Hamiltonian perturbation solutions for spacecraft orbit prediction: the method of lie transforms
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2021]
|
Schriftenreihe: | De Gruyter studies in mathematical physics
Volume 54 |
Schlagworte: | |
Online-Zugang: | https://www.degruyter.com/books/9783110667226 Inhaltsverzeichnis |
Beschreibung: | XIV, 377 Seiten Illustrationen 24 cm x 17 cm |
ISBN: | 9783110667226 3110667223 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV047293447 | ||
003 | DE-604 | ||
005 | 20220217 | ||
007 | t | ||
008 | 210521s2021 gw a||| |||| 00||| eng d | ||
015 | |a 21,N03 |2 dnb | ||
016 | 7 | |a 1225055539 |2 DE-101 | |
020 | |a 9783110667226 |c : EUR 155.95 (DE) (freier Preis), EUR 155.95 (AT) (freier Preis) |9 978-3-11-066722-6 | ||
020 | |a 3110667223 |9 3-11-066722-3 | ||
035 | |a (OCoLC)1252705586 | ||
035 | |a (DE-599)DNB1225055539 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-19 | ||
084 | |8 1\p |a 530 |2 23sdnb | ||
100 | 1 | |a Lara, Martín |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hamiltonian perturbation solutions for spacecraft orbit prediction |b the method of lie transforms |c Martín Lara |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2021] | |
300 | |a XIV, 377 Seiten |b Illustrationen |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematical physics |v Volume 54 | |
653 | |a Hamilton-Jacobi-Differentialgleichung | ||
653 | |a Störungstheorie | ||
653 | |a Umlaufbahn | ||
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-066851-3 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-066732-5 |
830 | 0 | |a De Gruyter studies in mathematical physics |v Volume 54 |w (DE-604)BV040141722 |9 54 | |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/books/9783110667226 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032696750&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032696750 | ||
883 | 1 | |8 1\p |a npi |d 20210421 |q DE-101 |u https://d-nb.info/provenance/plan#npi |
Datensatz im Suchindex
_version_ | 1804182468245323776 |
---|---|
adam_text | CONTENTS
PREFACE
-
V
1
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
INTRODUCTION
-
1
PERTURBED
INTEGRABLE
PROBLEMS
-
2
ARTIFICIAL
SATELLITE
THEORY
-
5
SIGNIFICANCE
OF
LYAPUNOV
INSTABILITY
-
7
GEOPOTENTIAL
LONG-PERIOD
EFFECTS
IN
CLOSED
FORM
-
8
TESSERAL
EFFECTS
-
10
LUNISOLAR
PERTURBATIONS
-
12
NON-CONSERVATIVE
PERTURBATIONS
-
14
ACTION-ANGLE
AND
NON-SINGULAR
VARIABLES
-
16
NON-EARTH
ORBITS
AND
PERTURBED
NON-KEPLERIAN
ORBITS
-
18
THE
RESTRICTED
THREE-BODY
PROBLEM
-
18
HILL
PROBLEM
SIMPLIFICATIONS
-
19
MOTION
ABOUT
PLANETARY
SATELLITES
-
21
LIBRATION
POINTS
ORBITS
-
22
COORBITAL
MOTION
WITH
LOW
ECCENTRICITY
-
24
PART
1:
HAMILTONIAN
PERTURBATIONS
BY
LIE
TRANSFORMS
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
2.2.1
2.2.2
2.2.3
THE
METHOD
OF
LIE
TRANSFORMS
-
29
LIE
TRANSFORMATION
OF
A
FUNCTION
-
29
THE
FUNDAMENTAL
RECURSION
-
31
DEPRIT
S
TRIANGLE
-
33
THE
DIRECT
TRANSFORMATION
-
34
COMPOSITION
OF
LIE
TRANSFORMATIONS
----
35
THE
INVERSE
TRANSFORMATION
-
36
DEPRIT
S
PERTURBATIONS
APPROACH
-
37
HAMILTONIAN
SIMPLIFICATION
BY
LIE
TRANSFORMS
-
37
EXAMPLE:
SMALL
OSCILLATIONS
OF
THE
SIMPLE
PENDULUM
-
39
THE
HOMOLOGICAL
EQUATION
-
42
3
3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
APPLICATION
TO
INTEGRABLE
PROBLEMS
-
45
THE
SIMPLE
GRAVITY
PENDULUM
-
46
HAMILTONIAN
REDUCTION
-
46
ROTATION
REGIME.
