Global nonlinear stability of Schwarzschild spacetime under polarized perturbations:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton ; Oxford
Princeton University Press
[2020]
|
Schriftenreihe: | Annals of mathematics studies
Number 210 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xi, 840 Seiten Illustrationen |
ISBN: | 9780691212432 9780691212425 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047297224 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 210526s2020 xxua||| m||| 00||| eng d | ||
020 | |a 9780691212432 |c hardback |9 978-0-691-21243-2 | ||
020 | |a 9780691212425 |c paperback |9 978-0-691-21242-5 | ||
035 | |a (OCoLC)1246214015 | ||
035 | |a (DE-599)KXP1754801978 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-19 | ||
100 | 1 | |a Klainerman, Sergiu |d 1950- |e Verfasser |0 (DE-588)172678056 |4 aut | |
245 | 1 | 0 | |a Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |c Sergiu Klainerman, Jérémie Szeftel |
264 | 1 | |a Princeton ; Oxford |b Princeton University Press |c [2020] | |
300 | |a xi, 840 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 210 | |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
700 | 1 | |a Szeftel, Jérémie |d 1977- |e Verfasser |0 (DE-588)1167946383 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-691-21852-6 |
830 | 0 | |a Annals of mathematics studies |v Number 210 |w (DE-604)BV000000991 |9 210 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032700459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032700459 |
Datensatz im Suchindex
_version_ | 1804182474524196864 |
---|---|
adam_text | Contents
List of Figures xiii
Acknowledgments xv
1 Introduction 1
1 1 Basic notions in general relativity 1
111 Spacetime and causality 1
112 The initial value formulation for Einstein equations 2
113 Special solutions 3
114 Stability of Minkowski space 10
115 Cosmic censorship 11
1 2 Stability of Kerr conjecture 13
121 Formal mode analysis 15
122 Vectorfield method 16
1 3 Nonlinear stability of Schwarzschild under polarized perturbations 17
131 Bare-bones version of our theorem 17
132 Linear stability of the Schwarzschild spacetime 17
133 Main ideas in the proof of Theorem 1 6 18
134 Beyond polarization 21
135 Note added in proof 22
1 4 Organization 22
2 Preliminaries 24
2 1 Axially symmetric polarized spacetimes 24
211 Axial symmetry 24
212 Z-frames 25
213 Axis of symmetry 26
214 Z—polarized S—surfaces 28
215 Invariant S—foliations 45
216 Schwarzschild spacetime ‚ 50
2 2 Main equations 51
221 Main equations for general S—foliations 51
222 Null Bianchi identities 54
223 Hawking mass 56
224 Outgoing geodesic foliations 57
225 Additional equations 70
226 Ingoing geodesic foliation 71
227 Adapted coordinates systems 71
2 3 Perturbations of Schwarzschild and invariant quantities 78
231 Null frame transformations 78
232 Schematic notation F9 and I}, 8‘2
233 The invariant quantity q
234 Several identities for q
2 4 Invariant wave equations ‚ ___lI ‘ 84
241 Preliminaries _,_ : - 84
242 Wave equations for a, g, and q___Ui :5
- 7
Main Theorem
3 1 General covariant modulated admissible spacetimes _ ‚ 89
3 1 1Initialdatalayer :H 89
312 Maindefinition _: 89
313 Renormalized curvature components and Ricci coefficients
3 2 Main norms ‚ ___ 96
321 Main norms in (“0M _ ‚ 96
322 Main norms in “MM ‚ ‚ 99
323 Combined norms 100
324 Initial layer norm _ 100
3 3 Main theorem _ 101
331 Smallness constants 101
332 Statement of the main theorem 102
3 4 Bootstrap assumptions and first consequences 105
341 Main bootstrap assumptions 105
342 Control of the initial data 105
