Total chemical synthesis of proteins:
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2021]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34660-8/ Inhaltsverzeichnis |
Beschreibung: | xx, 604 Seiten Illustrationen, Diagramme (teilweise farbig) 24.4 cm x 17 cm |
ISBN: | 9783527346608 3527346600 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047312929 | ||
003 | DE-604 | ||
005 | 20210817 | ||
007 | t | ||
008 | 210607s2021 gw a||| |||| 00||| eng d | ||
015 | |a 20,N34 |2 dnb | ||
016 | 7 | |a 1215859309 |2 DE-101 | |
020 | |a 9783527346608 |c : circa EUR 179.00 (DE) (freier Preis) |9 978-3-527-34660-8 | ||
020 | |a 3527346600 |9 3-527-34660-0 | ||
024 | 3 | |a 9783527346608 | |
028 | 5 | 2 | |a Bestellnummer: 1134660 000 |
035 | |a (OCoLC)1257811237 | ||
035 | |a (DE-599)DNB1215859309 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-19 |a DE-11 | ||
084 | |a VK 8560 |0 (DE-625)147540:253 |2 rvk | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a Total chemical synthesis of proteins |c edited by Ashraf Brik, Philip Dawson, and Lei Liu |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a xx, 604 Seiten |b Illustrationen, Diagramme (teilweise farbig) |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Proteine |0 (DE-588)4076388-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Totalsynthese |0 (DE-588)4412308-5 |2 gnd |9 rswk-swf |
653 | |a Biochemie u. Chemische Biologie | ||
653 | |a Biochemistry (Chemical Biology) | ||
653 | |a Biotechnologie i. d. Biowissenschaften | ||
653 | |a Biotechnology | ||
653 | |a Biowissenschaften | ||
653 | |a Chemie | ||
653 | |a Chemistry | ||
653 | |a Life Sciences | ||
653 | |a Methods - Synthesis & Techniques | ||
653 | |a Organische Chemie / Methoden, Synthesen, Verfahren | ||
653 | |a CH81: Organische Chemie / Methoden, Synthesen, Verfahren | ||
653 | |a CHB0: Biochemie u. Chemische Biologie | ||
653 | |a LS35: Biotechnologie i. d. Biowissenschaften | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Proteine |0 (DE-588)4076388-2 |D s |
689 | 0 | 1 | |a Totalsynthese |0 (DE-588)4412308-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Brik, Ashraf |0 (DE-588)1235163598 |4 edt | |
700 | 1 | |a Dawson, Philip |0 (DE-588)1131277171 |4 edt | |
700 | 1 | |a Liu, Lei |0 (DE-588)1072171910 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-82357-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-82358-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, OBOOK |z 978-3-527-82356-7 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34660-8/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032715823&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032715823 |
Datensatz im Suchindex
_version_ | 1804182503851819008 |
---|---|
adam_text | CONTENTS
PREFACE
XVII
1
CHARACTERIZATION
OF
PROTEIN
MOLECULES
PREPARED
BY
TOTAL
CHEMICAL
SYNTHESIS
1
STEPHEN
B.
H,
KENT
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4
INTRODUCTION
1
CHEMICAL
PROTEIN
SYNTHESIS
2
COMMENTS
ON
CHARACTERIZATION
OF
SYNTHETIC
PROTEIN
MOLECULES
8
HOMOGENEITY
8
AMINO
ACID
SEQUENCE
9
CHEMICAL
ANALOGUES
10
LIMITATIONS
OF
SPPS
10
FOLDING
AS
A
PURIFICATION
STEP
10
SUMMARY
12
REFERENCES
12
2
AUTOMATED
FAST
FLOW
PEPTIDE
SYNTHESIS
17
MARK
D.
SIMON,
ALEXANDER!,
MIJALIS,
KYLE
A.
TOTARO,
DANIEL
DUNKELMANN,
ALEXANDER
A.
VINOGRADOV,
CHI
ZHANG,
YUTA
MAKI,
JUSTIN
M.
WOLFE,
JESSICA
WILSON,
ANDREI
LOAS,
AND
BRADLEY
L.
PENTELUTE
2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.3
INTRODUCTION
17
RESULTS
19
SUMMARY
19
MECHANICAL
PRINCIPLES
20
CHEMICAL
PRINCIPLES
20
USER
INTERFACE
PRINCIPLES
20
DATA
ANALYSIS
METHOD
20
OUTCOME
21
FIRST-GENERATION
AUTOMATED
FAST
FLOW
PEPTIDE
SYNTHESIS
21
KEY
FINDINGS
21
DESIGN
OF
FIRST-GENERATION
AFPS
21
CHARACTERIZATION
OF
FIRST-GENERATION
AFPS
23
SECOND-GENERATION
AUTOMATED
FAST
FLOW
PEPTIDE
SYNTHESIS
24
VI
CONTENTS
2.2.3.1
KEY
FINDINGS
24
2.23.2
DESIGN
OF
SECOND-GENERATION
AFPS
24
2.23.3
CHARACTERIZATION
AND
USE
OF
SECOND-GENERATION
AFPS
26
2.2.4
THIRD-GENERATION
AUTOMATED
FAST FLOW
PEPTIDE
SYNTHESIS
32
2.2.4.1
KEY
FINDINGS
32
2.2
A.
2
DESIGN
OF
THIRD-GENERATION
AFPS
34
2.2.43
CHARACTERIZATION
OF
THIRD-GENERATION
AFPS
39
2.2.4.4
REAGENT
STABILITY
STUDY
43
2.2.5
FOURTH-GENERATION
AUTOMATED
FAST FLOW
PEPTIDE
SYNTHESIS
45
2.2.5.1
KEY
FINDINGS
45
2.2.5.2
EFFECT
OF
SOLVENT
ON
FAST
FLOW
SYNTHESIS
45
2.2.53
DESIGN
AND
CHARACTERIZATION
OF
FOURTH-GENERATION
AFPS
45
2.3
CONCLUSIONS
49
ACKNOWLEDGMENTS
53
REFERENCES
53
3
N,S-
AND
N,SE-ACYL
TRANSFER
DEVICES
IN
PROTEIN
SYNTHESIS
59
VINCENT
DIEMER,
JENNIFER
BOUCHENNA,
FLORENT
KERDRAON,
VANGELIS
AGOURIDAS,
AND
OLEG
MELNYK
3.1
INTRODUCTION
59
3.2
N,S-
AND
XSE-ACYL
TRANSFER
DEVICES:
GENERAL
PRESENTATION,
REACTIVITY
AND
STATISTICAL
OVERVIEW
OF
THEIR
UTILIZATION
61
3.2.
1
GENERAL
PRESENTATION
OF
N,S-
AND
N,SE-ACYL
TRANSFER
DEVICES
61
3.2.2
RELATIVE
REACTIVITY
OF
N,S-
AND
N,SE-
ACYL
TRANSFER
DEVICES
63
3.2.3
A
STATISTICAL
OVERVIEW
OF
THE
SYNTHETIC
USE
OF
N,S-
AND
N,SE-ACYL
TRANSFER
DEVICES
FOR
PROTEIN
TOTAL
CHEMICAL
SYNTHESIS
64
3.3
PREPARATION
OF
SEA/SEEA
OFF
AND
SEALIDE
PEPTIDES
68
33.1
PREPARATION
OF
SEA
AND
SEEA
PEPTIDES
68
3.3.2
PREPARATION
OF
SEALIDE
PEPTIDES
70
3.4
REDOX-CONTROLLED
ASSEMBLY
OF
BIOTINYLATED
NK1
DOMAIN
OF
THE
HEPATOCYTE
GROWTH
FACTOR
(HGF)
USING
SEA
AND
SEEA
CHEMISTRIES
71
3.5
THE
TOTAL
CHEMICAL
SYNTHESIS
OF
GM2-AP
USING
SEALIDE-BASED
CHEMISTRY
75
3.6
CONCLUSION
79
REFERENCES
80
4
CHEMICAL
SYNTHESIS
OF
PROTEINS
THROUGH
NATIVE
CHEMICAL
LIGATION
OF
PEPTIDE
HYDRAZIDES
87
CHAO
ZUO,
XIAODAN
TAN,
XIANGLONG
TAN,
AND
LEI
LIU
4.1
INTRODUCTION
87
4.2
DEVELOPMENT
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
88
4.2.1
CONVERSION
OF
PEPTIDE
HYDRAZIDE
TO
PEPTIDE
AZIDE
88
4.2.2
ACYL
AZIDE-BASED
SOLID-PHASE
PEPTIDE
SYNTHESIS
88
4.2.3
ACYL
AZIDE-BASED
SOLUTION-PHASE
PEPTIDE
SYNTHESIS
89
4.2.4
THE
TRANSESTERIFICATION
OF
ACYL
AZIDE
90
CONTENTS
I
VII
4.2.5
DEVELOPMENT
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
90
4.3
OPTIMIZATION
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
91
4.3.1
PREPARATION
OF
PEPTIDE
HYDRAZIDES
91
4.3.1.1
2-CL-TRT-CL
RESIN
91
4.3.1.2
PEPTIDE
HYDRAZIDES
FROM
EXPRESSED
PROTEINS
92
4.3.1.3
SORTASE-MEDIATED
HYDRAZIDE
GENERATION
93
4.3.2
ACTIVATION
METHODS
OF
PEPTIDE
HYDRAZIDE
94
4.3.2.1
KNORR
PYRAZOLE
SYNTHESIS
94
43.2.2
ACTIVATION
IN
TFA
94
4.3.3
LIGATION
SITES
OF
PEPTIDE
HYDRAZIDE
95
4.3.4
MULTIPLE
FRAGMENT
LIGATION
BASED
ON
PEPTIDE
HYDRAZIDE
96
43.4.1
N-TO-C
SEQUENTIAL
LIGATION
96
43.4.2
CONVERGENT
LIGATION
96
4.3.4.3
ONE-POT
LIGATION
96
4.4
APPLICATION
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
99
4.4.1
PEPTIDE
DRUGS
AND
DIAGNOSTIC
TOOLS
99
4.4.1.1
PEPTIDE
HYDRAZIDES FOR
CYCLIC
PEPTIDE
SYNTHESIS
99
4.4.
