The structure of groups with a quasiconvex hierarchy:
This monograph on the applications of cube complexes constitutes a breakthrough in the fields of geometric group theory and 3-manifold topology. Many fundamental new ideas and methodologies are presented here for the first time, including a cubical small-cancellation theory generalizing ideas from t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; Oxford
Princeton University Press
[2021]
|
Schriftenreihe: | Annals of mathematics studies
Number 209 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FHR01 FKE01 FLA01 TUM01 UBW01 UBY01 UPA01 Volltext |
Zusammenfassung: | This monograph on the applications of cube complexes constitutes a breakthrough in the fields of geometric group theory and 3-manifold topology. Many fundamental new ideas and methodologies are presented here for the first time, including a cubical small-cancellation theory generalizing ideas from the 1960s, a version of Dehn Filling that functions in the category of special cube complexes, and a variety of results about right-angled Artin groups. The book culminates by establishing a remarkable theorem about the nature of hyperbolic groups that are constructible as amalgams.The applications described here include the virtual fibering of cusped hyperbolic 3-manifolds and the resolution of Baumslag's conjecture on the residual finiteness of one-relator groups with torsion. Most importantly, this work establishes a cubical program for resolving Thurston's conjectures on hyperbolic 3-manifolds, and validates this program in significant cases. Illustrated with more than 150 color figures, this book will interest graduate students and researchers working in geometry, algebra, and topology |
Beschreibung: | Bandzählung laut die Webseite : 366 |
Beschreibung: | 1 Online-Ressource (x, 357 Seiten) Illustrationen, Diagramme |
ISBN: | 9780691213507 |
DOI: | 10.1515/9780691213507 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV047309410 | ||
003 | DE-604 | ||
005 | 20230214 | ||
007 | cr|uuu---uuuuu | ||
008 | 210604s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780691213507 |c Online, PDF |9 978-0-691-21350-7 | ||
024 | 7 | |a 10.1515/9780691213507 |2 doi | |
035 | |a (ZDB-23-DGG)9780691213507 | ||
035 | |a (OCoLC)1256428630 | ||
035 | |a (DE-599)BVBBV047309410 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-20 |a DE-91 |a DE-898 |a DE-83 |a DE-706 |a DE-11 | ||
082 | 0 | |a 512/.2 |2 23 | |
084 | |a 57Kxx |2 msc | ||
084 | |a 20F65 |2 msc | ||
100 | 1 | |a Wise, Daniel T. |d 1971- |0 (DE-588)1030054231 |4 aut | |
245 | 1 | 0 | |a The structure of groups with a quasiconvex hierarchy |c Daniel T. Wise |
264 | 1 | |a Princeton ; Oxford |b Princeton University Press |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (x, 357 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 209 | |
500 | |a Bandzählung laut die Webseite : 366 | ||
520 | |a This monograph on the applications of cube complexes constitutes a breakthrough in the fields of geometric group theory and 3-manifold topology. Many fundamental new ideas and methodologies are presented here for the first time, including a cubical small-cancellation theory generalizing ideas from the 1960s, a version of Dehn Filling that functions in the category of special cube complexes, and a variety of results about right-angled Artin groups. The book culminates by establishing a remarkable theorem about the nature of hyperbolic groups that are constructible as amalgams.The applications described here include the virtual fibering of cusped hyperbolic 3-manifolds and the resolution of Baumslag's conjecture on the residual finiteness of one-relator groups with torsion. Most importantly, this work establishes a cubical program for resolving Thurston's conjectures on hyperbolic 3-manifolds, and validates this program in significant cases. Illustrated with more than 150 color figures, this book will interest graduate students and researchers working in geometry, algebra, and topology | ||
650 | 7 | |a MATHEMATICS / Group Theory |2 bisacsh | |
650 | 4 | |a Group theory | |
650 | 4 | |a Hyperbolic groups | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-691-17044-2 |
830 | 0 | |a Annals of mathematics studies |v Number 209 |w (DE-604)BV040389493 |9 209 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691213507 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032712393 | ||
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA21 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l UBW01 |p ZDB-23-DGG |q UBW_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691213507?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182496618741760 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wise, Daniel T. 1971- |
author_GND | (DE-588)1030054231 |
author_facet | Wise, Daniel T. 1971- |
author_role | aut |
author_sort | Wise, Daniel T. 1971- |
author_variant | d t w dt dtw |
building | Verbundindex |
bvnumber | BV047309410 |
collection | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9780691213507 (OCoLC)1256428630 (DE-599)BVBBV047309410 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9780691213507 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04115nmm a2200577 cb4500</leader><controlfield tag="001">BV047309410</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210604s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691213507</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-0-691-21350-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691213507</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691213507</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256428630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047309410</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57Kxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20F65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wise, Daniel T.