343 Control of averages and of the Hawking mass 106
344 Control of coordinates system 107
345 Pointwise bounds for higher order derivatives 109
346 Construction of a second frame in (“0 44 109
3 5 Global null frames 111
351 Extension of frames 111
352 Construction of the first global frame 112
353 Construction of the second global frame 113
3 6 Proof of the main theorem 11-1
361 Main intermediate results 114
362 End of the proof of the main theorem 115
363 Conclusions 116
3 7 The general covariant modulation procedure 125
371 Spacetime assumptions for the GCM procedure 125
372 Deformations of surfaces 128
373 Adapted frame transformations - 128
374 GCM results - 129
375 Main ideas 131
3 8 Overview of the proof of Theorems MO—M8 133
381 Discussion of Theorem MO 133
382 Discussion of Theorem Ml - - 134
383 Discussion of Theorem M2 - - 135
384 Discussion of Theorem M3 136
385 Discussion of Theorem M4 - 137
386 Discussion of Theorem Ms 138
387 Discussion of Theorem Me 138
388 Discussion of Theorem M7 - - 139
389 Discussion of Theorem MS 140
3 9 Structure of the rest of the book
Consequences of the Bootstrap Assumptions
4 1 Proof of Theorem M0
4 2 Control of averages and of the Hawking mass
421 Proof of Lemma 3 15
422 Proof of Lemma 3 16
Control of coordinates systems
Pointwise bounds for higher order derivatives
Proof of Proposition 3 20
Existence and control of the global frames
461 Proof of Proposition 3 23
462 Proof of Lemma 4 16
463 Proof of Proposition 3 26
Decay Estimates for q (Theorem M1)
5 1 Preliminaries
511 The foliation of M by r
512 Assumptions for Ricci coefficients and curvature
513 Structure of nonlinear terms
514 Main quantities
Proof of Theorem M1
521 Flux decay estimates for q
522 Proof of Theorem M1
523 Proof of Proposition 5 10
5 3 Improved weighted estimates
531 Basic and higher weighted estimates for wave equations
532 Proof of Theorem 5 14
533 Proof of Theorem 5 15
5 4 Decay estimates
541 First flux decay estimates
542 Flux decay estimates for q
543 Proof of Theorem 5 9
544 Proof of Proposition 5 12
545 Proof of Proposition 5 13
Decay Estimates for a and g (Theorems M2, M3)
6 1 Proof of Theorem M2
611A renormalized frame on (em/Vt
612A transport equation for a
613 Estimates for transport equations in eg
614 Decay estimates for a
615 End of the proof of Theorem M2
6 2 Proof of Theorem M3
621 Estimate for g in (WM
622 Estimate for g on 2,
623 Proof of Proposition 6 10
624 Proof of Lemma 6 12
625 Proof of Proposition 6 14
626 Proof of Lemma 6 16
7 Decay Estimates (Theorems M4, M5)
_ _ 295
711 Geometric structure of 2,___ I ‘ ‘ 295
712 Mainassumptions ,,_: 295
713 Basic lemmas ‚ __ I 296
714 Main equations ‚ „ _I 299
715 Equationsinvolvingq 301
716 Additionalequations ‚ __H 302
7 2 Structure of the proof of Theorem M4 ‚ _ „ I :05
7 3 Decay estimates on the last slice 2„ ‚ ‚ _ 3(1)?
731 Preliminaries _ _ 311
732 Differential identities involving GCM conditions on 2* 314
733 Control of the flux of some quantities on 2, _ _ „ _ 315
734 Estimates for some 4=1 modes on 2 _ 322
735 Decay of Ricci and curvature components on 2 _ 332
7 4 Control in (“Ü/M, Part I _ 335
741 Preliminaries 335
742 Proposition 7 33 338
743 Estimates for Ft, [1 in (“0M 339
744 Estimates for the E=1 modes in (“QM 340
745 Completion of the proof of Proposition 7 33 343
7 5 Control in (em/Vt, Part II 346
751 Estimate for n 347
752 Crucial lemmas 347
753 Proof of Proposition 7 35, Part I 355
754 Proof of Proposition 7 35, Part II 359
7 6 Conclusion of the proof of Theorem M4 362
7 7 Proof of Theorem M5 366
8 Initialization and Extension (Theorems N16, 1M7, IVIS) 372
8 1 Proof of Theorem M6 37?