1.2
SCREENING
FOR
D
PEPTIDE
INHIBITORS
TARGETING
PD-L1
99
4.4.1.3
CHEMICAL
SYNTHESIS
OF
DCAF
FOR
TARGETED
ANTIBODY
BLOCKING
101
4.4.
1.4
PEPTIDE
TOXINS
101
4.4.2
SYNTHESIS
AND
APPLICATION
OF
TWO-PHOTON
ACTIVATABLE
CHEMOKINE
CCL5
102
4.4.3
PROTEINS
WITH
POSTTRANSLATIONAL
MODIFICATION
103
4.4.3.1
THE
SYNTHESIS
OF
GLYCOSYLATION-MODIFIED
FULL-LENGTH
IL-6
103
4.43.2
THE
CHEMICAL
SYNTHESIS
OF
EPO
105
4.433
CHEMICAL
SYNTHESIS
OF
HOMOGENEOUS
PHOSPHORYLATED
P62
105
4.4.3.4
CHEMICAL
SYNTHESIS
OF
K19,
K48
BI-ACETYLATED
ATG3
PROTEIN
105
4.4.4
UBIQUITIN
CHAINS
108
4.4.4.1
SYNTHESIS
OF
K27-LINKED
UBIQUITIN
CHAINS
108
4.4.4.2
SYNTHESIS
OF
ATYPICAL
UBIQUITIN
CHAINS
BY
USING
AN
ISOPEPTIDE-LINKED
UB
ISOMER
109
4.4.43
SYNTHESIS
OF
ATYPICAL
UBIQUITIN
CHAINS
USING
AN
ISOPEPTIDE-LINKED
UB
ISOMER
109
4.4.5
MODIFIED
NUCLEOSOMES
110
4.4.5.1
SYNTHESIS
OF
DNA-BARCODED
MODIFIED
NUCLEOSOME
LIBRARY
110
4.4.5.2
SYNTHESIS
OF
MODIFIED
HISTONE
ANALOGS
WITH
A
CYSTEINE
AMINOETHYLATION-ASSISTED
CHEMICAL
UBIQUITINATION
STRATEGY
111
4.4.53
SYNTHESIS
OF
UBIQUITYLATED
HISTONES
FOR
EXAMINATION
OF
THE
DEUBIQUITINATION
SPECIFICITY
OF
USP51
111
4.4.6
MEMBRANE
PROTEINS
112
4.4.7
MIRROR-IMAGE
BIOLOGICAL
SYSTEMS
112
4.
5
SUMMARY
AND
OUTLOOK
113
REFERENCES
114
VIII
CONTENTS
5
EXPANDING
NATIVE
CHEMICAL
LIGATION
METHODOLOGY
WITH
SYNTHETIC
AMINO
ACID
DERIVATIVES
119
EMMA
E.
WATSON,
LARA
R.
MALINS,
AND
RICHARD
J.
PAYNE
5.1
NATIVE
CHEMICAL
LIGATION
120
5.2
DESULFURIZATION
CHEMISTRIES
120
5.3
ASPARTIC
ACID
(ASP,
D)
122
5.4
GLUTAMIC
ACID
(GLU,
E)
124
5.5
PHENYLALANINE
(PHE,
F)
125
5.6
ISOLEUCINE
(HE,
I)
127
5.7
LYSINE
(LYS,
K)
130
5.8
LEUCINE
(LEU,
L)
133
5.9
ASPARAGINE
(ASN,
N)
135
5.10
PROLINE
(PRO,
P)
138
5.11
GLUTAMINE
(GIN,
Q)
139
5.12
ARGININE
(ARG,
R)
139
5.13
THREONINE
(THR,
T)
140
5.14
VALINE
(VAI,
V)
142
5.15
TRYPTOPHAN
(TRP,
W)
144
5.16
APPLICATION
OF
SELENOCYSTEINE
(SEC)
TO
LIGATION
CHEMISTRY
146
5.17
*
ASPARTIC
ACID
(ASP,
D)
147
5.18
GLUTAMIC
ACID
(GLU,
E)
148
5.19
PHENYLALANINE
(PHE,
F)
149
5.20
LEUCINE
(LEU,
L)
151
5.21
PROLINE
(PRO,
P)
151
5.22
SERINE
(SER,
S)
153
REFERENCES
155
6
PEPTIDE
LIGATIONS
AT
STERICALLY
DEMANDING
SITES
161
YINGLU
WANG
AND
SUWEI
DONG
6.1
INTRODUCTION
161
6.2
LIGATIONS
USING
THIOESTERS
162
6.2.1
EXOGENOUS
ADDITIVE-PROMOTED
LIGATIONS
162
6.2.2
LIGATIONS
USING
REACTIVE
THIOESTERS
167
6.2.3
INTERNAL
ACTIVATION
STRATEGY
IN
PEPTIDE
LIGATIONS
169
6.3
LIGATIONS
USING
OXO-ESTERS
170
6.4
PEPTIDE
LIGATIONS
BASED
ON
SELENOESTERS
170
6.5
MICROFLUIDICS-PROMOTED
NCL
175
6.6
REPRESENTATIVE
APPLICATIONS
IN
PROTEIN
SYNTHESIS
178
6.7
SUMMARY
AND
OUTLOOK
181
REFERENCES
181
7
CONTROLLING
SEGMENT
SOLUBILITY
IN
LARGE
PROTEIN
SYNTHESIS
185
RILEY
J.
GIESLER,
JAMES
M.
FULCHER,
MICHAEL
T.
JACOBSEN,
AND
MICHAEL
S.
KAY
7.1
SOLVENT
MANIPULATION
185
CONTENTS
|
IX
7.2
ISOACYL
STRATEGY
187
7.3
SEMIPERMANENT
SOLUBILIZING
TAGS
191
7.3.1
N-
OR
C-TERMINAL
SOLUBILIZING
*
TAILS
*
192
7.3.2
REVERSIBLE
BACKBONE
MODIFICATIONS
AS
SOLUBILIZING
TAGS
194
7.3.3
BUILDING
BLOCK
SOLUBILIZING
TAGS
195
73.4
EXTENDABLE
SIDE-CHAIN-BASED
SOLUBILIZING
TAGS
195
REFERENCES
198
8
TOWARD
HPLC-FREE
TOTAL
CHEMICAL
SYNTHESIS
OF
PROTEINS
211
PHUC
UNG
AND
OLIVER
SEITZ
8.1
INTRODUCTION
211
8.1.1
CAPTURE
AND
RELEASE
PURIFICATION
212
8.1.2
SOLID-PHASE
CHEMICAL
LIGATIONS
(SPCL)
212
8.2
SYNTHESIS
OF
PEPTIDE
SEGMENTS
FOR
NATIVE
CHEMICAL
LIGATION
213
8.2.1
HPLC-FREE
PREPARATION
OF
N-TERMINAL
PEPTIDE
SEGMENTS
FOR
NCL
213
8.2.2
HPLC-FREE
PREPARATION
OF
C-TERMINAL
PEPTIDE
SEGMENTS
FOR
NCL
217
8.3
SYNTHESIS
OF
PROTEINS
USING
THE
HIS
6
TAG
220
8.3.1
REVERSIBLE
HIS
6
-BASED
CAPTURE
TAGS
220
8.3.2
HIS
6
-BASED
IMMOBILIZATION
FOR
C-TO-N
ASSEMBLY
OF
CRAMBIN
221
8.3.3
HIS
6
-BASED
IMMOBILIZATION
FOR
ASSEMBLY
OF
PROTEINS
ON
MICROTITER
PLATES
222
8.3.4
HIS
6
AND
HYDRAZIDE
TAGS
FOR
SEQUENTIAL
N-TO-C
CAPTURE
AND
RELEASE
225
8.4
SYNTHESIS
OF
PROTEINS
VIA
OXIME
FORMATION
227
8.4.1
REVERSIBLE
OXIME-BASED
CAPTURE
TAGS
227
8.4.2
OXIME-BASED
IMMOBILIZATION
FOR
N-TO-C
SOLID-PHASE
CHEMICAL
LIGATIONS
227
8.4.3
OXIME-BASED
IMMOBILIZATION
FOR
C-TO-N
SOLID-PHASE
CHEMICAL
LIGATIONS
233
8.4.4
OXIME-BASED
C-TO-N
SOLID-PHASE
CHEMICAL
LIGATIONS
237
8.5
SYNTHESIS
OF
PROTEINS
VIA
HYDRAZONE
FORMATION
238
8.5.1
REVERSIBLE
HYDRAZONE-BASED
CAPTURE
TAGS
238
8.5.2
HYDRAZONE-BASED
IMMOBILIZATION
FOR
ASSEMBLY
OF
PROTEINS
ON
MICROTITER
PLATES
239
8.6
SYNTHESIS
OF
PROTEINS
USING
CLICK
CHEMISTRY
242
8.6.1
CLICK-BASED
IMMOBILIZATION
FOR
N-TO-C
SOLID-PHASE
PEPTIDE
LIGATIONS
USING
A
PROTECTED
ALKYNE
242
8.6.2
CLICK-BASED
IMMOBILIZATION
FOR
N-TO-C
SOLID-PHASE
PEPTIDE
LIGATIONS
USING
A
SEA
GROUP
243
8.7
SYNTHESIS
OF
PROTEINS
USING
THE
KAHA
LIGATION
244
8.7.1
THE
KAHA
LIGATION
244
8.7.2
HPLC-FREE
SYNTHESIS
OF
PROTEINS
USING
THE
KAHA
LIGATION
245
8.8
SYNTHESIS
OF
PROTEINS
USING
PHOTOCLEAVABLE
TAGS
246
8.8.1
SYNTHESIS
OF
PROTEINS
USING
A
PHOTOCLEAVABLE
BIOTIN-BASED
PURIFICATION
TAG
246
X|
CONTENTS
8.8.2
SYNTHESIS
OF
PROTEINS
USING
A
PHOTOCLEAVABLE
HIS
6
-BASED
PURIFICATION
TAG
247
8.9
CONCLUSION
249
REFERENCES
251
9
SOLID-PHASE
CHEMICAL
LIGATION
259
SKANDER
A.
