Birational geometry of moduli spaces of pointed curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
[2020?]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | 59 Seiten |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047324687 | ||
003 | DE-604 | ||
005 | 20210827 | ||
007 | t | ||
008 | 210614s2020 gw m||| 00||| eng d | ||
016 | 7 | |a 1225888859 |2 DE-101 | |
035 | |a (OCoLC)1244236561 | ||
035 | |a (DE-599)DNB1225888859 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-11 | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Schwarz, Irene |e Verfasser |0 (DE-588)1235410536 |4 aut | |
245 | 1 | 0 | |a Birational geometry of moduli spaces of pointed curves |c von: Irene Schwarz |
264 | 1 | |a Berlin |c [2020?] | |
300 | |a 59 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Humboldt-Universität zu Berlin |d 2020 | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1225888859/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032727349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032727349 |
Datensatz im Suchindex
_version_ | 1804182524871573504 |
---|---|
adam_text | CONTENTS
INTRODUCTION
2
1
PRELIMINARIES
7
1.1
MODULI
SPACES
......................................................................................................................................
7
1.2
THE
KODAIRA
DIMENSION
.....................................................................................................................
10
1.3
SINGULARITIES
OF
MODULI
SPACES
..........................................................................................................
13
1.4
BIRATIONAL
GEOMETRY
OF
M
HN
.............................................................................................................
15
1.5
PICARD
GROUP
OF
M
G
,
N
........................................................................................................................
16
1.6
EFFECTIVE
DIVISORS
ON
M
GN
................................................................................................................
18
2
ON
THE
KODAIRA
DIMENSION
OF
THE
MODULI
SPACE
OF
NODAL
CURVES
23
2.1
INTRODUCTION
.........................................................................................................................................
23
2.2
PROOF
OF
THEOREM
2.1.2
.....................................................................................................................
26
2.3
MODULI
SPACES
OF
NODAL
CURVES
..........................................................................................................
27
2.4
EFFECTIVE
G-INVARIANT
DIVISORS
ON
M
G
.2
N
...........................................................................................
28
2.5
STANDARD
CASES
IN
THE
PROOF
OF
THEOREM
2.1.1:
REDUCTION
TO
A
SYSTEM
OF
INEQUALITIES
..............
30
2.6
PROOF
OF
THEOREM
2.1.1:
SPECIAL
COMPUTATIONS
................................................................................
34
3
ON
QUOTIENTS
OF
M
G
,
N
BY
CERTAIN
SUBGROUPS
OF
S
N
36
3.1
INTRODUCTION
.........................................................................................................................................
36
3.2
PRELIMINARIES
AND
NOTATION
................................................................................................................
40
3.3
DIVISORS
..............................................................................................................................................
41
3.4
PROOF
OF
THEOREM
3.1.5
.....................................................................................................................
42
4
THE
MODULI
SPACE
OF
HYPERELLIPTIC
CURVES
WITH
MARKED
POINTS
45
4.1
INTRODUCTION
.........................................................................................................................................
45
4.2
PRELIMINARIES
......................................................................................................................................
46
4.3
THE
LOCUS
OF
POINTED
HYPERELLIPTIC
CURVES
.........................................................................................
49
4.4
SINGULARITIES
OF
...........................................................................................................................
51
4.5
EFFECTIVE
DIVISORS
.................................................................................................................................
54
4.6
PROOF
OF
THEOREM
4.1.1
.....................................................................................................................
54
|
adam_txt |
CONTENTS
INTRODUCTION
2
1
PRELIMINARIES
7
1.1
MODULI
SPACES
.
7
1.2
THE
KODAIRA
DIMENSION
.
10
1.3
SINGULARITIES
OF
MODULI
SPACES
.
13
1.4
BIRATIONAL
GEOMETRY
OF
M
HN
.
15
1.5
PICARD
GROUP
OF
M
G
,
N
.
16
1.6
EFFECTIVE
DIVISORS
ON
M
GN
.