8 2 Proof of Theorem M? 376
8 3 Proof of Theorem MS 387
831 Main norms 389
832 Control of the global frame 391
833 Iterative procedure - 393
834 End of the proof of Theorem MS - 396
8 4 Proof of Proposition 8 7 ‚ ‚ - 399
841A wave equation for ß ‚ - 399
842 Control of use) _ 400
843 End of the proof of Proposition 8 7 ‚ - - 405
8 5 Proof of Proposition 8 8 408
851A wave equation for a + ng --- 408
852 End of the proof of PrOposition 8 8 417
8-6 Proof of Proposition 89__ 418
861 Control of a and T20 - - 418
8-6-2 Control ofg T 420
863 End of the proof of Proposition 8 9 424
8 7 Proof of Proposition 8 10 424
871 r—weighted divergence identities for Bianchi pairs 425
872 End of the proof of Proposition 8 10 435
873 Proof of (8 3 12) 440
8 8 Proof of Proposition 8 11 442
881 Proof of Proposition 8 31 444
882 Weighted estimates for transport equations along 64 in (“QM 454
883 Several identities 460
884 Proof of Proposition 8 32 464
885 Proof of Proposition 8 33 471
8 9 Proof of Proposition 8 12 479
891 Weighted estimates for transport equations along 63 in (“WM 480
892 Proof of Proposition 8 42 482
8 10 Proof of Proposition 8 13 485
9 GCM Procedure 486
9 1 Preliminaries 486
911 Main assumptions 488
912 Elliptic Hodge lemma 489
9 2 Deformations of S surfaces 489
921 Deformations 489
922 Pullback map 490
923 Comparison of norms between deformations 492
924 Adapted frame transformations ‚ 496
9 3 Frame transformations 504
931 Main GCM equations 513
932 Equation for the average of a 518
933 Transversality conditions 519
9 4 Existence of GCM spheres 520
941 The linearized GCM system 524
942 Comparison of the Hawking mass 526
943 Iteration procedure for Theorem 9 32 527
944 Existence and boundedness of the iterates 530
945 Convergence of the iterates 535
9 5 Proof of Proposition 9 37 and of Corollary 9 38 538
951 Proof of Proposition 9 37 538
952 Proof of Corollary 9 38 542
9 6 Proof of Proposition 9 43 545
961 Pullback of the main equations 545
962 Basic lemmas 548
963 Proof of the estimates (9 6 5), (9 6 6), (9 6 7) 556
97A corollary to Theorem 9 32 559
9 8 Construction of GCM hypersurfaces 566
981 Definition of 2o 569
982 Extrinsic properties of 2o 570
983 Construction of 20 583
10 Regge-Wheeler Type Equations 600
10 1 Basic Morawetz estimates 600
10 1 1 Structure of the proof of Theorem 10 1 601
10 12A simplified set of assumptions 602
10 1 3 Functions depending on m and 1 602
10 1 4 Deformation tensors of the vectorfields R, T, X
10 1 5 Basic integral identities
10 1 6 Main Morawetz identity ‚ _ _ ‚ _
10 17A first estimate ‚ _
10 1 8 Improved lower bound in (“0M
10 1 9 Cut-off correction in (“MM
10 1 10 The redshift vectorfield
10 1 11 Combined estimate
__
sss__I
s_
s ‚ ‚ _ _
sus ‚ _ _ ‘ I
s-suo_
10 1 14 Analysis of the error term 65
10 1 15 Proof of Theorem 10 1 ‚
Dafermos—Rodnianski rp-Weighted estimates ‚ _
10 2 1 Vectorfield X = f(r)e4
10 2 2 Energy densities for X = f(r)e4 ‚ ‚
10 2 3 Proof of Theorem 10 37
Higher weighted estimates L
10 3 1 Wave equation for t!) ‚Y
10 3 2 The rp—weighted estimates for z/J
Higher derivative estimates
10 4 1 Basic assumptions
10 4 2 Strategy for recovering higher order derivatives
10 4 3 Commutation formulas with the wave equation
10 4 4 Some weighted estimates for wave equations
10 4 5 Proof of Theorem 5 17
10 4 6 Proof of Theorem 5 18
