Quadratic number theory: an invitation to algebraic methods in the higher arithmetic
3.6. A Formula for Ideal MultiplicationIdeals of Quadratic Domains-Review; Part Two: Quadratic Forms and Ideals; Chapter 4. Quadratic Forms; 4.1. Classification of Quadratic Forms; 4.2. Equivalence of Quadratic Forms; 4.3. Representations of Integers by Quadratic Forms; 4.4. Genera of Quadratic Form...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
MAA Press
[2019]
|
Schriftenreihe: | Dolciani mathematical expositions
vol 52 |
Schlagworte: | |
Online-Zugang: | TUM01 UBY01 |
Zusammenfassung: | 3.6. A Formula for Ideal MultiplicationIdeals of Quadratic Domains-Review; Part Two: Quadratic Forms and Ideals; Chapter 4. Quadratic Forms; 4.1. Classification of Quadratic Forms; 4.2. Equivalence of Quadratic Forms; 4.3. Representations of Integers by Quadratic Forms; 4.4. Genera of Quadratic Forms; Quadratic Forms-Review; Chapter 5. Correspondence between Forms and Ideals; 5.1. Equivalence of Ideals; 5.2. Quadratic Forms Associated to an Ideal; 5.3. Composition of Binary Quadratic Forms; 5.4. Class Groups of Ideals and Quadratic Forms; Correspondence between Forms and Ideals-Review 8.1. Constructing Class Groups of Subdomains8.2. Projection Homomorphisms; 8.3. The Kernel of a Projection Homomorphism; Class Groups of Quadratic Subdomains-Review; Part Four: Indefinite Quadratic Forms; Chapter 9. Continued Fractions; 9.1. Introduction to Continued Fractions; 9.2. Pell's Equation; 9.3. Convergence of Continued Fractions; 9.4. Continued Fraction Expansions of Real Numbers; 9.5. Purely Periodic Continued Fractions; 9.6. Continued Fractions of Irrational Quadratic Numbers; Continued Fractions-Review; Chapter 10. Class Groups of Positive Discriminant Cover; Title page; Copyright; Contents; Preface; Acknowledgments; Introduction: A Brief Review of Elementary Number Theory; 0.1. Linear Equations and Congruences; 0.2. Quadratic Congruences Modulo Primes; 0.3. Quadratic Congruences Modulo Composite Integers; Part One: Quadratic Domains and Ideals; Chapter 1. Gaussian Integers and Sums of Two Squares; 1.1. Sums of Two Squares; 1.2. Gaussian Integers; 1.3. Ideal Form for Gaussian Integers; 1.4. Factorization and Multiplication with Ideal Forms; 1.5. Reduction of Ideal Forms for Gaussian Integers; 1.6. Sums of Two Squares Revisited |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781470451554 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV047292697 | ||
003 | DE-604 | ||
005 | 20211006 | ||
007 | cr|uuu---uuuuu | ||
008 | 210521s2019 xxu|||| o||u| ||||||eng d | ||
020 | |a 9781470451554 |9 978-1-4704-5155-4 | ||
035 | |a (ZDB-4-NLEBK)2042353 | ||
035 | |a (OCoLC)1256433664 | ||
035 | |a (DE-599)KEP044642970 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-91G |a DE-706 | ||
082 | 0 | |a 512.7/4 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a MAT 120 |2 stub | ||
100 | 1 | |a Lehman, J. L. |d 1957- |e Verfasser |0 (DE-588)1186853107 |4 aut | |
245 | 1 | 0 | |a Quadratic number theory |b an invitation to algebraic methods in the higher arithmetic |c J.L. Lehman |
264 | 1 | |a Providence, Rhode Island |b MAA Press |c [2019] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Dolciani mathematical expositions |v vol 52 | |
520 | 3 | |a 3.6. A Formula for Ideal MultiplicationIdeals of Quadratic Domains-Review; Part Two: Quadratic Forms and Ideals; Chapter 4. Quadratic Forms; 4.1. Classification of Quadratic Forms; 4.2. Equivalence of Quadratic Forms; 4.3. Representations of Integers by Quadratic Forms; 4.4. Genera of Quadratic Forms; Quadratic Forms-Review; Chapter 5. Correspondence between Forms and Ideals; 5.1. Equivalence of Ideals; 5.2. Quadratic Forms Associated to an Ideal; 5.3. Composition of Binary Quadratic Forms; 5.4. Class Groups of Ideals and Quadratic Forms; Correspondence between Forms and Ideals-Review | |