SOLUTION
IN
ACTION-ANGLE
VARIABLES
-
48
EXPANDED
SOLUTION
BY
LIE
TRANSFORMS
-
50
THE
FREE
RIGID
BODY
-
52
ROTATION
IN
THE
BODY
FRAME
-
53
X
CONTENTS
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
ATTITUDE
IN
THE
SPACE
FRAME
-
55
THE
INVARIABLE
PLANE
----
56
HAMILTONIAN
FORMULATION
-
58
CLOSED-FORM
SOLUTION
BY
COMPLETE
REDUCTION
-
59
THE
CASE
OF
LOW
TRIAXIALITY
-
65
SHORT-AXIS-MODE
ROTATION
----
67
PART
II:
PERTURBED
ELLIPTIC
MOTION:
ARTIFICIAL
SATELLITE
THEORY
4
4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
THE
KEPLER
PROBLEM
-
77
THE
ORBITAL
FRAME
-
77
KEPLER
HAMILTONIAN
-
78
HAMILTON-JACOBI
REDUCTION
-
80
SOLUTION
IN
DELAUNAY
VARIABLES
-
83
USEFUL
RELATIONS
FOR
PERTURBED
KEPLERIAN
MOTION
-
86
THE
APSIDAL
FRAME.
FUNDAMENTAL
VECTORS
-
86
VARIATION
EQUATIONS
IN
VECTORIAL
ELEMENTS
-
87
DIFFERENTIAL
RELATIONS
AND
CLOSED-FORM
INTEGRATION
-
88
PRINCIPAL
RELATIONS
OF
THE
ELLIPSE
-
90
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.7
5.7.1
5.7.2
THE
MAIN
PROBLEM
OF
THE
ARTIFICIAL
SATELLITE
-
92
GEOPOTENTIAL
HAMILTONIAN
-
92
PARTICULAR
SOLUTIONS
-
94
SECULAR
EFFECTS
-
95
PICARD
ITERATIONS
-
97
INCLINATION
RESONANCES
-
99
INTERMEDIARIES
-
100
COMMON
INTERMEDIARIES
-
101
NATURAL
INTERMEDIARIES
-
102
TORSIONS
FOR
QUASI-KEPLERIAN
SYSTEMS
-
105
DISCRETIZATION
OF
THE
FLOW
-
106
THE
CRITICAL
INCLINATION
-
110
FIRST
ORDER
-
110
SECOND
ORDER
-
111
THE
REDUCED
PHASE
SPACE.
FROZEN
ORBITS
-
113
REDUCED
DYNAMICS
ON
THE
SPHERE
-
116
SEMI-ANALYTICAL
INTEGRATION
-
119
SHORT-PERIOD
CORRECTIONS
IN
DELAUNAY
VARIABLES
-
120
SHORT-PERIOD
CORRECTIONS
IN
NON-SINGULAR
VARIABLES
-
121
6
ZONAL
PERTURBATIONS
-
124
CONTENTS
-
XI
6.1
ZONAL
PROBLEM
IN
MEAN
ELEMENTS
-
124
6.1.1
AVERAGED
FLOW
----
127
6.1.2
INCLINATION-ECCENTRICITY
DIAGRAMS
OF
FROZEN
ORBITS
-
129
6.1.3
LOCAL
DYNAMICS:
ECCENTRICITY-VECTOR
DIAGRAMS
-
131
6.2
HAMILTONIAN
SIMPLIFICATION
-
133
6.2.1
DEPRIT
S
ELIMINATION
OF
THE
PARALLAX
-
134
6.2.2
DELAUNAY
NORMALIZATION
-
137
6.2.3
SHORT-PERIOD
CORRECTIONS
-
139
6.3
BROUWER
S
SOLUTION
BY
COMPLETE
REDUCTION
-
141
6.3.1
SECULAR
TERMS
-
141
6.3.2
LONG-PERIOD
CORRECTIONS
----
143
6.4
REVERSE
NORMALIZATION.
LONG
PERIODS
REMOVED
FIRST
-
144
6.4.1
NORMALIZATION
OF
THE
TOTAL
ANGULAR
MOMENTUM
-
145
6.4.2
NORMALIZATION
OF
THE
SEMIMAJOR
AXIS
-
149
6.4.3
ALFRIEND
AND
COFFEY
S
ELIMINATION
OF
THE
PERIGEE
-
151
6.5
HIGHER
ORDERS
OF
THE
PERTURBATION
SOLUTION.
A
TEST
CASE
-
153
6.5.1
PRELIMINARY
SIMPLIFICATION.
ELIMINATION
OF
THE
PARALLAX
-
154
6.5.2
PARTIAL
NORMALIZATION.
LONG-PERIOD
ELIMINATION
-
156
6.5.3
COMPLETE
HAMILTONIAN
REDUCTION.
SHORT-PERIOD
ELIMINATION
-
159
6.5.4
SECULAR
FREQUENCIES
-
162
6.5.5
SAMPLE
APPLICATION.
THE
PRISMA
ORBIT
----
165
6.6
INITIALIZATION
ISSUES.
BREAKWELL
AND
VAGNERS
APPROACH
-
173
6.7
CENTERED
ELEMENTS
-
174
7
TESSERAL
PERTURBATIONS
-
176
7.1
TESSERAL
POTENTIAL
IN
ORBITAL
ELEMENTS
-
176
7.2
LOW-EARTH
ORBITS.