10 5 More weighted estimates for wave equations
onns
---
A Appendix to Chapter 2
A 1 Proof of Proposition 2 64
A 2 Proof of Proposition 2 71
A 3 Proof of Lemma 2 72
A 4 Proof of Proposition 2 73
A 5 Proof of Proposition 2 74 - - -
A 6 Proof of Proposition 2 90 - -
A 7 Proof of Lemma 2 92 - -
A 8 Proof of Corollary 2 93 - ~
A 9 Proof of Lemma 2 91 - -
A 10 Proof of Proposition 2 99 -
A 11 Proof of Proposition 2 100 - - -
A 12 Proof of the Teukolsky-Starobinsky identity - - -
A 13 Proof of Proposition 2 107 - -
A 14 Proof of Theorem 2 108 ~ -
A 14 1 The Teukolsky equation for a-~-
A 14 2 Commutation lemmas _ „ ‚ _ _ „ _ _ ‚ „ _ _ „ _ _
A 14 3 Main commutation - - -
A 14 4 Proof of Theorem 2 108 - -
B Appendix to Chapter 8
8 1 Proof of Proposition 8 14 ----
C Appendix to Chapter 9
C 1 Proof of Lemma 9 11
D Appendix to Chapter 10
D 1 Horizontal S—tensors
D11 Mixed tensors
D12 Invariant Lagrangian
D13 Comparison of the Lagrangians
D14 Energy-momentum tensor
D 2 Standard calculation
D 3 Vectorfield X f
D 4 Proof of Proposition 10 47
Bibliography
|
adam_txt |
Contents
List of Figures xiii
Acknowledgments xv
1 Introduction 1
1 1 Basic notions in general relativity 1
111 Spacetime and causality 1
112 The initial value formulation for Einstein equations 2
113 Special solutions 3
114 Stability of Minkowski space 10
115 Cosmic censorship 11
1 2 Stability of Kerr conjecture 13
121 Formal mode analysis 15
122 Vectorfield method 16
1 3 Nonlinear stability of Schwarzschild under polarized perturbations 17
131 Bare-bones version of our theorem 17
132 Linear stability of the Schwarzschild spacetime 17
133 Main ideas in the proof of Theorem 1 6 18
134 Beyond polarization 21
135 Note added in proof 22
1 4 Organization 22
2 Preliminaries 24
2 1 Axially symmetric polarized spacetimes 24
211 Axial symmetry 24
212 Z-frames 25
213 Axis of symmetry 26
214 Z—polarized S—surfaces 28
215 Invariant S—foliations 45
216 Schwarzschild spacetime ‚ 50
2 2 Main equations 51
221 Main equations for general S—foliations 51
222 Null Bianchi identities 54
223 Hawking mass 56
224 Outgoing geodesic foliations 57
225 Additional equations 70
226 Ingoing geodesic foliation 71
227 Adapted coordinates systems 71
2 3 Perturbations of Schwarzschild and invariant quantities 78
231 Null frame transformations 78
232 Schematic notation F9 and I}, 8‘2
233 The invariant quantity q
234 Several identities for q
2 4 Invariant wave equations ‚ _lI ‘ ' ' 84
241 Preliminaries _,_ :'-' 84
242 Wave equations for a, g, and q_Ui' :5
- 7
Main Theorem
3 1 General covariant modulated admissible spacetimes _ ‚ 89
3 1 1Initialdatalayer :H 89
312 Maindefinition _: 89
313 Renormalized curvature components and Ricci coefficients
3 2 Main norms ‚ _ 96
321 Main norms in (“0M _ ‚ 96
322 Main norms in “MM ‚ ‚ 99
323 Combined norms 100
324 Initial layer norm _ 100
3 3 Main theorem _ 101
331 Smallness constants 101
332 Statement of the main theorem 102
3 4 Bootstrap assumptions and first consequences 105
341 Main bootstrap assumptions 105
342 Control of the initial data 105
343 Control of averages and of the Hawking mass 106
344 Control of coordinates system 107
345 Pointwise bounds for higher order derivatives 109
346 Construction of a second frame in (“0 44 109
3 5 Global null frames 111
351 Extension of frames 111
352 Construction of the first global frame 112
