Data analytics: a small data approach
Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press
2021
|
Ausgabe: | first edition |
Schriftenreihe: | Chapman & Hall / CRC data science series
|
Schlagworte: | |
Zusammenfassung: | Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline "Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines. The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book's website: http://dataanalyticsbook.info. Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas. Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition"-- |
Beschreibung: | Includes index |
Beschreibung: | xiv, 257 Seiten Illustrationen |
ISBN: | 9780367609504 9780367609511 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047334616 | ||
003 | DE-604 | ||
005 | 20240507 | ||
007 | t | ||
008 | 210617s2021 xxua||| |||| 00||| eng d | ||
020 | |a 9780367609504 |c hardback |9 978-0-367-60950-4 | ||
020 | |a 9780367609511 |c paperback |9 978-0-367-60951-1 | ||
035 | |a (OCoLC)1257809193 | ||
035 | |a (DE-599)KXP1748559419 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-573 |a DE-1050 |a DE-11 |a DE-1043 | ||
050 | 0 | |a QA76.9.Q36 | |
082 | 0 | |a 001.4/2 | |
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Huang, Shuai |e Verfasser |0 (DE-588)1109757786 |4 aut | |
245 | 1 | 0 | |a Data analytics |b a small data approach |c Shuai Huang, Houtao Deng |
250 | |a first edition | ||
264 | 1 | |a Boca Raton |b CRC Press |c 2021 | |
300 | |a xiv, 257 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall / CRC data science series | |
500 | |a Includes index | ||
520 | 3 | |a Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline | |
520 | 3 | |a "Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines. The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book's website: http://dataanalyticsbook.info. Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas. Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition"-- | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
653 | 0 | |a Quantitative research | |
653 | 0 | |a Quantitative research / Data processing | |
653 | 0 | |a R (Computer program language) | |
653 | 0 | |a Python (Computer program language) | |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Deng, Houtao |e Verfasser |0 (DE-588)1156759854 |4 aut | |
776 | 0 | |z 9781003102656 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |a Huang, Shuai |t Data Analytics |d Milton : CRC Press LLC, 2021 |h 1 online resource (274 pages) |z 9781000372458 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032737180 |
Datensatz im Suchindex
_version_ | 1804182546951438336 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Huang, Shuai Deng, Houtao |
author_GND | (DE-588)1109757786 (DE-588)1156759854 |
author_facet | Huang, Shuai Deng, Houtao |
author_role | aut aut |
author_sort | Huang, Shuai |
author_variant | s h sh h d hd |
building | Verbundindex |
bvnumber | BV047334616 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.Q36 |
callnumber-search | QA76.9.Q36 |
callnumber-sort | QA 276.9 Q36 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 530 |
ctrlnum | (OCoLC)1257809193 (DE-599)KXP1748559419 |
dewey-full | 001.4/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 001 - Knowledge |
dewey-raw | 001.4/2 |
dewey-search | 001.4/2 |
dewey-sort | 11.4 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines Informatik |
discipline_str_mv | Allgemeines Informatik |
edition | first edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03744nam a2200517 c 4500</leader><controlfield tag="001">BV047334616</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240507 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210617s2021 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367609504</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-367-60950-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367609511</subfield><subfield code="c">paperback</subfield><subfield code="9">978-0-367-60951-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1257809193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1748559419</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1043</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.Q36</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.4/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Shuai</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1109757786</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data analytics</subfield><subfield code="b">a small data approach</subfield><subfield code="c">Shuai Huang, Houtao Deng</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">first edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 257 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall / CRC data science series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines. The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book's website: http://dataanalyticsbook.info. Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas. Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantitative research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantitative research / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Houtao</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1156759854</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9781003102656</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="a">Huang, Shuai</subfield><subfield code="t">Data Analytics</subfield><subfield code="d">Milton : CRC Press LLC, 2021</subfield><subfield code="h">1 online resource (274 pages)</subfield><subfield code="z">9781000372458</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032737180</subfield></datafield></record></collection> |
id | DE-604.BV047334616 |
illustrated | Illustrated |
index_date | 2024-07-03T17:32:08Z |
indexdate | 2024-07-10T09:09:17Z |
institution | BVB |
isbn | 9780367609504 9780367609511 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032737180 |
oclc_num | 1257809193 |
open_access_boolean | |
owner | DE-573 DE-1050 DE-11 DE-1043 |
owner_facet | DE-573 DE-1050 DE-11 DE-1043 |
physical | xiv, 257 Seiten Illustrationen |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | CRC Press |
record_format | marc |
series2 | Chapman & Hall / CRC data science series |
spelling | Huang, Shuai Verfasser (DE-588)1109757786 aut Data analytics a small data approach Shuai Huang, Houtao Deng first edition Boca Raton CRC Press 2021 xiv, 257 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Chapman & Hall / CRC data science series Includes index Abstraction -- Recognition -- Resonance -- Learning (I) -- Diagnosis -- Learning (II) -- Scalability : LASSO & PCA -- Pragmatism -- Synthesis : architecture & pipeline "Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines. The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book's website: http://dataanalyticsbook.info. Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas. Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition"-- Datenanalyse (DE-588)4123037-1 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Quantitative research Quantitative research / Data processing R (Computer program language) Python (Computer program language) Big Data (DE-588)4802620-7 s Datenanalyse (DE-588)4123037-1 s DE-604 Deng, Houtao Verfasser (DE-588)1156759854 aut 9781003102656 Erscheint auch als Online-Ausgabe Huang, Shuai Data Analytics Milton : CRC Press LLC, 2021 1 online resource (274 pages) 9781000372458 |
spellingShingle | Huang, Shuai Deng, Houtao Data analytics a small data approach Datenanalyse (DE-588)4123037-1 gnd Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4802620-7 |
title | Data analytics a small data approach |
title_auth | Data analytics a small data approach |
title_exact_search | Data analytics a small data approach |
title_exact_search_txtP | Data analytics a small data approach |
title_full | Data analytics a small data approach Shuai Huang, Houtao Deng |
title_fullStr | Data analytics a small data approach Shuai Huang, Houtao Deng |
title_full_unstemmed | Data analytics a small data approach Shuai Huang, Houtao Deng |
title_short | Data analytics |
title_sort | data analytics a small data approach |
title_sub | a small data approach |
topic | Datenanalyse (DE-588)4123037-1 gnd Big Data (DE-588)4802620-7 gnd |
topic_facet | Datenanalyse Big Data |
work_keys_str_mv | AT huangshuai dataanalyticsasmalldataapproach AT denghoutao dataanalyticsasmalldataapproach |