GARFINKEL
S
PERTURBATION
APPROACH
-
177
7.2.1
ELIMINATION
OF
THE
PARALLAX
OF
TESSERAL
TERMS
-
178
7.2.2
DELAUNAY
NORMALIZATION,
M-DAILY
TERMS
-
180
7.2.3
ELIMINATION
OF
THE
NODE.
LONG-TERM
HAMILTONIAN
-
182
7.3
EXACT
INTEGRATION
TO
THE
SECOND
ORDER
OF/
2
----
183
7.4
RELEGATION
OF
TESSERAL
EFFECTS
-
186
7.4.1
BASIC
ALGORITHM
----
186
7.4.2
TESSERAL
RELEGATION
WITH
LOW
ECCENTRICITY
-
187
7.4.3
SAMPLE
APPLICATIONS
-
189
7.5
TESSERAL
RESONANCES
-
193
7.5.1
RESONANT
TERMS
OF
THE
GEOPOTENTIAL
-
194
7.5.2
SHORT-PERIOD
ELIMINATION
-----
196
7.5.3
THE
2:1
RESONANCE.
GPS
ORBITS
----
199
7.5.4
THE
5:3
RESONANCE.
GALILEO
DISPOSAL
ORBITS
----
201
8
LUNISOLAR
PERTURBATIONS
-
203
XII
-
CONTENTS
8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.5
8.5.1
8.5.2
8.5.3
THE
THIRD-BODY
POTENTIAL
-
203
EXPANSION
OF
THE
POTENTIAL
FOR
A
CLOSE-EARTH
SATELLITE
-
204
THE
DISTURBING
POTENTIAL
IN
THE
APSIDAL
FRAME
-
205
LONG-TERM
MOTION.
THE
EXTENDED
PHASE
SPACE
-
206
SHORT-PERIOD
ELIMINATION
BY
LIE
TRANSFORMS
-
207
AVERAGED
FLOW
IN
VECTORIAL
ELEMENTS
-
208
SAMPLE
APPLICATION.
THE
CASE
OF
HIGH
EARTH
ORBITS
-
211
THIRD-BODY
S
MEAN
ANOMALY
AVERAGING
-
213
MOON
AND
SUN
DISTURBING
EFFECTS
-
214
ADDITIONAL
SIMPLIFICATIONS.
LONG-TERM
HAMILTONIAN
-
217
PERTURBATIONS
IN
THE
ECLIPTIC
FRAME
-
219
THE
DISTURBING
POTENTIAL
-
220
REMOVING
SHORT-PERIOD
EFFECTS
-
221
REMOVING
MONTHLY
AND
ANNUAL
EFFECTS
-
224
ELIMINATION
OF
THE
MOON
S
LONGITUDE
OF
THE
NODE
-
226
KUDIELKA
S
BALANCED
ORBITS
-
227
THE
MANIFOLD
OF
CIRCULAR
ORBITS
-
229
THE
MANIFOLD
OF
POLAR
ORBITS
ORTHOGONAL
TO
THE
EQUINOX
-
232
OTHER
EQUILIBRIA
-
234
9
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.2
9.2.1
9.2.2
9.2.3
9.2.4
NON-CONSERVATIVE
EFFECTS
-
235
SOLAR-RADIATION
PRESSURE
-
235
THE
DISTURBING
SRP
POTENTIAL
-
236
HAMILTONIAN
SHORT-PERIOD
REDUCTION
IN
THE
SYNODIC
FRAME
-
236
PARTICULAR
SOLUTIONS
-
238
GENERAL
SOLUTION
IN
VECTORIAL
ELEMENTS
-
239
COMPLETE
HAMILTONIAN
REDUCTION
IN
ACTION-ANGLE
VARIABLES
-
241
SHORT-PERIOD
REDUCTION
IN
THE
EQUATORIAL
FRAME
-
242
ATMOSPHERIC
DRAG
-
243
ATMOSPHERIC
DENSITY
-
243
ROTATING
ATMOSPHERE
-
244
GAUSS
EQUATIONS
OF
VARIATION
-
245
PERTURBATION
EQUATIONS
-
247
PART
III:
RELATIVE
MOTION
AND
PERTURBED
NON-KEPLERIAN
MOTION
10
10.1
10.1.1
10.1.2
10.1.3
THE
HILL
PROBLEM
----
253
THE
CIRCULAR
RESTRICTED
THREE-BODY
PROBLEM
----
253
SYNODIC
FRAME.
THE
JACOBI
INTEGRAL
----
254
HAMILTONIAN
FORMULATION
----
255
SURFACES
AND
CURVES
OF
ZERO
VELOCITY
-
256
CONTENTS
-
XIII
10.2
HILL
S
SIMPLIFYING
ASSUMPTIONS
-
257
10.2.1
EQUILIBRIA.