353 Construction of the second global frame 113
3 6 Proof of the main theorem 11-1
361 Main intermediate results 114
362 End of the proof of the main theorem 115
363 Conclusions 116
3 7 The general covariant modulation procedure 125
371 Spacetime assumptions for the GCM procedure 125
372 Deformations of surfaces 128
373 Adapted frame transformations - 128
374 GCM results - 129
375 Main ideas 131
3 8 Overview of the proof of Theorems MO—M8 133
381 Discussion of Theorem MO 133
382 Discussion of Theorem Ml - - 134
383 Discussion of Theorem M2 - - 135
384 Discussion of Theorem M3 136
385 Discussion of Theorem M4 - 137
386 Discussion of Theorem Ms 138
387 Discussion of Theorem Me 138
388 Discussion of Theorem M7 - - 139
389 Discussion of Theorem MS 140
3 9 Structure of the rest of the book
Consequences of the Bootstrap Assumptions
4 1 Proof of Theorem M0
4 2 Control of averages and of the Hawking mass
421 Proof of Lemma 3 15
422 Proof of Lemma 3 16
Control of coordinates systems
Pointwise bounds for higher order derivatives
Proof of Proposition 3 20
Existence and control of the global frames
461 Proof of Proposition 3 23
462 Proof of Lemma 4 16
463 Proof of Proposition 3 26
Decay Estimates for q (Theorem M1)
5 1 Preliminaries
511 The foliation of M by 'r
512 Assumptions for Ricci coefficients and curvature
513 Structure of nonlinear terms
514 Main quantities
Proof of Theorem M1
521 Flux decay estimates for q
522 Proof of Theorem M1
523 Proof of Proposition 5 10
5 3 Improved weighted estimates
531 Basic and higher weighted estimates for wave equations
532 Proof of Theorem 5 14
533 Proof of Theorem 5 15
5 4 Decay estimates
541 First flux decay estimates
542 Flux decay estimates for q
543 Proof of Theorem 5 9
544 Proof of Proposition 5 12
545 Proof of Proposition 5 13
Decay Estimates for a and g (Theorems M2, M3)
6 1 Proof of Theorem M2
611A renormalized frame on (em/Vt
612A transport equation for a
613 Estimates for transport equations in eg
614 Decay estimates for a
615 End of the proof of Theorem M2
6 2 Proof of Theorem M3
621 Estimate for g in (WM
622 Estimate for g on 2,
623 Proof of Proposition 6 10
624 Proof of Lemma 6 12
625 Proof of Proposition 6 14
626 Proof of Lemma 6 16
7 Decay Estimates (Theorems M4, M5)
_ _ 295
711 Geometric structure of 2,_'I ‘ ' ' ‘ 295
712 Mainassumptions ,,_: '295
713 Basic lemmas ‚ _'I'' 296
714 Main equations ‚ „ _I'' 299
715 Equationsinvolvingq 301
716 Additionalequations ‚ _H 302
7 2 Structure of the proof of Theorem M4 ‚ _ „ I :05
7 3 Decay estimates on the last slice 2„ ‚ ‚ _ 3(1)?
731 Preliminaries _ _ 311
732 Differential identities involving GCM conditions on 2* 314
733 Control of the flux of some quantities on 2, _ _ „ _ 315
734 Estimates for some 4=1 modes on 2 _ 322
735 Decay of Ricci and curvature components on 2 _ 332
7 4 Control in (“Ü/M, Part I _ 335
741 Preliminaries 335
742 Proposition 7 33 338
743 Estimates for Ft, [1 in (“0M 339
744 Estimates for the E=1 modes in (“QM 340
745 Completion of the proof of Proposition 7 33 343
7 5 Control in (em/Vt, Part II 346
751 Estimate for n 347
752 Crucial lemmas 347
753 Proof of Proposition 7 35, Part I 355
754 Proof of Proposition 7 35, Part II 359
7 6 Conclusion of the proof of Theorem M4 362
7 7 Proof of Theorem M5 366
8 Initialization and Extension (Theorems N16, 1M7, IVIS) 372
8 1 Proof of Theorem M6 37?