</subfield><subfield code="d">1971-</subfield><subfield code="0">(DE-588)1030054231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The structure of groups with a quasiconvex hierarchy</subfield><subfield code="c">Daniel T. Wise</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; Oxford</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 357 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 209</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Bandzählung laut die Webseite : 366</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph on the applications of cube complexes constitutes a breakthrough in the fields of geometric group theory and 3-manifold topology. Many fundamental new ideas and methodologies are presented here for the first time, including a cubical small-cancellation theory generalizing ideas from the 1960s, a version of Dehn Filling that functions in the category of special cube complexes, and a variety of results about right-angled Artin groups. The book culminates by establishing a remarkable theorem about the nature of hyperbolic groups that are constructible as amalgams.The applications described here include the virtual fibering of cusped hyperbolic 3-manifolds and the resolution of Baumslag's conjecture on the residual finiteness of one-relator groups with torsion. Most importantly, this work establishes a cubical program for resolving Thurston's conjectures on hyperbolic 3-manifolds, and validates this program in significant cases. Illustrated with more than 150 color figures, this book will interest graduate students and researchers working in geometry, algebra, and topology</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic groups</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-17044-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 209</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">209</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691213507</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032712393</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA21</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBW_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691213507?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047309410 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:25:43Z |
indexdate | 2024-07-10T09:08:29Z |
institution | BVB |
isbn | 9780691213507 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032712393 |
oclc_num | 1256428630 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-20 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-83 DE-706 DE-11 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-20 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-83 DE-706 DE-11 |
physical | 1 Online-Ressource (x, 357 Seiten) Illustrationen, Diagramme |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA21 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf ZDB-23-DGG UBW_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Wise, Daniel T. 1971- (DE-588)1030054231 aut The structure of groups with a quasiconvex hierarchy Daniel T. Wise Princeton ; Oxford Princeton University Press [2021] © 2021 1 Online-Ressource (x, 357 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 209 Bandzählung laut die Webseite : 366 This monograph on the applications of cube complexes constitutes a breakthrough in the fields of geometric group theory and 3-manifold topology. Many fundamental new ideas and methodologies are presented here for the first time, including a cubical small-cancellation theory generalizing ideas from the 1960s, a version of Dehn Filling that functions in the category of special cube complexes, and a variety of results about right-angled Artin groups. The book culminates by establishing a remarkable theorem about the nature of hyperbolic groups that are constructible as amalgams.The applications described here include the virtual fibering of cusped hyperbolic 3-manifolds and the resolution of Baumslag's conjecture on the residual finiteness of one-relator groups with torsion. Most importantly, this work establishes a cubical program for resolving Thurston's conjectures on hyperbolic 3-manifolds, and validates this program in significant cases. Illustrated with more than 150 color figures, this book will interest graduate students and researchers working in geometry, algebra, and topology MATHEMATICS / Group Theory bisacsh Group theory Hyperbolic groups Erscheint auch als Druck-Ausgabe 978-0-691-17044-2 Annals of mathematics studies Number 209 (DE-604)BV040389493 209 https://doi.org/10.1515/9780691213507 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wise, Daniel T. 1971- The structure of groups with a quasiconvex hierarchy Annals of mathematics studies MATHEMATICS / Group Theory bisacsh Group theory Hyperbolic groups |
title | The structure of groups with a quasiconvex hierarchy |
title_auth | The structure of groups with a quasiconvex hierarchy |
title_exact_search | The structure of groups with a quasiconvex hierarchy |
title_exact_search_txtP | The structure of groups with a quasiconvex hierarchy |
title_full | The structure of groups with a quasiconvex hierarchy Daniel T. Wise |
title_fullStr | The structure of groups with a quasiconvex hierarchy Daniel T. Wise |
title_full_unstemmed | The structure of groups with a quasiconvex hierarchy Daniel T. Wise |
title_short | The structure of groups with a quasiconvex hierarchy |
title_sort | the structure of groups with a quasiconvex hierarchy |
topic | MATHEMATICS / Group Theory bisacsh Group theory Hyperbolic groups |
topic_facet | MATHEMATICS / Group Theory Group theory Hyperbolic groups |
url | https://doi.org/10.1515/9780691213507 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT wisedanielt thestructureofgroupswithaquasiconvexhierarchy |