HILL
S
SPHERE
-
260
10.2.2
MOTION
NEAR
THE
EQUILIBRIUM
POINTS
-
262
10.2.3
BASIC
FAMILIES
OF
PERIODIC
ORBITS
-
263
11
MOTION
INSIDE
HILL
S
SPHERE
-
265
11.1 PERTURBED
KEPLERIAN
MOTION
-
265
11.1.1
SHORT-PERIOD
ELIMINATION
-
266
11.1.2
ELIMINATION
OF
THE
NODE
IN
THE
ROTATING
FRAME
-
267
11.1.3
THIRD-BODY
CRITICAL
INCLINATION.
THE
LIDOV-KOZAI
RESONANCE
-
268
11.2
HIGHER-ORDER
DYNAMICS
-
271
11.2.1
DEGENERACY
AT
THE
THIRD
ORDER
-
271
11.2.2
FOURTH-ORDER
CORRECTIONS
-
274
11.2.3
HIGHER-ORDER
REFINEMENTS
-
276
11.3
THE
CASE
OF
PLANETARY
SATELLITES
-
278
11.3.1
ELIMINATION
OF
THE
MEAN
ANOMALY
-
280
11.3.2
ELIMINATION
OF
THE
LONGITUDE
OF
THE
NODE
-
281
11.3.3
REDUCED
PHASE
SPACE
IN
THE
PARAMETERS
PLANE
-
282
11.3.4
THIRD-ORDER
EFFECTS.
THE
SPACE
OF
PARAMETERS
-
287
11.4
APPLICATION.
COMPUTATION
OF
THE
SCIENCE
ORBIT
-
288
11.4.1
MEAN
TO
OSCULATING
TRANSFORMATION
-
291
11.4.2
MAPPING
ORBITS
----
293
12
MOTION
ABOUT
THE
LIBRATION
POINTS
-
295
12.1
PERTURBATION
SOLUTION
-
295
12.1.1
THE
CENTER
MANIFOLD
-
296
12.1.2
HOMOLOGICAL
EQUATION
IN
COMPLEX
VARIABLES
-
298
12.1.3
DETUNING.
THE
PERTURBED
ELLIPTIC
OSCILLATOR
-
299
12.1.4
HAMILTONIAN
NORMALIZATION
-
302
12.2
REDUCED
DYNAMICS
IN
THE
CENTER
MANIFOLD
-
303
12.2.1
VISUALIZATION
OF
THE
REDUCED
FLOW
-
304
12.2.2
EQUILIBRIA
AND
BIFURCATIONS.
ANALYTICAL
COMPUTATION
-
304
12.2.3
PARTNER
ORBITS
OF
THE
EQUILIBRIA
IN
THE
CENTER
MANIFOLD
-
306
12.3
HIGHER
ORDERS
----
308
12.3.1
LYAPUNOV
ORBITS
-
310
12.3.2
RESONANT
ORBITS
-
310
13
QUASI-SATELLITE
ORBITS
-
313
13.1
PLANAR
CASE.
EPICYCLIC
COORDINATES
-
313
13.2
ELIMINATION
OF
SHORT-PERIOD
EFFECTS
-
316
13.2.1
LOWER
ORDERS
-
317
13.2.2
HIGHER
ORDERS
----
318
XIV
CONTENTS
13.2.3
ADDITIONAL
HAMILTONIAN
TERMS
-
321
13.2.4
LONG-PERIOD
HAMILTONIAN
-
322
13.3
THE
NATURE
OF
THE
LONG-TERM
SOLUTION
-
322
13.4
COMPLETE
HAMILTONIAN
REDUCTION
-
324
13.4.1
EXTENDED
HARMONIC
TRANSFORMATION
-
324
13.4.2
SECULAR
HAMILTONIAN
-
325
13.4.3
LONG-PERIOD
CORRECTIONS
-
327
13.4.4
ORBIT
DESIGN
PARAMETERS
-
329
13.4.5
PERIODIC
ORBITS
-
329
13.5
EXAMPLES
-
331
13.5.1
LARGE
AMPLITUDE
LIBRATION
-
331
13.5.2
1:1
RESONANCE
-
334
BIBLIOGRAPHY
-
337
INDEX
-
371
|
adam_txt |
CONTENTS
PREFACE
-
V
1
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
INTRODUCTION
-
1
PERTURBED
INTEGRABLE
PROBLEMS
-
2
ARTIFICIAL
SATELLITE
THEORY
-
5
SIGNIFICANCE
OF
LYAPUNOV
INSTABILITY
-
7
GEOPOTENTIAL
LONG-PERIOD
EFFECTS
IN
CLOSED
FORM
-
8
TESSERAL
EFFECTS
-
10
LUNISOLAR