520 | 3 | |a 8.1. Constructing Class Groups of Subdomains8.2. Projection Homomorphisms; 8.3. The Kernel of a Projection Homomorphism; Class Groups of Quadratic Subdomains-Review; Part Four: Indefinite Quadratic Forms; Chapter 9. Continued Fractions; 9.1. Introduction to Continued Fractions; 9.2. Pell's Equation; 9.3. Convergence of Continued Fractions; 9.4. Continued Fraction Expansions of Real Numbers; 9.5. Purely Periodic Continued Fractions; 9.6. Continued Fractions of Irrational Quadratic Numbers; Continued Fractions-Review; Chapter 10. Class Groups of Positive Discriminant | |
520 | 3 | |a Cover; Title page; Copyright; Contents; Preface; Acknowledgments; Introduction: A Brief Review of Elementary Number Theory; 0.1. Linear Equations and Congruences; 0.2. Quadratic Congruences Modulo Primes; 0.3. Quadratic Congruences Modulo Composite Integers; Part One: Quadratic Domains and Ideals; Chapter 1. Gaussian Integers and Sums of Two Squares; 1.1. Sums of Two Squares; 1.2. Gaussian Integers; 1.3. Ideal Form for Gaussian Integers; 1.4. Factorization and Multiplication with Ideal Forms; 1.5. Reduction of Ideal Forms for Gaussian Integers; 1.6. Sums of Two Squares Revisited | |
650 | 0 | 7 | |a Quadratische Form |0 (DE-588)4128297-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratischer Körper |0 (DE-588)4667267-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | 1 | |a Quadratischer Körper |0 (DE-588)4667267-9 |D s |
689 | 0 | 2 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4704-4737-3 |
830 | 0 | |a Dolciani mathematical expositions |v vol 52 |w (DE-604)BV041453181 |9 52 | |
912 | |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032696015 | ||
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2042353 |l TUM01 |p ZDB-4-NLEBK |q TUM_Einzelkauf |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2042353 |l UBY01 |p ZDB-4-NLEBK |q UBY01_DDA21 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182466946138112 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lehman, J. L. 1957- |
author_GND | (DE-588)1186853107 |
author_facet | Lehman, J. L. 1957- |
author_role | aut |
author_sort | Lehman, J. L. 1957- |
author_variant | j l l jl jll |
building | Verbundindex |
bvnumber | BV047292697 |
classification_rvk | SK 180 |
classification_tum | MAT 120 |
collection | ZDB-4-NLEBK |
ctrlnum | (ZDB-4-NLEBK)2042353 (OCoLC)1256433664 (DE-599)KEP044642970 |
dewey-full | 512.7/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/4 |
dewey-search | 512.7/4 |
dewey-sort | 3512.7 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03788nmm a2200517 cb4500</leader><controlfield tag="001">BV047292697</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211006 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210521s2019 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470451554</subfield><subfield code="9">978-1-4704-5155-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-NLEBK)2042353</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256433664</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP044642970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 120</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lehman, J. L.</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1186853107</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quadratic number theory</subfield><subfield code="b">an invitation to algebraic methods in the higher arithmetic</subfield><subfield code="c">J.L. Lehman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">MAA Press</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dolciani mathematical expositions</subfield><subfield code="v">vol 52</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">3.6. A Formula for Ideal MultiplicationIdeals of Quadratic Domains-Review; Part Two: Quadratic Forms and Ideals; Chapter 4. Quadratic Forms; 4.1. Classification of Quadratic Forms; 4.2. Equivalence of Quadratic Forms; 4.3. Representations of Integers by Quadratic Forms; 4.4. Genera of Quadratic Forms; Quadratic Forms-Review; Chapter 5. Correspondence between Forms and Ideals; 5.1. Equivalence of Ideals; 5.2. Quadratic Forms Associated to an Ideal; 5.3. Composition of Binary Quadratic Forms; 5.4. Class Groups of Ideals and Quadratic Forms; Correspondence between Forms and Ideals-Review</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">8.1. Constructing Class Groups of Subdomains8.2. Projection