Metal oxide nanocomposites: synthesis and applications
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2021
Beverly, MA Scrivener Publishing |
Schlagworte: | |
Online-Zugang: | Cover Inhaltsverzeichnis |
Beschreibung: | xv, 402 Seiten Illustrationen, Diagramme |
ISBN: | 9781119363576 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047337201 | ||
003 | DE-604 | ||
005 | 20211118 | ||
007 | t | ||
008 | 210621s2021 a||| |||| 00||| eng d | ||
020 | |a 9781119363576 |9 978-1-119-36357-6 | ||
035 | |a (OCoLC)1277025499 | ||
035 | |a (DE-599)KXP1728079713 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a UV 9250 |0 (DE-625)146924: |2 rvk | ||
245 | 1 | 0 | |a Metal oxide nanocomposites |b synthesis and applications |c edited by B. Raneesh and Visakh P.M. |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2021 | |
264 | 1 | |a Beverly, MA |b Scrivener Publishing | |
300 | |a xv, 402 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Metalloxide |0 (DE-588)4169619-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanokomposit |0 (DE-588)4768127-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanokomposit |0 (DE-588)4768127-5 |D s |
689 | 0 | 1 | |a Metalloxide |0 (DE-588)4169619-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Balakrishnan, Raneesh |d 1986- |0 (DE-588)123578004X |4 edt | |
700 | 1 | |a P. M., Visakh |d 1984- |0 (DE-588)1081104791 |4 edt | |
856 | 4 | 2 | |m V:DE-576;X:WILEY |q image/jpeg |u http://swbplus.bsz-bw.de/bsz1728079713cov.htm |v 20201112180234 |3 Cover |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032739684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032739684 |
Datensatz im Suchindex
_version_ | 1804182551164616704 |
---|---|
adam_text | Contents Preface 1 2 Metal Oxide Nanocomposites: State-of-the-Art and New Challenges Visakh PM. and B. Raneesh 1.1 Introduction to Nanocomposites 1.2 Graphene-Based Metal and Metal Oxide Nanocomposites 1.3 Carbon Nanotube-Metal Oxide Nanocomposites 1.4 Metal Oxide-Based Nanocomposites Application Towards Photocatalysis 1.5 Metal Oxide Nanomaterials for Sensor Applications 1.6 Metal Oxide Nanocomposites and its Thermal Property Analysis 1.7 Semiconducting Metal Oxides for Photocatalytic and Gas Sensing Applications 1.8 Applications of Metal Oxide-Based Nanocomposites References Introduction to Nanocomposites Ritu Malik, VijayK. Tomer, Vandna Chaudhary, Nirav Joshi and Surender Duhan 2.1 Composites: An Introduction 2.2 Functions of Fibers and Matrix 2.3 Classification of Composites 2.4 Matrix Based Composites 2.4.1 Polymer Matrix Materials 2.4.1(a) Thermoplastics 2.4.1(b) Thermosets 2.4.2 Metal Matrix Materials 2.4.3 Ceramic Matrix Materials 2.4.4 CarbonJMatrices xiii 1 1 4 5 8 9 11 13 14 16 27 28 28 30 30 30 31 32 32 33 33 v
vi Contents 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.4.5 Glass Matrices Reinforcements 2.5.1 Fiber Reinforcement 2.5.1(a) Glass Fiber 2.5.1(b) Metals Fibers 2.5.1(c) Alumina Fibers 2.5.1(d) Boron Fibers 2.5.1(e) Silicon Carbide Fibers 2.5.1(f) Aramid Fibers 2.5.1(g) Quartz and Silica Fibers 2.5.1(h) Graphite Fibers 2.5.2 Whiskers 2.5.3 Laminar Composites 2.5.4 Flake Composites 2.5.5 Filled Composites 2.5.6 Particulate Reinforced Composites 2.5.7 Cermets 2.5.8 Microspheres 2.5.8(a) Solid Glass Microspheres (SGM) 2.5.8(b) Hollow Microspheres (HM) Polymer Composites 2.6.1 Glass Fiber-Reinforced Polymer (GFRP) Composites 2.6.2 Carbon Fiber-Reinforced Polymer (CFRP) Composites 2.6.3 Aramid Fiber-Reinforced