PERTURBATIONS
-
12
NON-CONSERVATIVE
PERTURBATIONS
-
14
ACTION-ANGLE
AND
NON-SINGULAR
VARIABLES
-
16
NON-EARTH
ORBITS
AND
PERTURBED
NON-KEPLERIAN
ORBITS
-
18
THE
RESTRICTED
THREE-BODY
PROBLEM
-
18
HILL
PROBLEM
SIMPLIFICATIONS
-
19
MOTION
ABOUT
PLANETARY
SATELLITES
-
21
LIBRATION
POINTS
ORBITS
-
22
COORBITAL
MOTION
WITH
LOW
ECCENTRICITY
-
24
PART
1:
HAMILTONIAN
PERTURBATIONS
BY
LIE
TRANSFORMS
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
2.2.1
2.2.2
2.2.3
THE
METHOD
OF
LIE
TRANSFORMS
-
29
LIE
TRANSFORMATION
OF
A
FUNCTION
-
29
THE
FUNDAMENTAL
RECURSION
-
31
DEPRIT
'
S
TRIANGLE
-
33
THE
DIRECT
TRANSFORMATION
-
34
COMPOSITION
OF
LIE
TRANSFORMATIONS
----
35
THE
INVERSE
TRANSFORMATION
-
36
DEPRIT
'
S
PERTURBATIONS
APPROACH
-
37
HAMILTONIAN
SIMPLIFICATION
BY
LIE
TRANSFORMS
-
37
EXAMPLE:
SMALL
OSCILLATIONS
OF
THE
SIMPLE
PENDULUM
-
39
THE
HOMOLOGICAL
EQUATION
-
42
3
3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
APPLICATION
TO
INTEGRABLE
PROBLEMS
-
45
THE
SIMPLE
GRAVITY
PENDULUM
-
46
HAMILTONIAN
REDUCTION
-
46
ROTATION
REGIME.
SOLUTION
IN
ACTION-ANGLE
VARIABLES
-
48
EXPANDED
SOLUTION
BY
LIE
TRANSFORMS
-
50
THE
FREE
RIGID
BODY
-
52
ROTATION
IN
THE
BODY
FRAME
-
53
X
CONTENTS
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
ATTITUDE
IN
THE
SPACE
FRAME
-
55
THE
INVARIABLE
PLANE
----
56
HAMILTONIAN
FORMULATION
-
58
CLOSED-FORM
SOLUTION
BY
COMPLETE
REDUCTION
-
59
THE
CASE
OF
LOW
TRIAXIALITY
-
65
SHORT-AXIS-MODE
ROTATION
----
67
PART
II:
PERTURBED
ELLIPTIC
MOTION:
ARTIFICIAL
SATELLITE
THEORY
4
4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
THE
KEPLER
PROBLEM
-
77
THE
ORBITAL
FRAME
-
77
KEPLER
HAMILTONIAN
-
78
HAMILTON-JACOBI
REDUCTION
-
80
SOLUTION
IN
DELAUNAY
VARIABLES
-
83
USEFUL
RELATIONS
FOR
PERTURBED
KEPLERIAN
MOTION
-
86
THE
APSIDAL
FRAME.
FUNDAMENTAL
VECTORS
-
86
VARIATION
EQUATIONS
IN
VECTORIAL
ELEMENTS
-
87
DIFFERENTIAL
RELATIONS
AND
CLOSED-FORM
INTEGRATION
-
88
PRINCIPAL
RELATIONS
OF
THE
ELLIPSE
-
90
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.7
5.7.1
5.7.2
THE
MAIN
PROBLEM
OF
THE
ARTIFICIAL
SATELLITE
-
92
GEOPOTENTIAL
HAMILTONIAN
-
92
PARTICULAR
SOLUTIONS
-
94
SECULAR
EFFECTS
-
95
PICARD
ITERATIONS
-
97
INCLINATION
RESONANCES
-
99
INTERMEDIARIES
-
100
COMMON
INTERMEDIARIES
-
101
NATURAL
INTERMEDIARIES
-
102
TORSIONS
FOR
QUASI-KEPLERIAN
SYSTEMS
-
105
DISCRETIZATION
OF
THE
FLOW
-
106
THE
CRITICAL
INCLINATION
-
110
FIRST
ORDER
-
110
SECOND
ORDER
-
111
THE
REDUCED
PHASE
SPACE.