ABBOUD,
AGNES
F.
DELMAS,
AND
VINCENT
AUCAGNE
9.1
INTRODUCTION
259
9.1.1
THE
PROMISES
OF
SOLID
PHASE
CHEMICAL
LIGATION
(SPCL)
259
9.1.2
CHEMICAL
LIGATION
REACTIONS USED
FOR
SPCL
260
9.1.3
KEY
REQUIREMENTS
FOR
A
SPCL
STRATEGY
261
9.2
SPCL
IN THE
C-TO-N
DIRECTION
262
9.2.1
TEMPORARY
MASKING
GROUPS
TO
ENABLE
ITERATIVE
LIGATIONS
262
9.2.2
LINKERS
FOR
C-TO-N
SPCL
264
9.2.2.1
USE
OF
SAME
LINKER
AND
SOLID
SUPPORT
FOR
SPPS
AND
SPCL
265
9.2.2.2
RE-IMMOBILIZATION
OF
THE
C-TERMINAL
SEGMENT
266
9.3
SPCL
IN
THE
N-TO-C
DIRECTION
268
9.3.1
TEMPORARY
MASKING
GROUPS
TO
ENABLE
ITERATIVE
LIGATIONS
268
9.3.2
LINKERS
FOR
N-TO-C
SPCL
270
9.3.3
CASE
STUDY
272
9.3.4
SPCL
WITH
CONCOMITANT
PURIFICATIONS
274
9.4
POST-LIGATION
SOLID-SUPPORTED
TRANSFORMATIONS
274
9.4.1
CHEMICAL
TRANSFORMATIONS
274
9.4.2
BIOCHEMICAL
TRANSFORMATIONS
275
9.5
SOLID
SUPPORT
275
9.6
CONCLUSION
AND
PERSPECTIVES
278
ACKNOWLEDGMENT
278
9.A
APPENDIX
278
REFERENCES
280
10
SER/THR
LIGATION
FOR
PROTEIN
CHEMICAL
SYNTHESIS
285
CARINA
HEY
PUI
CHEUNG
AND
XUECHEN
LI
10.1
SERINE/THREONINE
LIGATION
287
10.2
EPIMERIZATION
ISSUE
289
10.3
OTHER
ARYL
ALDEHYDE
ESTERS
289
10.4
PREPARATION
OF
PEPTIDE
SALICYLALDEHYDE
ESTERS
289
10.5
SCOPE
AND
LIMITATIONS
294
10.6
STRATEGIES
OF
SER/THR
LIGATION
FOR
PROTEIN
CHEMICAL
SYNTHESIS
294
10.7
C-TO-N
SER/THR
LIGATION
294
10.8
N-TO-C
SER/THR
LIGATION
296
10.9
ONE-POT
SER/THR
LIGATION
AND
NCL
296
10.10
BIOCONJUGATION
296
10.11
SOLUBILITY
ISSUES
298
10.12
EXTENSION
OF
SER/THR
LIGATION
298
10.13
CONCLUSION
302
REFERENCES
303
CONTENTS
XI
11
PROTEIN
SEMISYNTHESIS
307
NAM
CHU
AND
PHILIP
A.
COLE
11.1
BACKGROUND
307
11.2
EXPRESSED
PROTEIN
LIGATION
(EPL)
308
11.2.1
METHOD
DEVELOPMENT
308
11.2.2
APPLICATIONS
OF
EPL
FOR
STUDYING
PROTEIN
POSTTRANSLATIONAL
MODIFICATIONS
309
11.2.3
SITE-SPECIFIC
PROTEIN
LABELING
WITH
N-HYDROXYSUCCINIMIDE
ESTERS
311
11.3
CYSTEINE
MODIFICATIONS
311
11.3.1
DEHYDROALANINE
GENERATION
AND
APPLICATIONS
IN
SEMISYNTHESIS
312
11.3.2
CYSTEINE
ALKYLATION-RELATED
METHODS
TO
INTRODUCE
LYS
MIMICS
313
11.4
ENZYME-CATALYZED
PROTEIN/PEPTIDE
LIGATIONS
314
11.4.1
SORTASE
314
11.4.2
BUTELASE-1
316
11.4.3
SUB
TILIGASE
317
11.4.4
TRYPSILIGASE
318
11.5
ENZYME-CATALYZED
EXPRESSED
PROTEIN
LIGATION
318
11.6
SUMMARY
AND
OUTLOOK
319
ACKNOWLEDGMENTS
320
REFERENCES
320
12 BIO-ORTHOGONAL
IMINE
CHEMISTRY
IN
CHEMICAL
PROTEIN
SYNTHESIS
327
STIJN
M.
AGTEN,
INGRID
DIJKGRAAF,
STAN
H.
E.
VAN
DER
BEELEN,
AND
TILMAN
M.
HACKENG
12.1
INTRODUCTION
327
12.2
CARBONYL
FUNCTIONALIZATION
328
12.3
AMINOOXY,
HYDRAZINE,
AND
HYDRAZIDE
FUNCTIONALIZATION
335
12.4
OXIME
LIGATION
337
12.5
HYDRAZONE
LIGATION
342
12.6
PICTET-SPENGLER
REACTION
344
12.7
CATALYSIS
OF
OXIME
AND
HYDRAZONE
LIGATIONS
346
REFERENCES
348
13
DECIPHERING
PROTEIN
FOLDING
USING
CHEMICAL
PROTEIN
SYNTHESIS
357
VLADIMIR
TORBEEV
13.1
INTRODUCTION
357
13.2
MODIFICATION
OF
PROTEIN
BACKBONE
AMIDES
358
13.3
INSERTION
OF
0-TURN
MIMETICS
361
13.4
INVERSION
OF
CHIRAL
CENTERS
IN
PROTEIN
BACKBONE
AND
SIDE
CHAINS
362
13.5
MODULATING
CIS-TRANS
PROLINE
ISOMERIZATION
366
13.6
STEERING
OXIDATIVE
PROTEIN
FOLDING
368
13.7
COVALENT
TETHERING
TO
FACILITATE
FOLDING
OF
DESIGNED
PROTEINS
371
13.8
DISCOVERY
OF
PREVIOUSLY
UNKNOWN
PROTEIN
FOLDS
373
XII
CONTENTS
13.9
SITE-SPECIFIC
LABELING
WITH
FLUOROPHORES
373
13.10
FOLDAMERS
AND
FOLDAMER-PEPTIDE
HYBRIDS
375
13.11
CONCLUSIONS
AND
OUTLOOK
377
ACKNOWLEDGEMENT
378
REFERENCES
378
14
CHEMICAL
SYNTHESIS
OF
UBIQUITINATED
PROTEINS
FOR
BIOCHEMICAL
STUDIES
383
GANDHESIRI
SATISH,
GANGA
B.