8 2 Proof of Theorem M? 376
8 3 Proof of Theorem MS 387
831 Main norms 389
832 Control of the global frame 391
833 Iterative procedure - 393
834 End of the proof of Theorem MS - 396
8 4 Proof of Proposition 8 7 ‚ ‚ - 399
841A wave equation for ß ‚ - 399
842 Control of use) _ 400
843 End of the proof of Proposition 8 7 ‚ - - 405
8 5 Proof of Proposition 8 8 408
851A wave equation for a + ng --- 408
852 End of the proof of PrOposition 8 8 417
8-6 Proof of Proposition 89_ 418
861 Control of a and T20 - - 418
8-6-2 Control ofg T 420
863 End of the proof of Proposition 8 9 424
8 7 Proof of Proposition 8 10 424
871 r—weighted divergence identities for Bianchi pairs 425
872 End of the proof of Proposition 8 10 435
873 Proof of (8 3 12) 440
8 8 Proof of Proposition 8 11 442
881 Proof of Proposition 8 31 444
882 Weighted estimates for transport equations along 64 in (“QM 454
883 Several identities 460
884 Proof of Proposition 8 32 464
885 Proof of Proposition 8 33 471
8 9 Proof of Proposition 8 12 479
891 Weighted estimates for transport equations along 63 in (“WM 480
892 Proof of Proposition 8 42 482
8 10 Proof of Proposition 8 13 485
9 GCM Procedure 486
9 1 Preliminaries 486
911 Main assumptions 488
912 Elliptic Hodge lemma 489
9 2 Deformations of S surfaces 489
921 Deformations 489
922 Pullback map 490
923 Comparison of norms between deformations 492
924 Adapted frame transformations ‚ 496
9 3 Frame transformations 504
931 Main GCM equations 513
932 Equation for the average of a 518
933 Transversality conditions 519
9 4 Existence of GCM spheres 520
941 The linearized GCM system 524
942 Comparison of the Hawking mass 526
943 Iteration procedure for Theorem 9 32 527
944 Existence and boundedness of the iterates 530
945 Convergence of the iterates 535
9 5 Proof of Proposition 9 37 and of Corollary 9 38 538
951 Proof of Proposition 9 37 538
952 Proof of Corollary 9 38 542
9 6 Proof of Proposition 9 43 545
961 Pullback of the main equations 545
962 Basic lemmas 548
963 Proof of the estimates (9 6 5), (9 6 6), (9 6 7) 556
97A corollary to Theorem 9 32 559
9 8 Construction of GCM hypersurfaces 566
981 Definition of 2o 569
982 Extrinsic properties of 2o 570
983 Construction of 20 583
10 Regge-Wheeler Type Equations 600
10 1 Basic Morawetz estimates 600
10 1 1 Structure of the proof of Theorem 10 1 601
10 12A simplified set of assumptions 602
10 1 3 Functions depending on m and 1' 602
10 1 4 Deformation tensors of the vectorfields R, T, X
10 1 5 Basic integral identities
10 1 6 Main Morawetz identity ‚ _ _ ‚ _
10 17A first estimate ‚ _
10 1 8 Improved lower bound in (“0M
10 1 9 Cut-off correction in (“MM
10 1 10 The redshift vectorfield
10 1 11 Combined estimate
_
sss_I
s_
s ‚ ‚ _ _
sus ‚ _ _ ‘ I
s-suo_
10 1 14 Analysis of the error term 65
10 1 15 Proof of Theorem 10 1 ‚
Dafermos—Rodnianski rp-Weighted estimates ‚ _
10 2 1 Vectorfield X = f(r)e4
10 2 2 Energy densities for X = f(r)e4 ‚ ‚
10 2 3 Proof of Theorem 10 37
Higher weighted estimates L
10 3 1 Wave equation for t!) ‚Y
10 3 2 The rp—weighted estimates for z/J
Higher derivative estimates
10 4 1 Basic assumptions
10 4 2 Strategy for recovering higher order derivatives
10 4 3 Commutation formulas with the wave equation
10 4 4 Some weighted estimates for wave equations
10 4 5 Proof of Theorem 5 17
10 4 6 Proof of Theorem 5 18
10 5 More weighted estimates for wave equations
onns
---
A Appendix to Chapter 2
A 1 Proof of Proposition 2 64
A 2 Proof of Proposition 2 71
A 3 Proof of Lemma 2 72
A 4 Proof of Proposition 2 73
A 5 Proof of Proposition 2 74 - - -
A 6 Proof of Proposition 2 90 - -
A 7 Proof of Lemma 2 92 - -
A 8 Proof of Corollary 2 93 - ~
A 9 Proof of Lemma 2 91 - -
A 10 Proof of Proposition 2 99 -
A 11 Proof of Proposition 2 100 - - -
A 12 Proof of the Teukolsky-Starobinsky identity - - -
A 13 Proof of Proposition 2 107 - -
A 14 Proof of Theorem 2 108 ~ -
A 14 1 The Teukolsky equation for a-~-
A 14 2 Commutation lemmas _ „ ‚ _ _ „ _ _ ‚ „ _ _ „ _ _
A 14 3 Main commutation - - -
A 14 4 Proof of Theorem 2 108 - -
B Appendix to Chapter 8
8 1 Proof of Proposition 8 14 ----
C Appendix to Chapter 9
C 1 Proof of Lemma 9 11
D Appendix to Chapter 10
D 1 Horizontal S—tensors
D11 Mixed tensors
D12 Invariant Lagrangian
D13 Comparison of the Lagrangians
D14 Energy-momentum tensor
D 2 Standard calculation