Polymer Composites Composites Processing Composites Product Fabrication Application of Composites 2.9.1 The Aerospace Industry 2.9.2 The Automotive Industry 2.9.3 The Sporting Goods Industry 2.9.4 Marine Applications 2.9.5 Consumer Goods 2.9.6 Construction and Civil Structures 2.9.7 Industrial Applications Special Features of Composites Composites vs Metals Advantages of Composites Disadvantage of Composites Conclusion Acknowledgments References 33 34 34 35 36 36 36 37 37 37 38 38 38 39 39 40 40 40 40 41 41 42 43 43 44 44 46 46 46 47 47 47 47 48 48 49 50 51 51 51 52
Contents 3 4 Graphene-Based Metal and Metal Oxide Nanocomposites Anupma Thakur, Rishabh Jain, Pravem Kumar and Pooja D 3.1 Introduction 3.2 Graphene 3.3 Reduced Graphene Oxide 3.4 Graphene-Based Composites 3.5 Graphene-Based Hybrid Nanocomposites 3.6 The Mechanics of Graphene Nanocomposites 3.7 Functionalization 3.7.1 Covalent Functionalization 3.7.2 Non-Covalent Functionalization 3.8 Thermal Properties 3.9 Conclusions References Carhon Nanotube-Metal Oxide Nanocomposites Dengjun Wang, Wrnjie Sun and Chunming Su 4.1 Introduction 4.2 Synthesis Methods 4.2.1 Ex Situ Approach 4.2.2 In Situ Approach 4.3 Environmental Applications 4.3.1 Sensors 4.3.2 Antimicrobial Agents 4.3.3 Desalination Membranes 4.3.4 Activated Oxidation of Organic Contaminants 4.3.5 Photodegradation of Organics 4.3.6 Chemical Reductive Removal of Contaminants 4.3.7 Adsorptive Removal of Contaminants 4.3.7.1 Adsorptive Removal of Organic Contaminants 4.3.7.2 Adsorptive Removal of Inorganic Contaminants 4.3.8 Remediation of Sediment, Soil, and Groundwater 4.4 Environmental Fate, Transport, and Transformation 4.4.1 Colloidal Stability and Aggregation 4.4.2 Physical Transport and Deposition 4.4.3 Chemical and Biological Transformation 4.5 Environmental Implications 4.6 Conclusions and Future Research Direction References vii 55 55 56 60 61 63 65 66 66 67 67 68 68 73 74 75 77 81 95 95 101 102 103 104 104 106 106 107 109 110 110 113 116 119 122 125
viii 5 6 Contents Metal Oxide-Based Nanocomposites Application Towards Photocatalysis Li Fu and Yuhong Zheng 5.1 Introduction 5.2 Nanocomposite Photocatalysts Based on Metal Oxide 5.2.1 Nanocomposite Photocatalysts Based on Ті02 5.2.2 Nanocomposite Photocatalysts Based on ZnO 5.2.3 Nanocomposite Photocatalysts Based on WOx 5.3 Application of Metal Oxide Compositesin Photocatalysis 5.3.1 Water Splitting for Hydrogen Generation 5.3.2 Photo-Degradation of Pollutants 5.3.3 Wettability Patterning Based on Photocatalysts 5.4 Summary and Outlook References 155 155 158 158 163 166 167 167 169 171 171 172 Metal Oxide Nanomaterials for Sensor Applications 179 K. Jayamoorthy, P. Saravanan, S. Sureshand K.I. Dhanalekshmi 6.1 Introduction 179 6.2 Binding of Metal Oxide with Imidazole 182 6.2.1 Surface Functionalization of Nano ZnO With 3-Aminopropyltriethoxysilane (APTS) 182 6.2.2 Surface Functionalization of Nano NiO With 5-Amino-2-Mercaptobenzimidazole (AMB) 182 6.2.3 Surface Functionalization of Fe203 Nanoparticles 183 6.2.4 Surface Functionalization of Nano Ag304 With 5-Amino-2-Mercaptobenzimidazole (AMB) 183 6.3 Characterizations 183 6.3.1 XRD Analysis of Fe203 Nanoparticles 184 6.3.2 SEM/EDX, AFM and ТЕМ Analysis of Fe203 Nanoparticles 184 6.3.3 HR-SEM Images and EDX Spectral Analysis of ո-NiO and f-NiO 187 6.3.4 Characterization of Nano ZnO 187 6.3.5 X-Ray Diffraction Pattern, SEM Images and EDX Spectral Studies of Ag304 Nanoparticles with AMB 188 6.4 Absorption Characteristics 190 6.4.1 Absorption Characteristics of AMB-NiO Nanoparticles 190 6.4.2 Absorption Characteristics of