18
2
ON
THE
KODAIRA
DIMENSION
OF
THE
MODULI
SPACE
OF
NODAL
CURVES
23
2.1
INTRODUCTION
.
23
2.2
PROOF
OF
THEOREM
2.1.2
.
26
2.3
MODULI
SPACES
OF
NODAL
CURVES
.
27
2.4
EFFECTIVE
G-INVARIANT
DIVISORS
ON
M
G
.2
N
.
28
2.5
STANDARD
CASES
IN
THE
PROOF
OF
THEOREM
2.1.1:
REDUCTION
TO
A
SYSTEM
OF
INEQUALITIES
.
30
2.6
PROOF
OF
THEOREM
2.1.1:
SPECIAL
COMPUTATIONS
.
34
3
ON
QUOTIENTS
OF
M
G
,
N
BY
CERTAIN
SUBGROUPS
OF
S
N
36
3.1
INTRODUCTION
.
36
3.2
PRELIMINARIES
AND
NOTATION
.
40
3.3
DIVISORS
.
41
3.4
PROOF
OF
THEOREM
3.1.5
.
42
4
THE
MODULI
SPACE
OF
HYPERELLIPTIC
CURVES
WITH
MARKED
POINTS
45
4.1
INTRODUCTION
.
45
4.2
PRELIMINARIES
.
46
4.3
THE
LOCUS
OF
POINTED
HYPERELLIPTIC
CURVES
.
49
4.4
SINGULARITIES
OF
.
51
4.5
EFFECTIVE
DIVISORS
.
54
4.6
PROOF
OF
THEOREM
4.1.1
.
54 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schwarz, Irene |
author_GND | (DE-588)1235410536 |
author_facet | Schwarz, Irene |
author_role | aut |
author_sort | Schwarz, Irene |
author_variant | i s is |
building | Verbundindex |
bvnumber | BV047324687 |
classification_rvk | SK 230 |
ctrlnum | (OCoLC)1244236561 (DE-599)DNB1225888859 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01251nam a2200325 c 4500</leader><controlfield tag="001">BV047324687</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210827 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210614s2020 gw m||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1225888859</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1244236561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1225888859</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwarz, Irene</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1235410536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Birational geometry of moduli spaces of pointed curves</subfield><subfield code="c">von: Irene Schwarz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">[2020?]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">59 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Humboldt-Universität zu Berlin</subfield><subfield code="d">2020</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1225888859/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032727349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032727349</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047324687 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:30:30Z |
indexdate | 2024-07-10T09:08:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032727349 |
oclc_num | 1244236561 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | 59 Seiten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
record_format | marc |
spelling | Schwarz, Irene Verfasser (DE-588)1235410536 aut Birational geometry of moduli spaces of pointed curves von: Irene Schwarz Berlin [2020?] 59 Seiten txt rdacontent n rdamedia nc rdacarrier Dissertation Humboldt-Universität zu Berlin 2020 (DE-588)4113937-9 Hochschulschrift gnd-content B:DE-101 application/pdf https://d-nb.info/1225888859/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032727349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schwarz, Irene Birational geometry of moduli spaces of pointed curves |
subject_GND | (DE-588)4113937-9 |
title | Birational geometry of moduli spaces of pointed curves |
title_auth | Birational geometry of moduli spaces of pointed curves |
title_exact_search | Birational geometry of moduli spaces of pointed curves |
title_exact_search_txtP | Birational geometry of moduli spaces of pointed curves |
title_full | Birational geometry of moduli spaces of pointed curves von: Irene Schwarz |
title_fullStr | Birational geometry of moduli spaces of pointed curves von: Irene Schwarz |
title_full_unstemmed | Birational geometry of moduli spaces of pointed curves von: Irene Schwarz |
title_short | Birational geometry of moduli spaces of pointed curves |
title_sort | birational geometry of moduli spaces of pointed curves |
topic_facet | Hochschulschrift |
url | https://d-nb.info/1225888859/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032727349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schwarzirene birationalgeometryofmodulispacesofpointedcurves |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis