fourier Decomposition.............................................................. 1.6 Continuous vs. Discrete....................................................................... 1.6.1 Iterative Systems .................................................................... 1.6.2 From Continuous to Discrete................................................... 1.6.3 Poincaré Maps.......................................................................... x¡ 1 2 2 4 6 8 9 11 11 13 16 16 18 18 20 21 22 22 24 25 26 26 27 29 29 30 31
viii CONTENTS 2 Local Bifurcations 2.1 Bifurcation of Stationary States ........................................................ 2.1.1 Branches of Stationary States ............................................... 2.1.2 Bifurcation Expansion.............................................................. 2.1.3 Fold and Transcriticai Bifurcations ...................................... 2.1.4 Cusp Singularity....................................................................... 2.1.5 Higher Singularities ................................................................. 2.2 Stability and Slow Dynamics.............................................................. 2.2.1 Linear Stability Analysis ........................................................ 2.2.2 Stable and Unstable Manifolds............................................... 2.2.3 Exchange of Stability .............................................................. 2.2.4 Amplitude Equations .............................................................. 2.3 Bifurcations of Periodic Orbits........................................................... 2.3.1 Hopf Bifurcation....................................................................... 2.3.2 Derivation of the Amplitude Equation.................................... 2.3.3 Instabilities of Periodic Orbits ............................................... 2.4 Example: Exothermic Reaction . ......................................................... 2.4.1 Bifurcation of Stationary States ............................................. 2.4.2 Hopf
Bifurcation....................................................................... 2.4.3 Branches of Periodic Orbits .................................................. 2.5 Example: Population Dynamics ........................................................ 2.5.1 Prey-Predator Models ........................................................... 2.5.2 Stability and Bifurcations........................................................ 2.5.3 Periodic Orbits ....................................................................... 3 Global Bifurcations 3.1 Topology of Bifurcations .................................................................... 3.1.1 More Ways to Create and Break PeriodicOrbits................... 3.1.2 Bifurcations in a System with Three Stationary States ... 3.2 Global Bifurcations in the Exothermic Reaction................................. 3.2.1 Basin Boundaries....................................................................... 3.2.2 Saddle-Loop Bifurcations........................................................ 3.2.3 Sniper Bifurcation.................................................................... 3.3 Bifurcation at Double-Zero Eigenvalue............................................... 3.3.1 Locating a Double Zero........................................................... 3.3.2 Quadratic Normal Form ........................................................ 3.3.3 Expansion in the Vicinity of Cusp Singularity ..................... 3.4 Almost Hamiltonian Dynamics........................................................... 3.4.1 Weak Dissipation
................................................................... 3.4.2 Hopf and Saddle-Loop Bifurcations ...................................... 3.4.3 Bifurcation Diagrams .............................................................. 3.4.4 Basin Boundaries ................................................................... 33 34 34 35 37 38 40 41 41 44 45 47 49 49 52 54 56 56 58 61 62 62 64 65 69 70 70 72 74 74 75 78 80 80 81 82 85 85 87 88 9լ
CONTENTS 3.5 3.6 Systems with Separated Time Scales.................................................... 3.5.1 Fast and Slow Variables............................................................. 3.5.2 Van der Pol Oscillator................................................................ 3.5.3 FitzHugh-Nagumo Equation.................................................... 3.5.4 Canards......................................................................................... Venturing to Higher Dimensions .......................................................... 3.6.1 Dynamics Near Triple-Zero Eigenvalue .................................. 3.6.2 Double Hopf Bifurcation .......................................................... 3.6.3 Blue Sky Catastrophe................................................................ 4 Chaotic, Forced, and Coupled Oscillators 4.1 4.2 4.3 4.4 4.5 4.6 Approaches to Hamiltonian Chaos....................................................... 4.1.1 Hiding in Plain Sight................................................................... 4.1.2 Resonances and Small Divisors................................................. 4.1.3 Example: Hénon-Heiles Model................................................. 4.1.4 Quantitative Measures of Chaos ............................................... Approaches to Dissipative Chaos........................................................... 4.2.1 Distilling Turbulence into SimpleModels ................................ 4.2.2 Chaotic Attractors....................................................................... 4.2.3