APTS-ZnO Nanoparticles 191
Contents Absorption Characteristics of APTS-Fe203 Nanoparticles 6.4.4 Absorption Characteristics of AMB-Ag304 Nanoparticles 6.5 Emission Characteristics 6.5.1 Fluorescence Characteristics of AMB-NiO Nanoparticles 6.5.2 Fluorescence Characteristics of ZnO Nanoparticles With APTS 6.5.3 Fluorescence Quenching of APTS by Fe203 Nanoparticles 6.5.4 Evidence for Linkage 6.5.5 Fluorescence Quenching Characteristics of AMB Modified Ag304 Nanoparticles and Mechanism 6.6 Sensor Mechanism 6.7 Conclusions References ix 6.4.3 Metal Oxide Nanocomposites and its Thermal Property Analysis V. Velmurugan, G. Kannan and A. Nirmala Grace 7.1 Introduction 7.2 Metal and Metal Oxide Nanoparticles in Thermal Management 7.3 Synthesis Procedures 7.3.1 Two-Step Process 7.3.2 One-Step Process 7.4 Mechanism of Thermal Conductivity Enhancement 7.4.1 Brownian Motion of Nanoparticles 7.4.2 Clustering of Nanoparticles 7.4.3 Liquid Layering Around Nanoparticles 7.4.4 Water Nanolayer 7.4.5 Ballistic Phonon Transport in Nanoparticles 7.4.6 Near Field Radiation 7.4.7 Thermal Transport Phenomena in Nanoparticle Suspensions 7.5 Thermal Conductivity Models for Nanofluids 7.5.1 Classical Effective Medium Theory (EMT)Based Models 192 192 194 194 196 197 199 199 201 202 203 207 208 209 210 210 211 215 216 218 219 221 223 223 224 224 225
x Contents 7.5.2 Nanolayer-Based Models 7.5.2.1 Theoretical Models 7.5.22 Combined Models 7.5.2.3 Computational Models 7.5.3 Brownian Motion-Based Models 7.5.3.1 Theoretical Models 7.5.3.2 Computational Models 7.5.4 Aggregation-Based Models 7.5.4.1 Combined Effects Models 7.5.4.2 Computational Models 7.5.5 Other Mechanism-Based Models References 8 Semiconducting Metal Oxides for Photocatalytic and Gas Sensing Applications Ritu Malik, VijayK. Tomer, Vandna Chaudhary, Nirav Joshi and Surender Duhan 8.1 Semiconducting Metal Oxideas Photocatalysts 8.1.1 Organic Dyes as Major Source of Water Pollution 8.1.2 Conventional Method used for Dye Degradation 8.1.3 Advanced Oxidation Processes (AOPs) 8.1.3.1 Homogeneous Photocatalysis 8.1.3.2 Heterogeneous Photocatalysts 8.1.4 Role of Electronic Structure of Semiconducting Metal Oxide in Photocatalysis 8.1.5 Basic Principle of Photocatalysis 8.1.6 Oxidizing Species Generation Mechanism 8.1.7 Semiconductor Photocatalysts 8.1.8 Kinetic Studies of Semiconductor Photocatalysis 8.1.9 Parameter Affecting the Dye Degradation 8.1.9.1 Catalyst Loading 8.1.9.2 Dye Concentration 8.1.9.3 Temperature 8.1.9.4 pH 8.2 Semiconducting Metal Onde as Gas Sensor 8.2.1 Need of Gas Sensors 8.2.2 Evolution of Gas Sensors 8.2.2.1 Canary in a Cage 8.2.2.2 Flame Safety Lamp (Davey’s Lamp) 8.2.3 Semiconducting Metal Oxides as Gas Sensors 8.2.4 Metal Oxide Gas Sensing Mechanism 8.2.5 Factors Influencing the Sensor Performance 229 229 235 239 240 240 245 248 248 250 252 255 265 266 267 267 268 269 269 272 274 275 276 278 280 280 280 280 281 281 282 285 285 285 286
287 289