VAMISETTI,
AND
ASHRAF
BRIK
14.1
THE
UBIQUITIN
SYSTEM
383
14.2
NON-ENZYMATIC
UBIQUITINATION:
CHALLENGES
AND
OPPORTUNITIES
386
14.2.1
CHEMICAL
SYNTHESIS
OF
UB
BUILDING
BLOCKS
387
14.2.2
ISOPEPTIDE
LIGATION
387
14.2.3
TOTAL
CHEMICAL
SYNTHESIS
OF
TETRA-UB
CHAINS
390
14.3
SYNTHESIS
AND
SEMISYNTHESIS
OF
UBIQUITINATED
PROTEINS
393
14.3.1
MONOUBIQUITINATED
PROTEINS
393
14.3.2
TETRA-UBIQUITINATED
PROTEINS
395
14.3.3
MODIFICATION
OF
EXPRESSED
PROTEINS
WITH
TETRA-UB
400
14.4
SYNTHESIS
OF
UNIQUE
UB
CONJUGATES
TO
STUDY
AND
TARGET
DUBS
401
14.5
ACTIVITY-BASED
PROBES
403
14.6
PERSPECTIVE
405
LIST
OF
ABBREVIATIONS
406
REFERENCES
407
15
GLYCOPROTEIN
SYNTHESIS
411
CHAITRA
CHANDRASHEKAR,
KENTO
IRITANI,
TATSUYA
MORIGUCHI,
AND
YASUHIRO
KAJIHARA
15.1
INTRODUCTION
411
15.2
TOTAL
CHEMICAL
SYNTHESIS
OF
GLYCOPROTEINS
411
15.3
SEMISYNTHESIS
OF
GLYCOPROTEINS
413
15.4
CHEMOENZYMATIC
SYNTHESIS
413
15.5
A-SYNUCLEIN
414
15.6
HIRUDIN
P6
415
15.7
SAPOSIND
416
15.8
INTERLEUKIN
2
417
15.9
INTERLEUKIN
25
417
15.10
MUCIN
1
419
15.11
CRAMBIN
421
15.12
TAU
PROTEIN
422
15.13
CHEMICAL
DOMAIN
OF
FRACTALKINE
423
15.14
CCL1
424
15.15
INTERLEUKIN
6
424
15.16
INTERLEUKIN
8
425
15.17
ERYTHROPOIETIN
426
15.18
TRASTUZUMAB
430
CONTENTS
XIII
15.19
ANTIFREEZE
GLYCOPROTEIN
432
15.20
CONCLUSION
434
REFERENCES
434
16
CHEMICAL
SYNTHESIS
OF
MEMBRANE
PROTEINS
437
ALANCA
SCHMID
AND
CHRISTIAN
F.W.
BECKER
16.1
INTRODUCTION
437
16.2
SOLID
PHASE
SYNTHESIS
OF
TM
PEPTIDES
438
16.3
PURIFICATION
AND
HANDLING
STRATEGIES
OF
TM
PEPTIDES
442
16.4
SOLUBILITY
TAGS
443
16.4.1
TERMINAL
TAGS
443
16.4.2
SIDE
CHAIN
TAGS
445
16.5
REMOVABLE
SOLUBILIZING
BACKBONE
TAGS
445
16.6
CHEMICAL
SYNTHESIS
OF
MEMBRANE
PROTEINS
449
16.6.1
PROTEINS
WITH
1
TM
DOMAIN
449
16.6.2
PROTEINS
WITH
2
TM
DOMAINS
450
16.6.3
PROTEINS
WITH
3
AND
MORE
TM
DOMAINS
454
16.7
OUTLOOK
456
REFERENCES
457
17
CHEMICAL
SYNTHESIS
OF
SELENOPROTEINS
463
REBECCA
N.
DARDASHTI,
REEM
GHADIR,
HIBA
GHAREEB,
ORIT
WEIL-KTORZA,
AND
NORMAN
METANIS
17.1
WHAT
ARE
SELENOPROTEINS?
463
17.2
EXPRESSION
OF
SELENOPROTEINS
466
17.3
SEC
AS
A
REACTIVE
HANDLE
469
17.4
SYNTHESIS
AND
SEMISYNTHESIS
OF
NATURAL
SELENOPROTEINS
473
17.5
SELENIUM
AS
A
TOOL
FOR
PROTEIN
FOLDING
475
17.6
CONCLUSIONS
478
REFERENCES
478
18
HISTONE
SYNTHESIS
489
CHAMPAK
CHATTERJEE
18.1
THE
HISTONES
AND
THEIR
CHEMICAL
MODIFICATIONS
489
18.1.1
HISTONE
PROTEINS
489
18.1.2
HISTONE
POSTTRANSLATIONAL
MODIFICATIONS
490
18.2
CHEMICAL
LIGATION
FOR
HISTONE
SYNTHESIS
492
18.2.1
NATIVE
CHEMICAL
LIGATION
492
18.2.2
EXPANDING
THE
SCOPE
OF
NATIVE
CHEMICAL
LIGATION
WITH
INTEINS
494
18.3
HISTONE
OCTAMER
AND
NUCLEOSOME
CORE
PARTICLE
ASSEMBLY
494
18.4
STUDYING
THE
HISTONE
CODE
WITH
SYNTHETIC
HISTONES
496
18.4.1
SYNTHESIS
OF
HISTONES
MODIFIED
BY
SMALLER
FUNCTIONAL
GROUPS
497
18.4.1.1
HISTONE
PHOSPHORYLATION
497
18.4.1.2
HISTONE
ACETYLATION
499
18.4.1.3
HISTONE
METHYLATION
502
XIV
CONTENTS
18.4.2
SYNTHESIS
OF
SUMOYLATED
HISTONES
505
18.5
CONCLUSIONS
506
ACKNOWLEDGMENTS
506
REFERENCES
506
19
APPLICATION
OF
CHEMICAL
SYNTHESIS
TO
ENGINEER
PROTEIN
BACKBONE
CONNECTIVITY
515
CHINO
C.
CABALTEJA
AND
W.
SETH
HOME
19.1
INTRODUCTION
515
19.2
BACKBONE
ENGINEERING
TO
FACILITATE
SYNTHESIS
516
19.3
BACKBONE
ENGINEERING
TO
EXPLORE
THE
CONSEQUENCES
OF
CHIRALITY
517
19.4
BACKBONE
ENGINEERING
TO
UNDERSTAND
AND
CONTROL
FOLDING
520
19.5
BACKBONE
ENGINEERING
TO
CREATE
PROTEIN
MIMETICS
522
19.6
CONCLUSIONS
525
REFERENCES
526
20
BEYOND
PHOSPHATE
ESTERS:
SYNTHESIS
OF
UNUSUALLY
PHOSPHORYLATED
PEPTIDES
AND
PROTEINS
FOR
PROTEOMIC
RESEARCH
533
ANETT
HAUSER,
CHRISTIAN
E.
STIEGER,
AND
CHRISTIAN
P.
R.
HACKENBERGER
20.1
INTRODUCTION
533
20.2
GENERAL
METHODS
FOR
THE
INCORPORATION
OF
HYDROXY-PHOSPHORYLATED
AMINO
ACIDS
INTO
PEPTIDES
AND
PROTEINS
534
20.3
INCORPORATION
OF
OTHER
PHOSPHORYLATED
NUCLEOPHILIC
AMINO
ACIDS
INTO
PEPTIDES
AND
PROTEINS
537
20.3.1
PHOSPHOARGININE
(PARG)
537
20.3.2
PHOSPHOHISTIDINE
(PHIS)
538
20.3.3
PHOSPHOLYSINE
(PLYS)
539
20.3.4
PHOSPHOCYSTEINE
(PCYS)
539
20.3.5
PYROPHOSPHORYLATION
OF
SERINE
AND
THREONINE
(PPSER,
PPTHR)
541
20.4
DEVELOPMENT
OF
PHOSPHO-ANALOGUES
AS
MIMICS
FOR
ENDOGENOUS
PHOSPHO-AMINO
ACIDS
541
20.4.1
ANALOGUES
OF
PHOSPHOSERINE,
PHOSPHOTHREONINE,
AND
PHOSPHOTYROSINE
541
20.4.2
STABLE
ANALOGUES
OF
PHOSPHOASPARTATE
AND
PHOSPHOGLUTAMATE
543
20.4.3
STABLE
ANALOGUES
OF
PHOSPHOARGININE
544
20.4.4
STABLE
ANALOGUES
OF
PHOSPHOHISTIDINE
545
20.4.5
STABLE
ANALOGUES
OF
PYROPHOSPHORYLATED
SERINE
547
20.5
CONCLUSION
547
REFERENCES
547
21
CYCLIC
PEPTIDES
VIA
LIGATION
METHODS
553
TRISTAN
J.
TYLER
AND
DAVID
J.
CRAIK
21.1
INTRODUCTION
553
21.2
CYCLIC
PEPTIDE
SYNTHESIS
554
CONTENTS
XV
21.3
ORBITIDES
557
21.4
PAWS-DERIVED
PEPTIDES(PDPS)
559
21.5
CYCLIC
CONOTOXINS
561
21.6
0-DEFENSINS
563
21.7
CYCLOTIDES
563
21.8
OUTLOOK
568
ACKNOWLEDGEMENTS
568
FUNDING
568
REFERENCES
569
INDEX
579
|
adam_txt |
CONTENTS
PREFACE
XVII
1
CHARACTERIZATION
OF
PROTEIN
MOLECULES
PREPARED
BY
TOTAL
CHEMICAL
SYNTHESIS
1
STEPHEN
B.
H,
KENT
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4
INTRODUCTION
1
CHEMICAL
PROTEIN
SYNTHESIS
2
COMMENTS
ON
CHARACTERIZATION
OF
SYNTHETIC
PROTEIN
MOLECULES
8
HOMOGENEITY
8
AMINO
ACID
SEQUENCE
9
CHEMICAL
ANALOGUES
10
LIMITATIONS
OF
SPPS
10
FOLDING
AS
A
PURIFICATION
STEP
10
SUMMARY
12
REFERENCES
12
2
AUTOMATED
FAST
FLOW
PEPTIDE
SYNTHESIS
17
MARK
D.
SIMON,
ALEXANDER!,
MIJALIS,
KYLE
A.
TOTARO,
DANIEL
DUNKELMANN,
ALEXANDER
A.
VINOGRADOV,
CHI
ZHANG,
YUTA
MAKI,
JUSTIN
M.