Period-Doubling Cascade.......................................................... 4.2.4 Strange, Chaotic, or Both?....................................................... Chaos Near a Homoclinic....................................................................... 4.3.1 Shilnikov’s Snake ....................................................................... 4.3.2 Complexity in Chaotic Models................................................. 4.3.3 Lorenz Model ............................................................................. Weakly Forced Oscillators....................................................................... 4.4.1 Phase Perturbations.................................................................... 4.4.2 Forced Harmonic Oscillator....................................................... 4.4.3 Weakly Forced Hamiltonian System ........................................ Effects of Strong Forcing ....................................................................... 4.5.1 Universal and Standard Mappings........................................... 4.5.2 Forced Dissipative Oscillators ................................................. 4.5.3 Forced Relaxation Oscillator .................................................... Coupled Oscillators ................................................................................ 4.6.1 Phase Dynamics.......................................................................... 4.6.2 Coupled Pendulums.................................................................... 4.6.3 Coupled Relaxation
Oscillators................................................. 4.6.4 Synchronization in Large Ensembles........................................ ix 92 92 93 94 96 97 97 100 101 103 104 104 106 108 Ill 114 114 116 117 120 123 123 125 129 136 136 138 140 142 142 145 147 152 152 153 156 158
CONTENTS X 5 Dynamical Systems in Space 5.1 5.2 5.3 5.4 5.5 5.6 Space-Dependent Equilibria.................................................................... 5.1.1 Basic Equations .......................................................................... 5.1.2 Stationary Solution in One Dimension..................................... 5.1.3 Systems with Mass Conservation.............................................. Propagating Fronts................................................................................... 5.2.1 Advance into a Metastable State.............................................. 5.2.2 Propagation into an Unstable State ......................................... 5.2.3 Pushed Fronts ............................................................................. Separated Time and Length Scales....................................................... 5.3.1 Two-Component Reaction-Diffusion System ......................... 5.3.2 Stationary and Mobile Fronts ................................................. 5.3.3 Stationary and Mobile Bands.................................................... 5.3.4 Wave Trains ................................................................................ Symmetry-Breaking Bifurcations.......................................................... 5.4.1 Amplitude Equations ................................................... 5.4.2 Bifurcation Expansion .............................................................. 5.4.3 Interacting Modes...................................................................... 5.4.4 Plane Waves and their
Stability................................................. Resonant Interactions............................................................................. 5.5.1 Triplet Resonance....................................................................... 5.5.2 Stripes-Hexagons Competition................................................. 5.5.3 Standing Waves .......................................................................... Nonuniform Patterns............................................................................... 5.6.1 Propagation of a Stationary Pattern........................................ 5.6.2 Self-Induced Pinning................................................................... 5.6.3 Propagating Wave Pattern ....................................................... 5.6.4 Nonuniform Wave Patterns....................................................... 163 163 163 165 168 170 170 175 178 180 180 183 187 192 198 198 200 202 204 207 207 210 212 215 215 218 221 223 Bibliography 227 Online Files 233 Illustration Credits 235
|
adam_txt |
Contents Preface 1 Whence Dynamical Systems 1.1 Classical Mechanics. 1.1.1 Conservative Equations of Motion. 1.1.2 Systems with One Degree of Freedom. 1.1.3 Symmetries and Conservation Laws . 1.1.4 Interacting Particles. 1.1.5 Dissipative Motion . 1.2 Chemical Kinetics . 1.2.1 Mass Action . 1.2.2 Adsorption and Catalysis. 1.2.3 Autocatalysis and Self-Inhibition. 1.2.4 Thermal Effects. 1.3 Biological Models. 1.3.1 Population Dynamics . 1.3.2 Epidemiological Models. 1.3.3 Neural and Genetic Networks . 1.4 Electric Currents. 1.4.1 Electric Circuits.
