Fundamentals of two-fluid dynamics: Part 1 Mathematical theory and applications
Two-fluid dynamics is a challenging subject rich in physics and practical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. T...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Springer Science+Business Media, LLC
1993
|
Schriftenreihe: | Interdisciplinary applied mathematics
volume 3 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 Volltext |
Zusammenfassung: | Two-fluid dynamics is a challenging subject rich in physics and practical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actually work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This procedure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet. |
Beschreibung: | 1 Online-Ressource (XV, 443 Seiten) |
ISBN: | 9781461392934 |
DOI: | 10.1007/978-1-4613-9293-4 |
Internformat
MARC
LEADER | 00000nmm a2200000 cc4500 | ||
---|---|---|---|
001 | BV047297635 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210526s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781461392934 |c Online |9 978-1-4613-9293-4 | ||
024 | 7 | |a 10.1007/978-1-4613-9293-4 |2 doi | |
035 | |a (ZDB-2-SMA)978-1-4613-9293-4 | ||
035 | |a (OCoLC)1256418170 | ||
035 | |a (DE-599)BVBBV047297635 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Joseph, Daniel D. |d 1929-2011 |e Verfasser |0 (DE-588)1082460168 |4 aut | |
245 | 1 | 0 | |a Fundamentals of two-fluid dynamics |n Part 1 |p Mathematical theory and applications |c Daniel D. Joseph, Yuriko Y. Renardy |
264 | 1 | |a New York |b Springer Science+Business Media, LLC |c 1993 | |
300 | |a 1 Online-Ressource (XV, 443 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Interdisciplinary applied mathematics |v volume 3 | |
490 | 0 | |a Interdisciplinary applied mathematics | |
520 | 3 | |a Two-fluid dynamics is a challenging subject rich in physics and practical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actually work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This procedure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet. | |
650 | 4 | |a Physics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Machinery and Machine Elements | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Ingenieurwissenschaften | |
700 | 1 | |a Renardy, Yuriko Y. |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV047297571 |g 1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-ausgabe |z 978-1-4613-9295-8 |
830 | 0 | |a Interdisciplinary applied mathematics |v volume 3 |w (DE-604)BV039839973 |9 3 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-9293-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032700864 | ||
966 | e | |u https://doi.org/10.1007/978-1-4613-9293-4 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4613-9293-4 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4613-9293-4 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4613-9293-4 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182475264491520 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Joseph, Daniel D. 1929-2011 |
author_GND | (DE-588)1082460168 |
author_facet | Joseph, Daniel D. 1929-2011 |
author_role | aut |
author_sort | Joseph, Daniel D. 1929-2011 |
author_variant | d d j dd ddj |
building | Verbundindex |
bvnumber | BV047297635 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (ZDB-2-SMA)978-1-4613-9293-4 (OCoLC)1256418170 (DE-599)BVBBV047297635 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4613-9293-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03570nmm a2200541 cc4500</leader><controlfield tag="001">BV047297635</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210526s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461392934</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-9293-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-9293-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-1-4613-9293-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256418170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047297635</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joseph, Daniel D.</subfield><subfield code="d">1929-2011</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082460168</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of two-fluid dynamics</subfield><subfield code="n">Part 1</subfield><subfield code="p">Mathematical theory and applications</subfield><subfield code="c">Daniel D. Joseph, Yuriko Y. Renardy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer Science+Business Media, LLC</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 443 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">volume 3</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Interdisciplinary applied mathematics</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Two-fluid dynamics is a challenging subject rich in physics and practical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actually work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This procedure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machinery and Machine Elements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Renardy, Yuriko Y.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV047297571</subfield><subfield code="g">1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-ausgabe</subfield><subfield code="z">978-1-4613-9295-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary applied mathematics</subfield><subfield code="v">volume 3</subfield><subfield code="w">(DE-604)BV039839973</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-9293-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032700864</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-9293-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-9293-4</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-9293-4</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4613-9293-4</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047297635 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:22:23Z |
indexdate | 2024-07-10T09:08:08Z |
institution | BVB |
isbn | 9781461392934 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032700864 |
oclc_num | 1256418170 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 443 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Science+Business Media, LLC |
record_format | marc |
series | Interdisciplinary applied mathematics |
series2 | Interdisciplinary applied mathematics |
spelling | Joseph, Daniel D. 1929-2011 Verfasser (DE-588)1082460168 aut Fundamentals of two-fluid dynamics Part 1 Mathematical theory and applications Daniel D. Joseph, Yuriko Y. Renardy New York Springer Science+Business Media, LLC 1993 1 Online-Ressource (XV, 443 Seiten) txt rdacontent c rdamedia cr rdacarrier Interdisciplinary applied mathematics volume 3 Interdisciplinary applied mathematics Two-fluid dynamics is a challenging subject rich in physics and practical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actually work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This procedure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet. Physics Engineering Theoretical, Mathematical and Computational Physics Machinery and Machine Elements Fluid- and Aerodynamics Ingenieurwissenschaften Renardy, Yuriko Y. Sonstige oth (DE-604)BV047297571 1 Erscheint auch als Druck-ausgabe 978-1-4613-9295-8 Interdisciplinary applied mathematics volume 3 (DE-604)BV039839973 3 https://doi.org/10.1007/978-1-4613-9293-4 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Joseph, Daniel D. 1929-2011 Fundamentals of two-fluid dynamics Interdisciplinary applied mathematics Physics Engineering Theoretical, Mathematical and Computational Physics Machinery and Machine Elements Fluid- and Aerodynamics Ingenieurwissenschaften |
title | Fundamentals of two-fluid dynamics |
title_auth | Fundamentals of two-fluid dynamics |
title_exact_search | Fundamentals of two-fluid dynamics |
title_exact_search_txtP | Fundamentals of two-fluid dynamics |
title_full | Fundamentals of two-fluid dynamics Part 1 Mathematical theory and applications Daniel D. Joseph, Yuriko Y. Renardy |
title_fullStr | Fundamentals of two-fluid dynamics Part 1 Mathematical theory and applications Daniel D. Joseph, Yuriko Y. Renardy |
title_full_unstemmed | Fundamentals of two-fluid dynamics Part 1 Mathematical theory and applications Daniel D. Joseph, Yuriko Y. Renardy |
title_short | Fundamentals of two-fluid dynamics |
title_sort | fundamentals of two fluid dynamics mathematical theory and applications |
topic | Physics Engineering Theoretical, Mathematical and Computational Physics Machinery and Machine Elements Fluid- and Aerodynamics Ingenieurwissenschaften |
topic_facet | Physics Engineering Theoretical, Mathematical and Computational Physics Machinery and Machine Elements Fluid- and Aerodynamics Ingenieurwissenschaften |
url | https://doi.org/10.1007/978-1-4613-9293-4 |
volume_link | (DE-604)BV047297571 (DE-604)BV039839973 |
work_keys_str_mv | AT josephdanield fundamentalsoftwofluiddynamicspart1 AT renardyyurikoy fundamentalsoftwofluiddynamicspart1 |