D 3 Vectorfield X f
D 4 Proof of Proposition 10 47
Bibliography |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Klainerman, Sergiu 1950- Szeftel, Jérémie 1977- |
author_GND | (DE-588)172678056 (DE-588)1167946383 |
author_facet | Klainerman, Sergiu 1950- Szeftel, Jérémie 1977- |
author_role | aut aut |
author_sort | Klainerman, Sergiu 1950- |
author_variant | s k sk j s js |
building | Verbundindex |
bvnumber | BV047297224 |
ctrlnum | (OCoLC)1246214015 (DE-599)KXP1754801978 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01537nam a2200349 cb4500</leader><controlfield tag="001">BV047297224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210526s2020 xxua||| m||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691212432</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-691-21243-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691212425</subfield><subfield code="c">paperback</subfield><subfield code="9">978-0-691-21242-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1246214015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1754801978</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klainerman, Sergiu</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172678056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global nonlinear stability of Schwarzschild spacetime under polarized perturbations</subfield><subfield code="c">Sergiu Klainerman, Jérémie Szeftel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; Oxford</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 840 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 210</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Szeftel, Jérémie</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1167946383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-691-21852-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 210</subfield><subfield code="w">(DE-604)BV000000991</subfield><subfield code="9">210</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032700459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032700459</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047297224 |
illustrated | Illustrated |
index_date | 2024-07-03T17:22:16Z |
indexdate | 2024-07-10T09:08:08Z |
institution | BVB |
isbn | 9780691212432 9780691212425 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032700459 |
oclc_num | 1246214015 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | xi, 840 Seiten Illustrationen |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Klainerman, Sergiu 1950- Verfasser (DE-588)172678056 aut Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman, Jérémie Szeftel Princeton ; Oxford Princeton University Press [2020] xi, 840 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Annals of mathematics studies Number 210 (DE-588)4113937-9 Hochschulschrift gnd-content Szeftel, Jérémie 1977- Verfasser (DE-588)1167946383 aut Erscheint auch als Online-Ausgabe 978-0-691-21852-6 Annals of mathematics studies Number 210 (DE-604)BV000000991 210 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032700459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Klainerman, Sergiu 1950- Szeftel, Jérémie 1977- Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Annals of mathematics studies |
subject_GND | (DE-588)4113937-9 |
title | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_auth | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_exact_search | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_exact_search_txtP | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_full | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman, Jérémie Szeftel |
title_fullStr | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman, Jérémie Szeftel |
title_full_unstemmed | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman, Jérémie Szeftel |
title_short | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_sort | global nonlinear stability of schwarzschild spacetime under polarized perturbations |
topic_facet | Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032700459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000991 |
work_keys_str_mv | AT klainermansergiu globalnonlinearstabilityofschwarzschildspacetimeunderpolarizedperturbations AT szefteljeremie globalnonlinearstabilityofschwarzschildspacetimeunderpolarizedperturbations |