Contents 8.3 9 Conclusion Acknowledgments References Applications of Metal Oxide-Based Nanocomposites Visakh P.M. 9.1 Introduction 9.2 Food and Agricultural Sector 9.3 Applications in Medicine 9.4 Water Barrier Properties 9.5 Thermal and Flame Retardants Apparitions 9.6 Water Disinfection Ability 9.7 Water Flux Application 9.8 Nanocomposites Membrane Apparitions 9.9 Wastewater Treatment 9.10 Non-Solvent Induced Phase Separation 9.11 Adsorption Performances Apparitions 9.12 Electrocatalytic Applications 9.13 Biosensors Application 9.14 Sensing Applications 9.15 Other Industrial Appreciations 9.16 Conclusions References 10 Triboelectric Nanogenerators for Energy Harvesting and Sensing Applications Búrni Badherdheen, B. Raneesh and P.M. Visakh 10.1 Introduction 10.2 What is Triboelectric Effect? 10.3 Mechanism of Triboelectric Nanogenerator (TENG) 10.4 How to Select the Materials for Your TENG? 10.5 Basic Operating Modes of TENG 10.5.1 Vertical Contact Separation Mode 10.5.2 Contact Sliding Mode 10.5.3 Single Electrode Mode 10.5.4 Freestanding Triboelectric Layer Mode 10.6 TENG as Mechanical Energy Harvester 10.6.1 TENG Based on Vertical Contact Separation Mode 10.6.2 TENG Based on Lateral Sliding Mode 10.6.3 TENG Based on Single Electrode Mode xi 291 292 292 303 303 305 306 307 307 308 308 309 310 310 310 311 312 313 315 316 317 327 327 329 329 330 331 331 332 333 334 334 335 348 350
xii Contents 10.6.4 10.7 TENG Based on Free Standing Triboelectric Layer Mode Conclusion and Future Perspectives References 352 353 353 11 Metal Oxide Nanocomposites for Wastewater Treatment Pratiksha Joshi, Kanika Gupta, Rash։ Gusain and От PKhatri 11.1 Introduction 11.2 Adsorptive Removal of Water Pollutants 11.3 Photocatalytic Decomposition of Water Pollutants 11.4 Metal Oxide Nanocomposites 11.5 Removal and Decomposition of Inorganic Pollutants by Metal Oxide Nanocomposites 11.6 Removal and Decomposition of Organic Pollutants by Metal Oxide Nanocomposites 11.6.1 Adsorptive Removal and Photocatalytic Decomposition of Dyes 11.6.2 Adsorptive Removal and Photocatalytic Decomposition of APIs 11.6.3 Adsorptive Removal and Photocatalytic Decomposition of Pesticides 11.7 Conclusion and Outlook References 361 382 384 385 Index 399 362 363 364 365 367 375 375 379
|
adam_txt |
Contents Preface 1 2 Metal Oxide Nanocomposites: State-of-the-Art and New Challenges Visakh PM. and B. Raneesh 1.1 Introduction to Nanocomposites 1.2 Graphene-Based Metal and Metal Oxide Nanocomposites 1.3 Carbon Nanotube-Metal Oxide Nanocomposites 1.4 Metal Oxide-Based Nanocomposites Application Towards Photocatalysis 1.5 Metal Oxide Nanomaterials for Sensor Applications 1.6 Metal Oxide Nanocomposites and its Thermal Property Analysis 1.7 Semiconducting Metal Oxides for Photocatalytic and Gas Sensing Applications 1.8 Applications of Metal Oxide-Based Nanocomposites References Introduction to Nanocomposites Ritu Malik, VijayK. Tomer, Vandna Chaudhary, Nirav Joshi and Surender Duhan 2.1 Composites: An Introduction 2.2 Functions of Fibers and Matrix 2.3 Classification of Composites 2.4 Matrix Based Composites 2.4.1 Polymer Matrix Materials 2.4.1(a) Thermoplastics 2.4.1(b) Thermosets 2.4.2 Metal Matrix Materials 2.4.3 Ceramic Matrix Materials 2.4.4 CarbonJMatrices xiii 1 1 4 5 8 9 11 13 14 16 27 28 28 30 30 30 31 32 32 33 33 v
vi Contents 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.4.5 Glass Matrices Reinforcements 2.5.1 Fiber Reinforcement 2.5.1(a) Glass Fiber 2.5.1(b) Metals Fibers 2.5.1(c) Alumina Fibers 2.5.1(d) Boron Fibers 2.5.1(e) Silicon Carbide Fibers 2.5.1(f) Aramid Fibers 2.5.1(g) Quartz and Silica Fibers 2.5.1(h) Graphite Fibers 2.5.2 Whiskers 2.5.3 Laminar Composites 2.5.4 Flake Composites 2.5.5 Filled Composites 2.5.6 Particulate Reinforced Composites 2.5.7 Cermets 2.5.8 Microspheres 2.5.8(a) Solid Glass Microspheres (SGM) 2.5.8(b) Hollow Microspheres (HM) Polymer Composites 2.6.1 Glass Fiber-Reinforced Polymer (GFRP) Composites 2.6.2 Carbon Fiber-Reinforced Polymer (CFRP) Composites 2.6.3 Aramid Fiber-Reinforced Polymer Composites Composites Processing Composites Product Fabrication Application of Composites 2.9.1 The Aerospace Industry 2.9.2 The Automotive Industry 2.9.3 The Sporting Goods Industry 2.9.4 Marine Applications 2.9.5 Consumer Goods 2.9.6 Construction and Civil Structures 2.9.7 Industrial Applications Special Features of Composites Composites vs Metals Advantages of Composites Disadvantage of Composites Conclusion Acknowledgments References 33 34 34 35 36 36 36 37 37 37 38 38 38 39 39 40 40 40 40 41 41 42 43 43 44 44 46 46 46 47 47 47 47 48 48 49 50 51 51 51 52
Contents 3 4 Graphene-Based Metal and Metal Oxide Nanocomposites Anupma Thakur, Rishabh Jain, Pravem Kumar and Pooja D 3.1 Introduction 3.2 Graphene 3.3 Reduced Graphene Oxide 3.4 Graphene-Based Composites 3.5 Graphene-Based Hybrid Nanocomposites 3.6 The Mechanics of Graphene Nanocomposites 3.7 Functionalization 3.7.1 Covalent Functionalization 3.7.2 Non-Covalent Functionalization 3.8 Thermal Properties 3.9 Conclusions References Carhon Nanotube-Metal Oxide Nanocomposites Dengjun Wang, Wrnjie Sun and Chunming Su 4.1 Introduction 4.2 Synthesis Methods 4.2.1 Ex Situ Approach 4.2.2 In Situ Approach 4.3 Environmental Applications 4.3.1 Sensors 4.3.2 Antimicrobial Agents 4.3.3 Desalination Membranes 4.3.4 Activated Oxidation of Organic Contaminants 4.3.5 Photodegradation of Organics 4.3.6 Chemical Reductive Removal of Contaminants 4.3.7 Adsorptive Removal of Contaminants 4.3.7.1 Adsorptive Removal of Organic Contaminants 4.3.7.2 Adsorptive Removal of Inorganic Contaminants 4.3.8 Remediation of Sediment, Soil, and Groundwater 4.4 Environmental Fate, Transport, and Transformation 4.4.1 Colloidal Stability and Aggregation 4.4.2 Physical Transport and Deposition 4.4.3 Chemical and Biological Transformation 4.5 Environmental Implications 4.6 Conclusions and Future Research Direction References vii 55 55 56 60 61 63 65 66 66 67 67 68 68 73 74 75 77 81 95 95 101 102 103 104 104 106 106 107 109 110 110 113 116 119 122 125
viii 5 6 Contents Metal Oxide-Based Nanocomposites Application Towards Photocatalysis Li Fu and Yuhong Zheng 5.1 Introduction 5.2 Nanocomposite Photocatalysts Based on Metal Oxide 5.2.1 Nanocomposite Photocatalysts Based on Ті02 5.2.2 Nanocomposite Photocatalysts Based on ZnO 5.2.3 Nanocomposite Photocatalysts Based on WOx 5.3 Application of Metal Oxide Compositesin Photocatalysis 5.3.1 Water Splitting for Hydrogen Generation 5.3.2 Photo-Degradation of Pollutants 5.3.3 Wettability Patterning Based on Photocatalysts 5.4 Summary and Outlook References 155 155 158 158 163 166 167 167 169 171 171 172 Metal Oxide Nanomaterials for Sensor Applications 179 K. Jayamoorthy, P. Saravanan, S. Sureshand K.I. Dhanalekshmi 6.1 Introduction 179 6.2 Binding of Metal Oxide with Imidazole 182 6.2.1 Surface Functionalization of Nano ZnO With 3-Aminopropyltriethoxysilane (APTS) 182 6.2.2 Surface Functionalization of Nano NiO With 5-Amino-2-Mercaptobenzimidazole (AMB) 182 6.2.3 Surface Functionalization of Fe203 Nanoparticles 183 6.2.4 Surface Functionalization of Nano Ag304 With 5-Amino-2-Mercaptobenzimidazole (AMB) 183 6.3 Characterizations 183 6.3.1 XRD Analysis of Fe203 Nanoparticles 184 6.3.2 SEM/EDX, AFM and ТЕМ Analysis of Fe203 Nanoparticles 184 6.3.3 HR-SEM Images and EDX Spectral Analysis of ո-NiO and f-NiO 187 6.3.4 Characterization of Nano ZnO 187 6.3.5 X-Ray Diffraction Pattern, SEM Images and EDX Spectral Studies of Ag304 Nanoparticles with AMB 188 6.4 Absorption Characteristics 190 6.4.1 Absorption Characteristics of AMB-NiO Nanoparticles 190 6.4.2 Absorption Characteristics of