WOLFE,
JESSICA
WILSON,
ANDREI
LOAS,
AND
BRADLEY
L.
PENTELUTE
2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.3
INTRODUCTION
17
RESULTS
19
SUMMARY
19
MECHANICAL
PRINCIPLES
20
CHEMICAL
PRINCIPLES
20
USER
INTERFACE
PRINCIPLES
20
DATA
ANALYSIS
METHOD
20
OUTCOME
21
FIRST-GENERATION
AUTOMATED
FAST
FLOW
PEPTIDE
SYNTHESIS
21
KEY
FINDINGS
21
DESIGN
OF
FIRST-GENERATION
AFPS
21
CHARACTERIZATION
OF
FIRST-GENERATION
AFPS
23
SECOND-GENERATION
AUTOMATED
FAST
FLOW
PEPTIDE
SYNTHESIS
24
VI
CONTENTS
2.2.3.1
KEY
FINDINGS
24
2.23.2
DESIGN
OF
SECOND-GENERATION
AFPS
24
2.23.3
CHARACTERIZATION
AND
USE
OF
SECOND-GENERATION
AFPS
26
2.2.4
THIRD-GENERATION
AUTOMATED
FAST FLOW
PEPTIDE
SYNTHESIS
32
2.2.4.1
KEY
FINDINGS
32
2.2
A.
2
DESIGN
OF
THIRD-GENERATION
AFPS
34
2.2.43
CHARACTERIZATION
OF
THIRD-GENERATION
AFPS
39
2.2.4.4
REAGENT
STABILITY
STUDY
43
2.2.5
FOURTH-GENERATION
AUTOMATED
FAST FLOW
PEPTIDE
SYNTHESIS
45
2.2.5.1
KEY
FINDINGS
45
2.2.5.2
EFFECT
OF
SOLVENT
ON
FAST
FLOW
SYNTHESIS
45
2.2.53
DESIGN
AND
CHARACTERIZATION
OF
FOURTH-GENERATION
AFPS
45
2.3
CONCLUSIONS
49
ACKNOWLEDGMENTS
53
REFERENCES
53
3
N,S-
AND
N,SE-ACYL
TRANSFER
DEVICES
IN
PROTEIN
SYNTHESIS
59
VINCENT
DIEMER,
JENNIFER
BOUCHENNA,
FLORENT
KERDRAON,
VANGELIS
AGOURIDAS,
AND
OLEG
MELNYK
3.1
INTRODUCTION
59
3.2
N,S-
AND
XSE-ACYL
TRANSFER
DEVICES:
GENERAL
PRESENTATION,
REACTIVITY
AND
STATISTICAL
OVERVIEW
OF
THEIR
UTILIZATION
61
3.2.
1
GENERAL
PRESENTATION
OF
N,S-
AND
N,SE-ACYL
TRANSFER
DEVICES
61
3.2.2
RELATIVE
REACTIVITY
OF
N,S-
AND
N,SE-
ACYL
TRANSFER
DEVICES
63
3.2.3
A
STATISTICAL
OVERVIEW
OF
THE
SYNTHETIC
USE
OF
N,S-
AND
N,SE-ACYL
TRANSFER
DEVICES
FOR
PROTEIN
TOTAL
CHEMICAL
SYNTHESIS
64
3.3
PREPARATION
OF
SEA/SEEA
OFF
AND
SEALIDE
PEPTIDES
68
33.1
PREPARATION
OF
SEA
AND
SEEA
PEPTIDES
68
3.3.2
PREPARATION
OF
SEALIDE
PEPTIDES
70
3.4
REDOX-CONTROLLED
ASSEMBLY
OF
BIOTINYLATED
NK1
DOMAIN
OF
THE
HEPATOCYTE
GROWTH
FACTOR
(HGF)
USING
SEA
AND
SEEA
CHEMISTRIES
71
3.5
THE
TOTAL
CHEMICAL
SYNTHESIS
OF
GM2-AP
USING
SEALIDE-BASED
CHEMISTRY
75
3.6
CONCLUSION
79
REFERENCES
80
4
CHEMICAL
SYNTHESIS
OF
PROTEINS
THROUGH
NATIVE
CHEMICAL
LIGATION
OF
PEPTIDE
HYDRAZIDES
87
CHAO
ZUO,
XIAODAN
TAN,
XIANGLONG
TAN,
AND
LEI
LIU
4.1
INTRODUCTION
87
4.2
DEVELOPMENT
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
88
4.2.1
CONVERSION
OF
PEPTIDE
HYDRAZIDE
TO
PEPTIDE
AZIDE
88
4.2.2
ACYL
AZIDE-BASED
SOLID-PHASE
PEPTIDE
SYNTHESIS
88
4.2.3
ACYL
AZIDE-BASED
SOLUTION-PHASE
PEPTIDE
SYNTHESIS
89
4.2.4
THE
TRANSESTERIFICATION
OF
ACYL
AZIDE
90
CONTENTS
I
VII
4.2.5
DEVELOPMENT
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
90
4.3
OPTIMIZATION
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
91
4.3.1
PREPARATION
OF
PEPTIDE
HYDRAZIDES
91
4.3.1.1
2-CL-TRT-CL
RESIN
91
4.3.1.2
PEPTIDE
HYDRAZIDES
FROM
EXPRESSED
PROTEINS
92
4.3.1.3
SORTASE-MEDIATED
HYDRAZIDE
GENERATION
93
4.3.2
ACTIVATION
METHODS
OF
PEPTIDE
HYDRAZIDE
94
4.3.2.1
KNORR
PYRAZOLE
SYNTHESIS
94
43.2.2
ACTIVATION
IN
TFA
94
4.3.3
LIGATION
SITES
OF
PEPTIDE
HYDRAZIDE
95
4.3.4
MULTIPLE
FRAGMENT
LIGATION
BASED
ON
PEPTIDE
HYDRAZIDE
96
43.4.1
N-TO-C
SEQUENTIAL
LIGATION
96
43.4.2
CONVERGENT
LIGATION
96
4.3.4.3
ONE-POT
LIGATION
96
4.4
APPLICATION
OF
PEPTIDE
HYDRAZIDE-BASED
NATIVE
CHEMICAL
LIGATION
99
4.4.1
PEPTIDE
DRUGS
AND
DIAGNOSTIC
TOOLS
99
4.4.1.1
PEPTIDE
HYDRAZIDES FOR
CYCLIC
PEPTIDE
SYNTHESIS
99
4.4.
1.2
SCREENING
FOR
D
PEPTIDE
INHIBITORS
TARGETING
PD-L1
99
4.4.1.3
CHEMICAL
SYNTHESIS
OF
DCAF
FOR
TARGETED
ANTIBODY
BLOCKING
101
4.4.
1.4
PEPTIDE
TOXINS
101
4.4.2
SYNTHESIS
AND
APPLICATION
OF
TWO-PHOTON
ACTIVATABLE
CHEMOKINE
CCL5
102
4.4.3
PROTEINS
WITH
POSTTRANSLATIONAL
MODIFICATION
103
4.4.3.1
THE
SYNTHESIS
OF
GLYCOSYLATION-MODIFIED
FULL-LENGTH
IL-6
103
4.43.2
THE
CHEMICAL
SYNTHESIS
OF
EPO
105
4.433
CHEMICAL
SYNTHESIS
OF
HOMOGENEOUS
PHOSPHORYLATED
P62
105
4.4.3.4
CHEMICAL
SYNTHESIS
OF
K19,
K48
BI-ACETYLATED
ATG3
PROTEIN
105
4.4.4
UBIQUITIN
CHAINS
108
4.4.4.1
SYNTHESIS
OF
K27-LINKED
UBIQUITIN
CHAINS
108
4.4.4.2
SYNTHESIS
OF
ATYPICAL
UBIQUITIN
CHAINS
BY
USING
AN
ISOPEPTIDE-LINKED
UB
ISOMER
109
4.4.43
SYNTHESIS
OF
ATYPICAL
UBIQUITIN
CHAINS
USING
AN
ISOPEPTIDE-LINKED
UB
ISOMER
109
4.4.5
MODIFIED
NUCLEOSOMES
110
4.4.5.1
SYNTHESIS
OF
DNA-BARCODED
MODIFIED
NUCLEOSOME
LIBRARY
110
4.4.5.2
SYNTHESIS
OF
MODIFIED
HISTONE
ANALOGS
WITH
A
CYSTEINE
AMINOETHYLATION-ASSISTED
CHEMICAL
UBIQUITINATION
STRATEGY
111
4.4.53
SYNTHESIS
OF
UBIQUITYLATED
HISTONES
FOR
EXAMINATION
OF
THE
DEUBIQUITINATION
SPECIFICITY
OF
USP51
111
4.4.6
MEMBRANE
PROTEINS
112
4.4.7
MIRROR-IMAGE
BIOLOGICAL
SYSTEMS
112
4.
5
SUMMARY
AND
OUTLOOK
113
REFERENCES
114
VIII
CONTENTS
5
EXPANDING
NATIVE
CHEMICAL
LIGATION
METHODOLOGY
WITH
SYNTHETIC
AMINO
ACID
DERIVATIVES
119
EMMA
E.
WATSON,
LARA
R.
MALINS,
AND
RICHARD
J.
