Data analytics: a small data approach

Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline

Saved in:
Bibliographic Details
Main Authors: Huang, Shuai (Author), Deng, Houtao (Author)
Format: Book
Language:English
Published: Boca Raton CRC Press 2021
Edition:first edition
Series:Chapman & Hall / CRC data science series
Subjects:
Summary:Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline
"Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines. The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book's website: http://dataanalyticsbook.info. Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas. Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition"--
Item Description:Includes index
Physical Description:xiv, 257 Seiten Illustrationen
ISBN:9780367609504
9780367609511

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection!