Data analytics: a small data approach

Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huang, Shuai (VerfasserIn), Deng, Houtao (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton CRC Press 2021
Ausgabe:first edition
Schriftenreihe:Chapman & Hall / CRC data science series
Schlagworte:
Zusammenfassung:Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline
"Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines. The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book's website: http://dataanalyticsbook.info. Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas. Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition"--
Beschreibung:Includes index
Beschreibung:xiv, 257 Seiten Illustrationen
ISBN:9780367609504
9780367609511

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!