APTS-ZnO Nanoparticles 191
Contents Absorption Characteristics of APTS-Fe203 Nanoparticles 6.4.4 Absorption Characteristics of AMB-Ag304 Nanoparticles 6.5 Emission Characteristics 6.5.1 Fluorescence Characteristics of AMB-NiO Nanoparticles 6.5.2 Fluorescence Characteristics of ZnO Nanoparticles With APTS 6.5.3 Fluorescence Quenching of APTS by Fe203 Nanoparticles 6.5.4 Evidence for Linkage 6.5.5 Fluorescence Quenching Characteristics of AMB Modified Ag304 Nanoparticles and Mechanism 6.6 Sensor Mechanism 6.7 Conclusions References ix 6.4.3 Metal Oxide Nanocomposites and its Thermal Property Analysis V. Velmurugan, G. Kannan and A. Nirmala Grace 7.1 Introduction 7.2 Metal and Metal Oxide Nanoparticles in Thermal Management 7.3 Synthesis Procedures 7.3.1 Two-Step Process 7.3.2 One-Step Process 7.4 Mechanism of Thermal Conductivity Enhancement 7.4.1 Brownian Motion of Nanoparticles 7.4.2 Clustering of Nanoparticles 7.4.3 Liquid Layering Around Nanoparticles 7.4.4 Water Nanolayer 7.4.5 Ballistic Phonon Transport in Nanoparticles 7.4.6 Near Field Radiation 7.4.7 Thermal Transport Phenomena in Nanoparticle Suspensions 7.5 Thermal Conductivity Models for Nanofluids 7.5.1 Classical Effective Medium Theory (EMT)Based Models 192 192 194 194 196 197 199 199 201 202 203 207 208 209 210 210 211 215 216 218 219 221 223 223 224 224 225
x Contents 7.5.2 Nanolayer-Based Models 7.5.2.1 Theoretical Models 7.5.22 Combined Models 7.5.2.3 Computational Models 7.5.3 Brownian Motion-Based Models 7.5.3.1 Theoretical Models 7.5.3.2 Computational Models 7.5.4 Aggregation-Based Models 7.5.4.1 Combined Effects Models 7.5.4.2 Computational Models 7.5.5 Other Mechanism-Based Models References 8 Semiconducting Metal Oxides for Photocatalytic and Gas Sensing Applications Ritu Malik, VijayK. Tomer, Vandna Chaudhary, Nirav Joshi and Surender Duhan 8.1 Semiconducting Metal Oxideas Photocatalysts 8.1.1 Organic Dyes as Major Source of Water Pollution 8.1.2 Conventional Method used for Dye Degradation 8.1.3 Advanced Oxidation Processes (AOPs) 8.1.3.1 Homogeneous Photocatalysis 8.1.3.2 Heterogeneous Photocatalysts 8.1.4 Role of Electronic Structure of Semiconducting Metal Oxide in Photocatalysis 8.1.5 Basic Principle of Photocatalysis 8.1.6 Oxidizing Species Generation Mechanism 8.1.7 Semiconductor Photocatalysts 8.1.8 Kinetic Studies of Semiconductor Photocatalysis 8.1.9 Parameter Affecting the Dye Degradation 8.1.9.1 Catalyst Loading 8.1.9.2 Dye Concentration 8.1.9.3 Temperature 8.1.9.4 pH 8.2 Semiconducting Metal Onde as Gas Sensor 8.2.1 Need of Gas Sensors 8.2.2 Evolution of Gas Sensors 8.2.2.1 Canary in a Cage 8.2.2.2 Flame Safety Lamp (Davey’s Lamp) 8.2.3 Semiconducting Metal Oxides as Gas Sensors 8.2.4 Metal Oxide Gas Sensing Mechanism 8.2.5 Factors Influencing the Sensor Performance 229 229 235 239 240 240 245 248 248 250 252 255 265 266 267 267 268 269 269 272 274 275 276 278 280 280 280 280 281 281 282 285 285 285 286
287 289