1.4.2 Electrochemical Reactions. 1.4.3 Membrane Transport. 1.5 Spatially Extended Systems . 1.5.1 From Time to Coordinate Dependence . 1.5.2 Fourier Decomposition. 1.6 Continuous vs. Discrete. 1.6.1 Iterative Systems . 1.6.2 From Continuous to Discrete. 1.6.3 Poincaré Maps. x¡ 1 2 2 4 6 8 9 11 11 13 16 16 18 18 20 21 22 22 24 25 26 26 27 29 29 30 31
viii CONTENTS 2 Local Bifurcations 2.1 Bifurcation of Stationary States . 2.1.1 Branches of Stationary States . 2.1.2 Bifurcation Expansion. 2.1.3 Fold and Transcriticai Bifurcations . 2.1.4 Cusp Singularity. 2.1.5 Higher Singularities . 2.2 Stability and Slow Dynamics. 2.2.1 Linear Stability Analysis . 2.2.2 Stable and Unstable Manifolds. 2.2.3 Exchange of Stability . 2.2.4 Amplitude Equations . 2.3 Bifurcations of Periodic Orbits. 2.3.1 Hopf Bifurcation. 2.3.2 Derivation of the Amplitude Equation. 2.3.3 Instabilities of Periodic Orbits . 2.4 Example: Exothermic Reaction . . 2.4.1 Bifurcation of Stationary States . 2.4.2 Hopf
Bifurcation. 2.4.3 Branches of Periodic Orbits . 2.5 Example: Population Dynamics . 2.5.1 Prey-Predator Models . 2.5.2 Stability and Bifurcations. 2.5.3 Periodic Orbits . 3 Global Bifurcations 3.1 Topology of Bifurcations . 3.1.1 More Ways to Create and Break PeriodicOrbits. 3.1.2 Bifurcations in a System with Three Stationary States . 3.2 Global Bifurcations in the Exothermic Reaction. 3.2.1 Basin Boundaries. 3.2.2 Saddle-Loop Bifurcations. 3.2.3 Sniper Bifurcation. 3.3 Bifurcation at Double-Zero Eigenvalue. 3.3.1 Locating a Double Zero. 3.3.2 Quadratic Normal Form . 3.3.3 Expansion in the Vicinity of Cusp Singularity . 3.4 Almost Hamiltonian Dynamics. 3.4.1 Weak Dissipation
. 3.4.2 Hopf and Saddle-Loop Bifurcations . 3.4.3 Bifurcation Diagrams . 3.4.4 Basin Boundaries . 33 34 34 35 37 38 40 41 41 44 45 47 49 49 52 54 56 56 58 61 62 62 64 65 69 70 70 72 74 74 75 78 80 80 81 82 85 85 87 88 9լ
CONTENTS 3.5 3.6 Systems with Separated Time Scales. 3.5.1 Fast and Slow Variables. 3.5.2 Van der Pol Oscillator. 3.5.3 FitzHugh-Nagumo Equation. 3.5.4 Canards. Venturing to Higher Dimensions . 3.6.1 Dynamics Near Triple-Zero Eigenvalue . 3.6.2 Double Hopf Bifurcation . 3.6.3 Blue Sky Catastrophe. 4 Chaotic, Forced, and Coupled Oscillators 4.1 4.2 4.3 4.4 4.5 4.6 Approaches to Hamiltonian Chaos. 4.1.1 Hiding in Plain Sight. 4.1.2 Resonances and Small Divisors. 4.1.3 Example: Hénon-Heiles Model. 4.1.4 Quantitative Measures of Chaos . Approaches to Dissipative Chaos. 4.2.1 Distilling Turbulence into SimpleModels . 4.2.2 Chaotic Attractors. 4.2.3
Period-Doubling Cascade. 4.2.4 Strange, Chaotic, or Both?. Chaos Near a Homoclinic. 4.3.1 Shilnikov’s Snake . 4.3.2 Complexity in Chaotic Models. 4.3.3 Lorenz Model . Weakly Forced Oscillators. 4.4.1 Phase Perturbations. 4.4.2 Forced Harmonic Oscillator. 4.4.3 Weakly Forced Hamiltonian System . Effects of Strong Forcing . 4.5.1 Universal and Standard Mappings. 4.5.2 Forced Dissipative Oscillators . 4.5.3 Forced Relaxation Oscillator . Coupled Oscillators . 4.6.1 Phase Dynamics. 4.6.2 Coupled Pendulums. 4.6.3 Coupled Relaxation
Oscillators. 4.6.4 Synchronization in Large Ensembles. ix 92 92 93 94 96 97 97 100 101 103 104 104 106 108 Ill 114 114 116 117 120 123 123 125 129 136 136 138 140 142 142 145 147 152 152 153 156 158
CONTENTS X 5 Dynamical Systems in Space 5.1 5.2 5.3 5.4 5.5 5.6 Space-Dependent Equilibria. 5.1.1 Basic Equations . 5.1.2 Stationary Solution in One Dimension. 5.1.3 Systems with Mass Conservation. Propagating Fronts. 5.2.1 Advance into a Metastable State. 5.2.2 Propagation into an Unstable State . 5.2.3 Pushed Fronts . Separated Time and Length Scales. 5.3.1 Two-Component Reaction-Diffusion System . 5.3.2 Stationary and Mobile Fronts . 5.3.3 Stationary and Mobile Bands. 5.3.4 Wave Trains . Symmetry-Breaking Bifurcations. 5.4.1 Amplitude Equations . 5.4.2 Bifurcation Expansion . 5.4.3 Interacting Modes. 5.4.4 Plane Waves and their
Stability. Resonant Interactions. 5.5.1 Triplet Resonance. 5.5.2 Stripes-Hexagons Competition. 5.5.3 Standing Waves . Nonuniform Patterns. 5.6.1 Propagation of a Stationary Pattern. 5.6.2 Self-Induced Pinning. 5.6.3 Propagating Wave Pattern . 5.6.4 Nonuniform Wave Patterns. 163 163 163 165 168 170 170 175 178 180 180 183 187 192 198 198 200 202 204 207 207 210 212 215 215 218 221 223 Bibliography 227 Online Files 233 Illustration Credits 235 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Pisʹmen, Leonid Michajlovič ca. 20./21. Jh |
author_GND | (DE-588)1051929032 |
author_facet | Pisʹmen, Leonid Michajlovič ca. 20./21. Jh |
author_role | aut |
author_sort | Pisʹmen, Leonid Michajlovič ca. 20./21. Jh |
author_variant | l m p lm lmp |
building | Verbundindex |
bvnumber | BV047341348 |
callnumber-first | Q - Science |
callnumber-label | QA845 |
callnumber-raw | QA845 |
callnumber-search | QA845 |
callnumber-sort | QA 3845 |
callnumber-subject | QA - Mathematics |
classification_rvk | UG 3900 |
ctrlnum | (OCoLC)1268190244 (DE-599)KXP1736798103 |
dewey-full | 003/.85 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.85 |
dewey-search | 003/.85 |