FROZEN
ORBITS
-
113
REDUCED
DYNAMICS
ON
THE
SPHERE
-
116
SEMI-ANALYTICAL
INTEGRATION
-
119
SHORT-PERIOD
CORRECTIONS
IN
DELAUNAY
VARIABLES
-
120
SHORT-PERIOD
CORRECTIONS
IN
NON-SINGULAR
VARIABLES
-
121
6
ZONAL
PERTURBATIONS
-
124
CONTENTS
-
XI
6.1
ZONAL
PROBLEM
IN
MEAN
ELEMENTS
-
124
6.1.1
AVERAGED
FLOW
----
127
6.1.2
INCLINATION-ECCENTRICITY
DIAGRAMS
OF
FROZEN
ORBITS
-
129
6.1.3
LOCAL
DYNAMICS:
ECCENTRICITY-VECTOR
DIAGRAMS
-
131
6.2
HAMILTONIAN
SIMPLIFICATION
-
133
6.2.1
DEPRIT
'
S
ELIMINATION
OF
THE
PARALLAX
-
134
6.2.2
DELAUNAY
NORMALIZATION
-
137
6.2.3
SHORT-PERIOD
CORRECTIONS
-
139
6.3
BROUWER
'
S
SOLUTION
BY
COMPLETE
REDUCTION
-
141
6.3.1
SECULAR
TERMS
-
141
6.3.2
LONG-PERIOD
CORRECTIONS
----
143
6.4
REVERSE
NORMALIZATION.
LONG
PERIODS
REMOVED
FIRST
-
144
6.4.1
NORMALIZATION
OF
THE
TOTAL
ANGULAR
MOMENTUM
-
145
6.4.2
NORMALIZATION
OF
THE
SEMIMAJOR
AXIS
-
149
6.4.3
ALFRIEND
AND
COFFEY
'
S
ELIMINATION
OF
THE
PERIGEE
-
151
6.5
HIGHER
ORDERS
OF
THE
PERTURBATION
SOLUTION.
A
TEST
CASE
-
153
6.5.1
PRELIMINARY
SIMPLIFICATION.
ELIMINATION
OF
THE
PARALLAX
-
154
6.5.2
PARTIAL
NORMALIZATION.
LONG-PERIOD
ELIMINATION
-
156
6.5.3
COMPLETE
HAMILTONIAN
REDUCTION.
SHORT-PERIOD
ELIMINATION
-
159
6.5.4
SECULAR
FREQUENCIES
-
162
6.5.5
SAMPLE
APPLICATION.
THE
PRISMA
ORBIT
----
165
6.6
INITIALIZATION
ISSUES.
BREAKWELL
AND
VAGNERS
'
APPROACH
-
173
6.7
CENTERED
ELEMENTS
-
174
7
TESSERAL
PERTURBATIONS
-
176
7.1
TESSERAL
POTENTIAL
IN
ORBITAL
ELEMENTS
-
176
7.2
LOW-EARTH
ORBITS.
GARFINKEL
'
S
PERTURBATION
APPROACH
-
177
7.2.1
ELIMINATION
OF
THE
PARALLAX
OF
TESSERAL
TERMS
-
178
7.2.2
DELAUNAY
NORMALIZATION,
M-DAILY
TERMS
-
180
7.2.3
ELIMINATION
OF
THE
NODE.
LONG-TERM
HAMILTONIAN
-
182
7.3
EXACT
INTEGRATION
TO
THE
SECOND
ORDER
OF/
2
----
183
7.4
RELEGATION
OF
TESSERAL
EFFECTS
-
186
7.4.1
BASIC
ALGORITHM
----
186
7.4.2
TESSERAL
RELEGATION
WITH
LOW
ECCENTRICITY
-
187
7.4.3
SAMPLE
APPLICATIONS
-
189
7.5
TESSERAL
RESONANCES
-
193
7.5.1
RESONANT
TERMS
OF
THE
GEOPOTENTIAL
-
194
7.5.2
SHORT-PERIOD
ELIMINATION
-----
196
7.5.3
THE
2:1
RESONANCE.
GPS
ORBITS
----
199
7.5.4
THE
5:3
RESONANCE.
GALILEO
DISPOSAL
ORBITS
----
201
8
LUNISOLAR
PERTURBATIONS
-
203
XII
-
CONTENTS
8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.5
8.5.1
8.5.2
8.5.3
THE
THIRD-BODY
POTENTIAL
-
203
EXPANSION
OF
THE
POTENTIAL
FOR
A
CLOSE-EARTH
SATELLITE
-
204
THE
DISTURBING
POTENTIAL
IN
THE
APSIDAL
FRAME
-
205
LONG-TERM
MOTION.
THE
EXTENDED
PHASE
SPACE
-
206
SHORT-PERIOD
ELIMINATION
BY
LIE
TRANSFORMS
-
207
AVERAGED
FLOW
IN
VECTORIAL
ELEMENTS
-
208
SAMPLE
APPLICATION.
THE
CASE
OF
HIGH
EARTH
ORBITS
-
211
THIRD-BODY
'
S
MEAN
ANOMALY
AVERAGING
-
213
MOON
AND
SUN
DISTURBING
EFFECTS
-
214
ADDITIONAL
SIMPLIFICATIONS.