PAYNE
5.1
NATIVE
CHEMICAL
LIGATION
120
5.2
DESULFURIZATION
CHEMISTRIES
120
5.3
ASPARTIC
ACID
(ASP,
D)
122
5.4
GLUTAMIC
ACID
(GLU,
E)
124
5.5
PHENYLALANINE
(PHE,
F)
125
5.6
ISOLEUCINE
(HE,
I)
127
5.7
LYSINE
(LYS,
K)
130
5.8
LEUCINE
(LEU,
L)
133
5.9
ASPARAGINE
(ASN,
N)
135
5.10
PROLINE
(PRO,
P)
138
5.11
GLUTAMINE
(GIN,
Q)
139
5.12
ARGININE
(ARG,
R)
139
5.13
THREONINE
(THR,
T)
140
5.14
VALINE
(VAI,
V)
142
5.15
TRYPTOPHAN
(TRP,
W)
144
5.16
APPLICATION
OF
SELENOCYSTEINE
(SEC)
TO
LIGATION
CHEMISTRY
146
5.17
*
ASPARTIC
ACID
(ASP,
D)
147
5.18
GLUTAMIC
ACID
(GLU,
E)
148
5.19
PHENYLALANINE
(PHE,
F)
149
5.20
LEUCINE
(LEU,
L)
151
5.21
PROLINE
(PRO,
P)
151
5.22
SERINE
(SER,
S)
153
REFERENCES
155
6
PEPTIDE
LIGATIONS
AT
STERICALLY
DEMANDING
SITES
161
YINGLU
WANG
AND
SUWEI
DONG
6.1
INTRODUCTION
161
6.2
LIGATIONS
USING
THIOESTERS
162
6.2.1
EXOGENOUS
ADDITIVE-PROMOTED
LIGATIONS
162
6.2.2
LIGATIONS
USING
REACTIVE
THIOESTERS
167
6.2.3
INTERNAL
ACTIVATION
STRATEGY
IN
PEPTIDE
LIGATIONS
169
6.3
LIGATIONS
USING
OXO-ESTERS
170
6.4
PEPTIDE
LIGATIONS
BASED
ON
SELENOESTERS
170
6.5
MICROFLUIDICS-PROMOTED
NCL
175
6.6
REPRESENTATIVE
APPLICATIONS
IN
PROTEIN
SYNTHESIS
178
6.7
SUMMARY
AND
OUTLOOK
181
REFERENCES
181
7
CONTROLLING
SEGMENT
SOLUBILITY
IN
LARGE
PROTEIN
SYNTHESIS
185
RILEY
J.
GIESLER,
JAMES
M.
FULCHER,
MICHAEL
T.
JACOBSEN,
AND
MICHAEL
S.
KAY
7.1
SOLVENT
MANIPULATION
185
CONTENTS
|
IX
7.2
ISOACYL
STRATEGY
187
7.3
SEMIPERMANENT
SOLUBILIZING
TAGS
191
7.3.1
N-
OR
C-TERMINAL
SOLUBILIZING
*
TAILS
*
192
7.3.2
REVERSIBLE
BACKBONE
MODIFICATIONS
AS
SOLUBILIZING
TAGS
194
7.3.3
BUILDING
BLOCK
SOLUBILIZING
TAGS
195
73.4
EXTENDABLE
SIDE-CHAIN-BASED
SOLUBILIZING
TAGS
195
REFERENCES
198
8
TOWARD
HPLC-FREE
TOTAL
CHEMICAL
SYNTHESIS
OF
PROTEINS
211
PHUC
UNG
AND
OLIVER
SEITZ
8.1
INTRODUCTION
211
8.1.1
CAPTURE
AND
RELEASE
PURIFICATION
212
8.1.2
SOLID-PHASE
CHEMICAL
LIGATIONS
(SPCL)
212
8.2
SYNTHESIS
OF
PEPTIDE
SEGMENTS
FOR
NATIVE
CHEMICAL
LIGATION
213
8.2.1
HPLC-FREE
PREPARATION
OF
N-TERMINAL
PEPTIDE
SEGMENTS
FOR
NCL
213
8.2.2
HPLC-FREE
PREPARATION
OF
C-TERMINAL
PEPTIDE
SEGMENTS
FOR
NCL
217
8.3
SYNTHESIS
OF
PROTEINS
USING
THE
HIS
6
TAG
220
8.3.1
REVERSIBLE
HIS
6
-BASED
CAPTURE
TAGS
220
8.3.2
HIS
6
-BASED
IMMOBILIZATION
FOR
C-TO-N
ASSEMBLY
OF
CRAMBIN
221
8.3.3
HIS
6
-BASED
IMMOBILIZATION
FOR
ASSEMBLY
OF
PROTEINS
ON
MICROTITER
PLATES
222
8.3.4
HIS
6
AND
HYDRAZIDE
TAGS
FOR
SEQUENTIAL
N-TO-C
CAPTURE
AND
RELEASE
225
8.4
SYNTHESIS
OF
PROTEINS
VIA
OXIME
FORMATION
227
8.4.1
REVERSIBLE
OXIME-BASED
CAPTURE
TAGS
227
8.4.2
OXIME-BASED
IMMOBILIZATION
FOR
N-TO-C
SOLID-PHASE
CHEMICAL
LIGATIONS
227
8.4.3
OXIME-BASED
IMMOBILIZATION
FOR
C-TO-N
SOLID-PHASE
CHEMICAL
LIGATIONS
233
8.4.4
OXIME-BASED
C-TO-N
SOLID-PHASE
CHEMICAL
LIGATIONS
237
8.5
SYNTHESIS
OF
PROTEINS
VIA
HYDRAZONE
FORMATION
238
8.5.1
REVERSIBLE
HYDRAZONE-BASED
CAPTURE
TAGS
238
8.5.2
HYDRAZONE-BASED
IMMOBILIZATION
FOR
ASSEMBLY
OF
PROTEINS
ON
MICROTITER
PLATES
239
8.6
SYNTHESIS
OF
PROTEINS
USING
CLICK
CHEMISTRY
242
8.6.1
CLICK-BASED
IMMOBILIZATION
FOR
N-TO-C
SOLID-PHASE
PEPTIDE
LIGATIONS
USING
A
PROTECTED
ALKYNE
242
8.6.2
CLICK-BASED
IMMOBILIZATION
FOR
N-TO-C
SOLID-PHASE
PEPTIDE
LIGATIONS
USING
A
SEA
GROUP
243
8.7
SYNTHESIS
OF
PROTEINS
USING
THE
KAHA
LIGATION
244
8.7.1
THE
KAHA
LIGATION
244
8.7.2
HPLC-FREE
SYNTHESIS
OF
PROTEINS
USING
THE
KAHA
LIGATION
245
8.8
SYNTHESIS
OF
PROTEINS
USING
PHOTOCLEAVABLE
TAGS
246
8.8.1
SYNTHESIS
OF
PROTEINS
USING
A
PHOTOCLEAVABLE
BIOTIN-BASED
PURIFICATION
TAG
246
X|
CONTENTS
8.8.2
SYNTHESIS
OF
PROTEINS
USING
A
PHOTOCLEAVABLE
HIS
6
-BASED
PURIFICATION
TAG
247
8.9
CONCLUSION
249
REFERENCES
251
9
SOLID-PHASE
CHEMICAL
LIGATION
259
SKANDER
A.
ABBOUD,
AGNES
F.
DELMAS,
AND
VINCENT
AUCAGNE
9.1
INTRODUCTION
259
9.1.1
THE
PROMISES
OF
SOLID
PHASE
CHEMICAL
LIGATION
(SPCL)
259
9.1.2
CHEMICAL
LIGATION
REACTIONS USED
FOR
SPCL
260
9.1.3
KEY
REQUIREMENTS
FOR
A
SPCL
STRATEGY
261
9.2
SPCL
IN THE
C-TO-N
DIRECTION
262
9.2.1
TEMPORARY
MASKING
GROUPS
TO
ENABLE
ITERATIVE
LIGATIONS
262
9.2.2
LINKERS
FOR
C-TO-N
SPCL
264
9.2.2.1
USE
OF
SAME
LINKER
AND
SOLID
SUPPORT
FOR
SPPS
AND
SPCL
265
9.2.2.2
RE-IMMOBILIZATION
OF
THE
C-TERMINAL
SEGMENT
266
9.3
SPCL
IN
THE
N-TO-C
DIRECTION
268
9.3.1
TEMPORARY
MASKING
GROUPS
TO
ENABLE
ITERATIVE
LIGATIONS
268
9.3.2
LINKERS
FOR
N-TO-C
SPCL
270
9.3.3
CASE
STUDY
272
9.3.4
SPCL
WITH
CONCOMITANT
PURIFICATIONS
274
9.4
POST-LIGATION
SOLID-SUPPORTED
TRANSFORMATIONS
274
9.4.1
CHEMICAL
TRANSFORMATIONS
274
9.4.2
BIOCHEMICAL
TRANSFORMATIONS
275
9.5
SOLID
SUPPORT
275
9.6
CONCLUSION
AND
PERSPECTIVES
278
ACKNOWLEDGMENT
278
9.A
APPENDIX
278
REFERENCES
280
10
SER/THR
LIGATION
FOR
PROTEIN
CHEMICAL
SYNTHESIS
285
CARINA
HEY
PUI
CHEUNG
AND
XUECHEN
LI
10.1
SERINE/THREONINE
LIGATION
287
10.2
EPIMERIZATION
ISSUE
289
10.3
OTHER
ARYL
ALDEHYDE
ESTERS
289
10.4
PREPARATION
OF
PEPTIDE
SALICYLALDEHYDE
ESTERS
289
10.5
SCOPE
AND
LIMITATIONS
294
10.6
STRATEGIES
OF
SER/THR
LIGATION
FOR
PROTEIN
CHEMICAL
SYNTHESIS
294
10.7
C-TO-N
SER/THR
LIGATION
294
10.8
N-TO-C
SER/THR
LIGATION
296
10.9
ONE-POT
SER/THR
LIGATION
AND
NCL
296
10.10
BIOCONJUGATION
296
10.11
SOLUBILITY
ISSUES
298
10.12
EXTENSION
OF
SER/THR
LIGATION
298
10.13
CONCLUSION
302
REFERENCES
303
CONTENTS
XI
11
PROTEIN
SEMISYNTHESIS
307
NAM
CHU
AND
PHILIP
A.
COLE
11.1
BACKGROUND
307
11.2
EXPRESSED
PROTEIN
LIGATION
(EPL)
308
11.2.1
METHOD
DEVELOPMENT
308
11.2.2
APPLICATIONS
OF
EPL
FOR
STUDYING
PROTEIN
POSTTRANSLATIONAL
MODIFICATIONS
309
11.2.3
SITE-SPECIFIC
PROTEIN
LABELING
WITH
N-HYDROXYSUCCINIMIDE
ESTERS
311
11.3
CYSTEINE
MODIFICATIONS
311
11.3.1
DEHYDROALANINE
GENERATION
AND
APPLICATIONS
IN
SEMISYNTHESIS
312
11.3.2
CYSTEINE
ALKYLATION-RELATED
METHODS
TO
INTRODUCE
LYS
MIMICS
313
11.4
ENZYME-CATALYZED
PROTEIN/PEPTIDE
LIGATIONS
314
11.4.1
SORTASE
314
11.4.2
BUTELASE-1
316
11.4.3
SUB
TILIGASE
317
11.4.4
TRYPSILIGASE
318
11.5
ENZYME-CATALYZED
EXPRESSED
PROTEIN
LIGATION
318
11.6
SUMMARY
AND
OUTLOOK
319
ACKNOWLEDGMENTS
320
REFERENCES
320
12 BIO-ORTHOGONAL
IMINE
CHEMISTRY
IN
CHEMICAL
PROTEIN
SYNTHESIS
327
STIJN
M.
AGTEN,
INGRID
DIJKGRAAF,
STAN
H.
E.
VAN
DER
BEELEN,
AND
TILMAN
M.
HACKENG
12.1
INTRODUCTION
327
12.2
CARBONYL
FUNCTIONALIZATION
328
12.3
AMINOOXY,
HYDRAZINE,
AND
HYDRAZIDE
FUNCTIONALIZATION
335
12.4
OXIME
LIGATION
337
12.5
HYDRAZONE
LIGATION
342
12.6
PICTET-SPENGLER
REACTION
344
12.7
CATALYSIS
OF
OXIME
AND
HYDRAZONE
LIGATIONS
346
REFERENCES
348
13
DECIPHERING
PROTEIN
FOLDING
USING
CHEMICAL
PROTEIN
SYNTHESIS
357
VLADIMIR
TORBEEV
13.1
INTRODUCTION
357
13.2
MODIFICATION
OF
PROTEIN
BACKBONE
AMIDES
358
13.3
INSERTION
OF
0-TURN
MIMETICS
361
13.4
INVERSION
OF
CHIRAL
CENTERS
IN
PROTEIN
BACKBONE
AND
SIDE
CHAINS
362
13.5
MODULATING
CIS-TRANS
PROLINE
ISOMERIZATION
366
13.6
STEERING
OXIDATIVE
PROTEIN
FOLDING
368
13.7
COVALENT
TETHERING
TO
FACILITATE
FOLDING
OF
DESIGNED
PROTEINS
371
13.8
DISCOVERY
OF
PREVIOUSLY
UNKNOWN
PROTEIN
FOLDS
373
XII
CONTENTS
13.9
SITE-SPECIFIC
LABELING
WITH
FLUOROPHORES
373
13.10
FOLDAMERS
AND
FOLDAMER-PEPTIDE
HYBRIDS
375
13.11
CONCLUSIONS
AND
OUTLOOK
377
ACKNOWLEDGEMENT
378
REFERENCES
378
14
CHEMICAL
SYNTHESIS
OF
UBIQUITINATED
PROTEINS
FOR
BIOCHEMICAL
STUDIES
383
GANDHESIRI
SATISH,
GANGA
B.
VAMISETTI,
AND
ASHRAF
BRIK
14.1
THE
UBIQUITIN
SYSTEM
383
14.2
NON-ENZYMATIC
UBIQUITINATION:
CHALLENGES
AND
OPPORTUNITIES
386
14.2.1
CHEMICAL
SYNTHESIS
OF
UB
BUILDING
BLOCKS
387
14.2.2
ISOPEPTIDE
LIGATION
387
14.2.3
TOTAL
CHEMICAL
SYNTHESIS
OF
TETRA-UB
CHAINS
390
14.3
SYNTHESIS
AND
SEMISYNTHESIS
OF
UBIQUITINATED
PROTEINS
393
14.3.1
MONOUBIQUITINATED
PROTEINS
393
14.3.2
TETRA-UBIQUITINATED
PROTEINS
395
14.3.3
MODIFICATION
OF
EXPRESSED
PROTEINS
WITH
TETRA-UB
400
14.4
SYNTHESIS
OF
UNIQUE
UB
CONJUGATES
TO
STUDY
AND
TARGET
DUBS
401
14.5
ACTIVITY-BASED
PROBES
403
14.6
PERSPECTIVE
405
LIST
OF
ABBREVIATIONS
406
REFERENCES
407
15
GLYCOPROTEIN
SYNTHESIS
411
CHAITRA
CHANDRASHEKAR,
KENTO
IRITANI,
TATSUYA
MORIGUCHI,
AND
YASUHIRO
KAJIHARA
15.1
INTRODUCTION
411
15.2
TOTAL
CHEMICAL
SYNTHESIS
OF
GLYCOPROTEINS
411
15.3
SEMISYNTHESIS
OF
GLYCOPROTEINS
413
15.4
CHEMOENZYMATIC
SYNTHESIS
413
15.5
A-SYNUCLEIN
414
15.6
HIRUDIN
P6
415
15.7
SAPOSIND
416
15.8
INTERLEUKIN
2
417
15.9
INTERLEUKIN
25
417
15.10
MUCIN
1
419
15.11
CRAMBIN
421
15.12
TAU
PROTEIN
422
15.13
CHEMICAL
DOMAIN
OF
FRACTALKINE
423
15.14
CCL1
424
15.15
INTERLEUKIN
6
424
15.16
INTERLEUKIN
8
425
15.17
ERYTHROPOIETIN
426
15.18
TRASTUZUMAB
430
CONTENTS
XIII
15.19
ANTIFREEZE
GLYCOPROTEIN
432
15.20
CONCLUSION
434
REFERENCES
434
16
CHEMICAL
SYNTHESIS
OF
MEMBRANE
PROTEINS
437
ALANCA
SCHMID
AND
CHRISTIAN
F.W.
BECKER
16.1
INTRODUCTION
437
16.2
SOLID
PHASE
SYNTHESIS
OF
TM
PEPTIDES
438
16.3
PURIFICATION
AND
HANDLING
STRATEGIES
OF
TM
PEPTIDES
442
16.4
SOLUBILITY
TAGS
443
16.4.1
TERMINAL
TAGS
443
16.4.2
SIDE
CHAIN
TAGS
445
16.5
REMOVABLE
SOLUBILIZING
BACKBONE
TAGS
445
16.6
CHEMICAL
SYNTHESIS
OF
MEMBRANE
PROTEINS
449
16.6.1
PROTEINS
WITH
1
TM
DOMAIN
449
16.6.2
PROTEINS
WITH
2
TM
DOMAINS
450
16.6.3
PROTEINS
WITH
3
AND
MORE
TM
DOMAINS
454
16.7
OUTLOOK
456
REFERENCES
457
17
CHEMICAL
SYNTHESIS
OF
SELENOPROTEINS
463
REBECCA
N.
DARDASHTI,
REEM
GHADIR,
HIBA
GHAREEB,
ORIT
WEIL-KTORZA,
AND
NORMAN
METANIS
17.1
WHAT
ARE
SELENOPROTEINS?