Contents 8.3 9 Conclusion Acknowledgments References Applications of Metal Oxide-Based Nanocomposites Visakh P.M. 9.1 Introduction 9.2 Food and Agricultural Sector 9.3 Applications in Medicine 9.4 Water Barrier Properties 9.5 Thermal and Flame Retardants Apparitions 9.6 Water Disinfection Ability 9.7 Water Flux Application 9.8 Nanocomposites Membrane Apparitions 9.9 Wastewater Treatment 9.10 Non-Solvent Induced Phase Separation 9.11 Adsorption Performances Apparitions 9.12 Electrocatalytic Applications 9.13 Biosensors Application 9.14 Sensing Applications 9.15 Other Industrial Appreciations 9.16 Conclusions References 10 Triboelectric Nanogenerators for Energy Harvesting and Sensing Applications Búrni Badherdheen, B. Raneesh and P.M. Visakh 10.1 Introduction 10.2 What is Triboelectric Effect? 10.3 Mechanism of Triboelectric Nanogenerator (TENG) 10.4 How to Select the Materials for Your TENG? 10.5 Basic Operating Modes of TENG 10.5.1 Vertical Contact Separation Mode 10.5.2 Contact Sliding Mode 10.5.3 Single Electrode Mode 10.5.4 Freestanding Triboelectric Layer Mode 10.6 TENG as Mechanical Energy Harvester 10.6.1 TENG Based on Vertical Contact Separation Mode 10.6.2 TENG Based on Lateral Sliding Mode 10.6.3 TENG Based on Single Electrode Mode xi 291 292 292 303 303 305 306 307 307 308 308 309 310 310 310 311 312 313 315 316 317 327 327 329 329 330 331 331 332 333 334 334 335 348 350
xii Contents 10.6.4 10.7 TENG Based on Free Standing Triboelectric Layer Mode Conclusion and Future Perspectives References 352 353 353 11 Metal Oxide Nanocomposites for Wastewater Treatment Pratiksha Joshi, Kanika Gupta, Rash։ Gusain and От PKhatri 11.1 Introduction 11.2 Adsorptive Removal of Water Pollutants 11.3 Photocatalytic Decomposition of Water Pollutants 11.4 Metal Oxide Nanocomposites 11.5 Removal and Decomposition of Inorganic Pollutants by Metal Oxide Nanocomposites 11.6 Removal and Decomposition of Organic Pollutants by Metal Oxide Nanocomposites 11.6.1 Adsorptive Removal and Photocatalytic Decomposition of Dyes 11.6.2 Adsorptive Removal and Photocatalytic Decomposition of APIs 11.6.3 Adsorptive Removal and Photocatalytic Decomposition of Pesticides 11.7 Conclusion and Outlook References 361 382 384 385 Index 399 362 363 364 365 367 375 375 379 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Balakrishnan, Raneesh 1986- P. M., Visakh 1984- |
author2_role | edt edt |
author2_variant | r b rb m v p mv mvp |
author_GND | (DE-588)123578004X (DE-588)1081104791 |
author_facet | Balakrishnan, Raneesh 1986- P. M., Visakh 1984- |
building | Verbundindex |
bvnumber | BV047337201 |
classification_rvk | VE 9850 UV 9250 |
ctrlnum | (OCoLC)1277025499 (DE-599)KXP1728079713 |
discipline | Chemie / Pharmazie Physik |
discipline_str_mv | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01637nam a2200385 c 4500</leader><controlfield tag="001">BV047337201</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211118 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210621s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119363576</subfield><subfield code="9">978-1-119-36357-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1277025499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1728079713</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 9250</subfield><subfield code="0">(DE-625)146924:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal oxide nanocomposites</subfield><subfield code="b">synthesis and applications</subfield><subfield code="c">edited by B. Raneesh and Visakh P.M.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beverly, MA</subfield><subfield code="b">Scrivener Publishing</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 402 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metalloxide</subfield><subfield code="0">(DE-588)4169619-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanokomposit</subfield><subfield code="0">(DE-588)4768127-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanokomposit</subfield><subfield code="0">(DE-588)4768127-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metalloxide</subfield><subfield code="0">(DE-588)4169619-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balakrishnan, Raneesh</subfield><subfield code="d">1986-</subfield><subfield code="0">(DE-588)123578004X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">P. M., Visakh</subfield><subfield code="d">1984-</subfield><subfield code="0">(DE-588)1081104791</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-576;X:WILEY</subfield><subfield code="q">image/jpeg</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz1728079713cov.htm</subfield><subfield code="v">20201112180234</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032739684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032739684</subfield></datafield></record></collection> |
id | DE-604.BV047337201 |
illustrated | Illustrated |
index_date | 2024-07-03T17:33:10Z |
indexdate | 2024-07-10T09:09:21Z |
institution | BVB |
isbn | 9781119363576 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032739684 |
oclc_num | 1277025499 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xv, 402 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley Scrivener Publishing |
record_format | marc |
spelling | Metal oxide nanocomposites synthesis and applications edited by B. Raneesh and Visakh P.M. Hoboken, NJ Wiley 2021 Beverly, MA Scrivener Publishing xv, 402 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Metalloxide (DE-588)4169619-0 gnd rswk-swf Nanokomposit (DE-588)4768127-5 gnd rswk-swf Nanokomposit (DE-588)4768127-5 s Metalloxide (DE-588)4169619-0 s DE-604 Balakrishnan, Raneesh 1986- (DE-588)123578004X edt P. M., Visakh 1984- (DE-588)1081104791 edt V:DE-576;X:WILEY image/jpeg http://swbplus.bsz-bw.de/bsz1728079713cov.htm 20201112180234 Cover Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032739684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Metal oxide nanocomposites synthesis and applications Metalloxide (DE-588)4169619-0 gnd Nanokomposit (DE-588)4768127-5 gnd |
subject_GND | (DE-588)4169619-0 (DE-588)4768127-5 |
title | Metal oxide nanocomposites synthesis and applications |
title_auth | Metal oxide nanocomposites synthesis and applications |
title_exact_search | Metal oxide nanocomposites synthesis and applications |
title_exact_search_txtP | Metal oxide nanocomposites synthesis and applications |
title_full | Metal oxide nanocomposites synthesis and applications edited by B. Raneesh and Visakh P.M. |
title_fullStr | Metal oxide nanocomposites synthesis and applications edited by B. Raneesh and Visakh P.M. |
title_full_unstemmed | Metal oxide nanocomposites synthesis and applications edited by B. Raneesh and Visakh P.M. |
title_short | Metal oxide nanocomposites |
title_sort | metal oxide nanocomposites synthesis and applications |
title_sub | synthesis and applications |
topic | Metalloxide (DE-588)4169619-0 gnd Nanokomposit (DE-588)4768127-5 gnd |
topic_facet | Metalloxide Nanokomposit |
url | http://swbplus.bsz-bw.de/bsz1728079713cov.htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032739684&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT balakrishnanraneesh metaloxidenanocompositessynthesisandapplications AT pmvisakh metaloxidenanocompositessynthesisandapplications |