LONG-TERM
HAMILTONIAN
-
217
PERTURBATIONS
IN
THE
ECLIPTIC
FRAME
-
219
THE
DISTURBING
POTENTIAL
-
220
REMOVING
SHORT-PERIOD
EFFECTS
-
221
REMOVING
MONTHLY
AND
ANNUAL
EFFECTS
-
224
ELIMINATION
OF
THE
MOON
'
S
LONGITUDE
OF
THE
NODE
-
226
KUDIELKA
'
S
BALANCED
ORBITS
-
227
THE
MANIFOLD
OF
CIRCULAR
ORBITS
-
229
THE
MANIFOLD
OF
POLAR
ORBITS
ORTHOGONAL
TO
THE
EQUINOX
-
232
OTHER
EQUILIBRIA
-
234
9
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.2
9.2.1
9.2.2
9.2.3
9.2.4
NON-CONSERVATIVE
EFFECTS
-
235
SOLAR-RADIATION
PRESSURE
-
235
THE
DISTURBING
SRP
"
POTENTIAL
"
-
236
HAMILTONIAN
SHORT-PERIOD
REDUCTION
IN
THE
SYNODIC
FRAME
-
236
PARTICULAR
SOLUTIONS
-
238
GENERAL
SOLUTION
IN
VECTORIAL
ELEMENTS
-
239
COMPLETE
HAMILTONIAN
REDUCTION
IN
ACTION-ANGLE
VARIABLES
-
241
SHORT-PERIOD
REDUCTION
IN
THE
EQUATORIAL
FRAME
-
242
ATMOSPHERIC
DRAG
-
243
ATMOSPHERIC
DENSITY
-
243
ROTATING
ATMOSPHERE
-
244
GAUSS
EQUATIONS
OF
VARIATION
-
245
PERTURBATION
EQUATIONS
-
247
PART
III:
RELATIVE
MOTION
AND
PERTURBED
NON-KEPLERIAN
MOTION
10
10.1
10.1.1
10.1.2
10.1.3
THE
HILL
PROBLEM
----
253
THE
CIRCULAR
RESTRICTED
THREE-BODY
PROBLEM
----
253
SYNODIC
FRAME.
THE
JACOBI
INTEGRAL
----
254
HAMILTONIAN
FORMULATION
----
255
SURFACES
AND
CURVES
OF
ZERO
VELOCITY
-
256
CONTENTS
-
XIII
10.2
HILL
'
S
SIMPLIFYING
ASSUMPTIONS
-
257
10.2.1
EQUILIBRIA.
HILL
'
S
SPHERE
-
260
10.2.2
MOTION
NEAR
THE
EQUILIBRIUM
POINTS
-
262
10.2.3
BASIC
FAMILIES
OF
PERIODIC
ORBITS
-
263
11
MOTION
INSIDE
HILL
'
S
SPHERE
-
265
11.1 PERTURBED
KEPLERIAN
MOTION
-
265
11.1.1
SHORT-PERIOD
ELIMINATION
-
266
11.1.2
ELIMINATION
OF
THE
NODE
IN
THE
ROTATING
FRAME
-
267
11.1.3
THIRD-BODY
CRITICAL
INCLINATION.
THE
LIDOV-KOZAI
RESONANCE
-
268
11.2
HIGHER-ORDER
DYNAMICS
-
271
11.2.1
DEGENERACY
AT
THE
THIRD
ORDER
-
271
11.2.2
FOURTH-ORDER
CORRECTIONS
-
274
11.2.3
HIGHER-ORDER
REFINEMENTS
-
276
11.3
THE
CASE
OF
PLANETARY
SATELLITES
-
278
11.3.1
ELIMINATION
OF
THE
MEAN
ANOMALY
-
280
11.3.2
ELIMINATION
OF
THE
LONGITUDE
OF
THE
NODE
-
281
11.3.3
REDUCED
PHASE
SPACE
IN
THE
PARAMETERS
PLANE
-
282
11.3.4
THIRD-ORDER
EFFECTS.
THE
SPACE
OF
PARAMETERS
-
287
11.4
APPLICATION.
COMPUTATION
OF
THE
SCIENCE
ORBIT
-
288
11.4.1
MEAN
TO
OSCULATING
TRANSFORMATION
-
291
11.4.2
MAPPING
ORBITS
----
293
12
MOTION
ABOUT
THE
LIBRATION
POINTS
-
295
12.1
PERTURBATION
SOLUTION
-
295
12.1.1
THE
CENTER
MANIFOLD
-
296
12.1.2
HOMOLOGICAL
EQUATION
IN
COMPLEX
VARIABLES
-
298
12.1.3
DETUNING.
THE
PERTURBED
ELLIPTIC
OSCILLATOR
-
299
12.1.4
HAMILTONIAN
NORMALIZATION
-
302
12.2
REDUCED
DYNAMICS
IN
THE
CENTER
MANIFOLD
-
303
12.2.1
VISUALIZATION
OF
THE
REDUCED
FLOW
-
304
12.2.2
EQUILIBRIA
AND
BIFURCATIONS.
ANALYTICAL
COMPUTATION
-
304
12.2.3
PARTNER
ORBITS
OF
THE
EQUILIBRIA
IN
THE
CENTER
MANIFOLD
-
306
12.3
HIGHER
ORDERS
----
308
12.3.1
LYAPUNOV
ORBITS
-
310
12.3.2
RESONANT
ORBITS
-
310
13
QUASI-SATELLITE
ORBITS
-
313
13.1
PLANAR
CASE.
EPICYCLIC
COORDINATES
-
313
13.2
ELIMINATION
OF
SHORT-PERIOD
EFFECTS
-
316
13.2.1
LOWER
ORDERS
-
317
13.2.2
HIGHER
ORDERS
----
318
XIV
CONTENTS
13.2.3
ADDITIONAL
HAMILTONIAN
TERMS
-
321
13.2.4
LONG-PERIOD
HAMILTONIAN
-
322
13.3
THE
NATURE
OF
THE
LONG-TERM
SOLUTION
-
322
13.4
COMPLETE
HAMILTONIAN
REDUCTION
-
324
13.4.1
EXTENDED
HARMONIC
TRANSFORMATION
-
324
13.4.2
SECULAR
HAMILTONIAN
-
325
13.4.3
LONG-PERIOD
CORRECTIONS
-
327
13.4.4
ORBIT
DESIGN
PARAMETERS
-
329
13.4.5
PERIODIC
ORBITS
-
329
13.5
EXAMPLES
-
331
13.5.1
LARGE
AMPLITUDE
LIBRATION
-
331
13.5.2
1:1
RESONANCE
-
334
BIBLIOGRAPHY
-
337
INDEX
-
371 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Lara, Martín |
author_facet | Lara, Martín |
author_role | aut |
author_sort | Lara, Martín |
author_variant | m l ml |
building | Verbundindex |
bvnumber | BV047293447 |
ctrlnum | (OCoLC)1252705586 (DE-599)DNB1225055539 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01925nam a22004458cb4500</leader><controlfield tag="001">BV047293447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210521s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N03</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1225055539</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110667226</subfield><subfield code="c">: EUR 155.95 (DE) (freier Preis), EUR 155.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-066722-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110667223</subfield><subfield code="9">3-11-066722-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1252705586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1225055539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">530</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lara, Martín</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian perturbation solutions for spacecraft orbit prediction</subfield><subfield code="b">the method of lie transforms</subfield><subfield code="c">Martín Lara</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 377 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematical physics</subfield><subfield code="v">Volume 54</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hamilton-Jacobi-Differentialgleichung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Störungstheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Umlaufbahn</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-066851-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-066732-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematical physics</subfield><subfield code="v">Volume 54</subfield><subfield code="w">(DE-604)BV040141722</subfield><subfield code="9">54</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/books/9783110667226</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032696750&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032696750</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">npi</subfield><subfield code="d">20210421</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield></record></collection> |
id | DE-604.BV047293447 |
illustrated | Illustrated |
index_date | 2024-07-03T17:21:03Z |
indexdate | 2024-07-10T09:08:02Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110667226 3110667223 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032696750 |
oclc_num | 1252705586 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | XIV, 377 Seiten Illustrationen 24 cm x 17 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter studies in mathematical physics |
series2 | De Gruyter studies in mathematical physics |
spelling | Lara, Martín Verfasser aut Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms Martín Lara Berlin ; Boston De Gruyter [2021] XIV, 377 Seiten Illustrationen 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter studies in mathematical physics Volume 54 Hamilton-Jacobi-Differentialgleichung Störungstheorie Umlaufbahn Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-066851-3 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-066732-5 De Gruyter studies in mathematical physics Volume 54 (DE-604)BV040141722 54 X:MVB https://www.degruyter.com/books/9783110667226 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032696750&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p npi 20210421 DE-101 https://d-nb.info/provenance/plan#npi |
spellingShingle | Lara, Martín Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms De Gruyter studies in mathematical physics |
title | Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms |
title_auth | Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms |
title_exact_search | Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms |
title_exact_search_txtP | Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms |
title_full | Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms Martín Lara |
title_fullStr | Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms Martín Lara |
title_full_unstemmed | Hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms Martín Lara |
title_short | Hamiltonian perturbation solutions for spacecraft orbit prediction |
title_sort | hamiltonian perturbation solutions for spacecraft orbit prediction the method of lie transforms |
title_sub | the method of lie transforms |
url | https://www.degruyter.com/books/9783110667226 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032696750&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040141722 |
work_keys_str_mv | AT laramartin hamiltonianperturbationsolutionsforspacecraftorbitpredictionthemethodoflietransforms AT walterdegruytergmbhcokg hamiltonianperturbationsolutionsforspacecraftorbitpredictionthemethodoflietransforms |