463
17.2
EXPRESSION
OF
SELENOPROTEINS
466
17.3
SEC
AS
A
REACTIVE
HANDLE
469
17.4
SYNTHESIS
AND
SEMISYNTHESIS
OF
NATURAL
SELENOPROTEINS
473
17.5
SELENIUM
AS
A
TOOL
FOR
PROTEIN
FOLDING
475
17.6
CONCLUSIONS
478
REFERENCES
478
18
HISTONE
SYNTHESIS
489
CHAMPAK
CHATTERJEE
18.1
THE
HISTONES
AND
THEIR
CHEMICAL
MODIFICATIONS
489
18.1.1
HISTONE
PROTEINS
489
18.1.2
HISTONE
POSTTRANSLATIONAL
MODIFICATIONS
490
18.2
CHEMICAL
LIGATION
FOR
HISTONE
SYNTHESIS
492
18.2.1
NATIVE
CHEMICAL
LIGATION
492
18.2.2
EXPANDING
THE
SCOPE
OF
NATIVE
CHEMICAL
LIGATION
WITH
INTEINS
494
18.3
HISTONE
OCTAMER
AND
NUCLEOSOME
CORE
PARTICLE
ASSEMBLY
494
18.4
STUDYING
THE
HISTONE
CODE
WITH
SYNTHETIC
HISTONES
496
18.4.1
SYNTHESIS
OF
HISTONES
MODIFIED
BY
SMALLER
FUNCTIONAL
GROUPS
497
18.4.1.1
HISTONE
PHOSPHORYLATION
497
18.4.1.2
HISTONE
ACETYLATION
499
18.4.1.3
HISTONE
METHYLATION
502
XIV
CONTENTS
18.4.2
SYNTHESIS
OF
SUMOYLATED
HISTONES
505
18.5
CONCLUSIONS
506
ACKNOWLEDGMENTS
506
REFERENCES
506
19
APPLICATION
OF
CHEMICAL
SYNTHESIS
TO
ENGINEER
PROTEIN
BACKBONE
CONNECTIVITY
515
CHINO
C.
CABALTEJA
AND
W.
SETH
HOME
19.1
INTRODUCTION
515
19.2
BACKBONE
ENGINEERING
TO
FACILITATE
SYNTHESIS
516
19.3
BACKBONE
ENGINEERING
TO
EXPLORE
THE
CONSEQUENCES
OF
CHIRALITY
517
19.4
BACKBONE
ENGINEERING
TO
UNDERSTAND
AND
CONTROL
FOLDING
520
19.5
BACKBONE
ENGINEERING
TO
CREATE
PROTEIN
MIMETICS
522
19.6
CONCLUSIONS
525
REFERENCES
526
20
BEYOND
PHOSPHATE
ESTERS:
SYNTHESIS
OF
UNUSUALLY
PHOSPHORYLATED
PEPTIDES
AND
PROTEINS
FOR
PROTEOMIC
RESEARCH
533
ANETT
HAUSER,
CHRISTIAN
E.
STIEGER,
AND
CHRISTIAN
P.
R.
HACKENBERGER
20.1
INTRODUCTION
533
20.2
GENERAL
METHODS
FOR
THE
INCORPORATION
OF
HYDROXY-PHOSPHORYLATED
AMINO
ACIDS
INTO
PEPTIDES
AND
PROTEINS
534
20.3
INCORPORATION
OF
OTHER
PHOSPHORYLATED
NUCLEOPHILIC
AMINO
ACIDS
INTO
PEPTIDES
AND
PROTEINS
537
20.3.1
PHOSPHOARGININE
(PARG)
537
20.3.2
PHOSPHOHISTIDINE
(PHIS)
538
20.3.3
PHOSPHOLYSINE
(PLYS)
539
20.3.4
PHOSPHOCYSTEINE
(PCYS)
539
20.3.5
PYROPHOSPHORYLATION
OF
SERINE
AND
THREONINE
(PPSER,
PPTHR)
541
20.4
DEVELOPMENT
OF
PHOSPHO-ANALOGUES
AS
MIMICS
FOR
ENDOGENOUS
PHOSPHO-AMINO
ACIDS
541
20.4.1
ANALOGUES
OF
PHOSPHOSERINE,
PHOSPHOTHREONINE,
AND
PHOSPHOTYROSINE
541
20.4.2
STABLE
ANALOGUES
OF
PHOSPHOASPARTATE
AND
PHOSPHOGLUTAMATE
543
20.4.3
STABLE
ANALOGUES
OF
PHOSPHOARGININE
544
20.4.4
STABLE
ANALOGUES
OF
PHOSPHOHISTIDINE
545
20.4.5
STABLE
ANALOGUES
OF
PYROPHOSPHORYLATED
SERINE
547
20.5
CONCLUSION
547
REFERENCES
547
21
CYCLIC
PEPTIDES
VIA
LIGATION
METHODS
553
TRISTAN
J.
TYLER
AND
DAVID
J.
CRAIK
21.1
INTRODUCTION
553
21.2
CYCLIC
PEPTIDE
SYNTHESIS
554
CONTENTS
XV
21.3
ORBITIDES
557
21.4
PAWS-DERIVED
PEPTIDES(PDPS)
559
21.5
CYCLIC
CONOTOXINS
561
21.6
0-DEFENSINS
563
21.7
CYCLOTIDES
563
21.8
OUTLOOK
568
ACKNOWLEDGEMENTS
568
FUNDING
568
REFERENCES
569
INDEX
579 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Brik, Ashraf Dawson, Philip Liu, Lei |
author2_role | edt edt edt |
author2_variant | a b ab p d pd l l ll |
author_GND | (DE-588)1235163598 (DE-588)1131277171 (DE-588)1072171910 |
author_facet | Brik, Ashraf Dawson, Philip Liu, Lei |
building | Verbundindex |
bvnumber | BV047312929 |
classification_rvk | VK 8560 |
ctrlnum | (OCoLC)1257811237 (DE-599)DNB1215859309 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02778nam a2200685 c 4500</leader><controlfield tag="001">BV047312929</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210607s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N34</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1215859309</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527346608</subfield><subfield code="c">: circa EUR 179.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-34660-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527346600</subfield><subfield code="9">3-527-34660-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527346608</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1134660 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1257811237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1215859309</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 8560</subfield><subfield code="0">(DE-625)147540:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Total chemical synthesis of proteins</subfield><subfield code="c">edited by Ashraf Brik, Philip Dawson, and Lei Liu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 604 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proteine</subfield><subfield code="0">(DE-588)4076388-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Totalsynthese</subfield><subfield code="0">(DE-588)4412308-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemie u. Chemische Biologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemistry (Chemical Biology)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie i. d. Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Life Sciences</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Methods - Synthesis & Techniques</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Organische Chemie / Methoden, Synthesen, Verfahren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH81: Organische Chemie / Methoden, Synthesen, Verfahren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CHB0: Biochemie u. Chemische Biologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">LS35: Biotechnologie i. d. Biowissenschaften</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Proteine</subfield><subfield code="0">(DE-588)4076388-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Totalsynthese</subfield><subfield code="0">(DE-588)4412308-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brik, Ashraf</subfield><subfield code="0">(DE-588)1235163598</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dawson, Philip</subfield><subfield code="0">(DE-588)1131277171</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Lei</subfield><subfield code="0">(DE-588)1072171910</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-82357-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-82358-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, OBOOK</subfield><subfield code="z">978-3-527-82356-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34660-8/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032715823&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032715823</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047312929 |
illustrated | Illustrated |
index_date | 2024-07-03T17:26:35Z |
indexdate | 2024-07-10T09:08:35Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527346608 3527346600 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032715823 |
oclc_num | 1257811237 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | xx, 604 Seiten Illustrationen, Diagramme (teilweise farbig) 24.4 cm x 17 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Total chemical synthesis of proteins edited by Ashraf Brik, Philip Dawson, and Lei Liu Weinheim Wiley-VCH [2021] © 2021 xx, 604 Seiten Illustrationen, Diagramme (teilweise farbig) 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Proteine (DE-588)4076388-2 gnd rswk-swf Totalsynthese (DE-588)4412308-5 gnd rswk-swf Biochemie u. Chemische Biologie Biochemistry (Chemical Biology) Biotechnologie i. d. Biowissenschaften Biotechnology Biowissenschaften Chemie Chemistry Life Sciences Methods - Synthesis & Techniques Organische Chemie / Methoden, Synthesen, Verfahren CH81: Organische Chemie / Methoden, Synthesen, Verfahren CHB0: Biochemie u. Chemische Biologie LS35: Biotechnologie i. d. Biowissenschaften (DE-588)4143413-4 Aufsatzsammlung gnd-content Proteine (DE-588)4076388-2 s Totalsynthese (DE-588)4412308-5 s DE-604 Brik, Ashraf (DE-588)1235163598 edt Dawson, Philip (DE-588)1131277171 edt Liu, Lei (DE-588)1072171910 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-82357-4 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-82358-1 Erscheint auch als Online-Ausgabe, OBOOK 978-3-527-82356-7 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34660-8/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032715823&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Total chemical synthesis of proteins Proteine (DE-588)4076388-2 gnd Totalsynthese (DE-588)4412308-5 gnd |
subject_GND | (DE-588)4076388-2 (DE-588)4412308-5 (DE-588)4143413-4 |
title | Total chemical synthesis of proteins |
title_auth | Total chemical synthesis of proteins |
title_exact_search | Total chemical synthesis of proteins |
title_exact_search_txtP | Total chemical synthesis of proteins |
title_full | Total chemical synthesis of proteins edited by Ashraf Brik, Philip Dawson, and Lei Liu |
title_fullStr | Total chemical synthesis of proteins edited by Ashraf Brik, Philip Dawson, and Lei Liu |
title_full_unstemmed | Total chemical synthesis of proteins edited by Ashraf Brik, Philip Dawson, and Lei Liu |
title_short | Total chemical synthesis of proteins |
title_sort | total chemical synthesis of proteins |
topic | Proteine (DE-588)4076388-2 gnd Totalsynthese (DE-588)4412308-5 gnd |
topic_facet | Proteine Totalsynthese Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34660-8/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032715823&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT brikashraf totalchemicalsynthesisofproteins AT dawsonphilip totalchemicalsynthesisofproteins AT liulei totalchemicalsynthesisofproteins AT wileyvch totalchemicalsynthesisofproteins |