dewey-sort | 13 285 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Physik Informatik |
discipline_str_mv | Physik Informatik |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02250nam a22004578c 4500</leader><controlfield tag="001">BV047341348</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211118 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210623s2021 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138591714</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-138-59171-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268190244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1736798103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA845</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.85</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pisʹmen, Leonid Michajlovič</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1051929032</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Working with dynamical systems</subfield><subfield code="b">a toolbox for scientists and engineers</subfield><subfield code="c">Professor LM Pismen, Department of Chemical Engineering, Technion - Israel Institute of Technology</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 235 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in computational biophysics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book provides working tools for the study and design of dynamical systems, emphasizing qualitative analysis over complex mathematics. The author includes executable Mathematica notebooks and extensive examples for discussion of mechanical models, models of chemical reactions, dynamics of patterns, and dynamical systems in space"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-429-48885-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032743741&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032743741</subfield></datafield></record></collection> |
id | DE-604.BV047341348 |
illustrated | Illustrated |
index_date | 2024-07-03T17:34:30Z |
indexdate | 2024-07-10T09:09:27Z |
institution | BVB |
isbn | 9781138591714 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032743741 |
oclc_num | 1268190244 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xiii, 235 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
series2 | Series in computational biophysics |
spelling | Pisʹmen, Leonid Michajlovič ca. 20./21. Jh. Verfasser (DE-588)1051929032 aut Working with dynamical systems a toolbox for scientists and engineers Professor LM Pismen, Department of Chemical Engineering, Technion - Israel Institute of Technology First edition Boca Raton ; London ; New York CRC Press 2021 xiii, 235 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Series in computational biophysics Includes bibliographical references and index "This book provides working tools for the study and design of dynamical systems, emphasizing qualitative analysis over complex mathematics. The author includes executable Mathematica notebooks and extensive examples for discussion of mechanical models, models of chemical reactions, dynamics of patterns, and dynamical systems in space"-- Chaostheorie (DE-588)4009754-7 gnd rswk-swf Nichtlineares dynamisches System (DE-588)4126142-2 gnd rswk-swf Dynamics Chaotic behavior in systems Nichtlineares dynamisches System (DE-588)4126142-2 s Chaostheorie (DE-588)4009754-7 s DE-604 Erscheint auch als Online-Ausgabe 978-0-429-48885-6 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032743741&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Pisʹmen, Leonid Michajlovič ca. 20./21. Jh Working with dynamical systems a toolbox for scientists and engineers Chaostheorie (DE-588)4009754-7 gnd Nichtlineares dynamisches System (DE-588)4126142-2 gnd |
subject_GND | (DE-588)4009754-7 (DE-588)4126142-2 |
title | Working with dynamical systems a toolbox for scientists and engineers |
title_auth | Working with dynamical systems a toolbox for scientists and engineers |
title_exact_search | Working with dynamical systems a toolbox for scientists and engineers |
title_exact_search_txtP | Working with dynamical systems a toolbox for scientists and engineers |
title_full | Working with dynamical systems a toolbox for scientists and engineers Professor LM Pismen, Department of Chemical Engineering, Technion - Israel Institute of Technology |
title_fullStr | Working with dynamical systems a toolbox for scientists and engineers Professor LM Pismen, Department of Chemical Engineering, Technion - Israel Institute of Technology |
title_full_unstemmed | Working with dynamical systems a toolbox for scientists and engineers Professor LM Pismen, Department of Chemical Engineering, Technion - Israel Institute of Technology |
title_short | Working with dynamical systems |
title_sort | working with dynamical systems a toolbox for scientists and engineers |
title_sub | a toolbox for scientists and engineers |
topic | Chaostheorie (DE-588)4009754-7 gnd Nichtlineares dynamisches System (DE-588)4126142-2 gnd |
topic_facet | Chaostheorie Nichtlineares dynamisches System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032743741&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pisʹmenleonidmichajlovic workingwithdynamicalsystemsatoolboxforscientistsandengineers |