Homomorphisms; 8.3. The Kernel of a Projection Homomorphism; Class Groups of Quadratic Subdomains-Review; Part Four: Indefinite Quadratic Forms; Chapter 9. Continued Fractions; 9.1. Introduction to Continued Fractions; 9.2. Pell's Equation; 9.3. Convergence of Continued Fractions; 9.4. Continued Fraction Expansions of Real Numbers; 9.5. Purely Periodic Continued Fractions; 9.6. Continued Fractions of Irrational Quadratic Numbers; Continued Fractions-Review; Chapter 10. Class Groups of Positive Discriminant</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover; Title page; Copyright; Contents; Preface; Acknowledgments; Introduction: A Brief Review of Elementary Number Theory; 0.1. Linear Equations and Congruences; 0.2. Quadratic Congruences Modulo Primes; 0.3. Quadratic Congruences Modulo Composite Integers; Part One: Quadratic Domains and Ideals; Chapter 1. Gaussian Integers and Sums of Two Squares; 1.1. Sums of Two Squares; 1.2. Gaussian Integers; 1.3. Ideal Form for Gaussian Integers; 1.4. Factorization and Multiplication with Ideal Forms; 1.5. Reduction of Ideal Forms for Gaussian Integers; 1.6. Sums of Two Squares Revisited</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratischer Körper</subfield><subfield code="0">(DE-588)4667267-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quadratischer Körper</subfield><subfield code="0">(DE-588)4667267-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4704-4737-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dolciani mathematical expositions</subfield><subfield code="v">vol 52</subfield><subfield code="w">(DE-604)BV041453181</subfield><subfield code="9">52</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032696015</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2042353</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2042353</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">UBY01_DDA21</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047292697 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:20:44Z |
indexdate | 2024-07-10T09:08:00Z |
institution | BVB |
isbn | 9781470451554 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032696015 |
oclc_num | 1256433664 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-706 |
owner_facet | DE-91G DE-BY-TUM DE-706 |
physical | 1 Online-Ressource |
psigel | ZDB-4-NLEBK ZDB-4-NLEBK TUM_Einzelkauf ZDB-4-NLEBK UBY01_DDA21 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | MAA Press |
record_format | marc |
series | Dolciani mathematical expositions |
series2 | Dolciani mathematical expositions |
spelling | Lehman, J. L. 1957- Verfasser (DE-588)1186853107 aut Quadratic number theory an invitation to algebraic methods in the higher arithmetic J.L. Lehman Providence, Rhode Island MAA Press [2019] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Dolciani mathematical expositions vol 52 3.6. A Formula for Ideal MultiplicationIdeals of Quadratic Domains-Review; Part Two: Quadratic Forms and Ideals; Chapter 4. Quadratic Forms; 4.1. Classification of Quadratic Forms; 4.2. Equivalence of Quadratic Forms; 4.3. Representations of Integers by Quadratic Forms; 4.4. Genera of Quadratic Forms; Quadratic Forms-Review; Chapter 5. Correspondence between Forms and Ideals; 5.1. Equivalence of Ideals; 5.2. Quadratic Forms Associated to an Ideal; 5.3. Composition of Binary Quadratic Forms; 5.4. Class Groups of Ideals and Quadratic Forms; Correspondence between Forms and Ideals-Review 8.1. Constructing Class Groups of Subdomains8.2. Projection Homomorphisms; 8.3. The Kernel of a Projection Homomorphism; Class Groups of Quadratic Subdomains-Review; Part Four: Indefinite Quadratic Forms; Chapter 9. Continued Fractions; 9.1. Introduction to Continued Fractions; 9.2. Pell's Equation; 9.3. Convergence of Continued Fractions; 9.4. Continued Fraction Expansions of Real Numbers; 9.5. Purely Periodic Continued Fractions; 9.6. Continued Fractions of Irrational Quadratic Numbers; Continued Fractions-Review; Chapter 10. Class Groups of Positive Discriminant Cover; Title page; Copyright; Contents; Preface; Acknowledgments; Introduction: A Brief Review of Elementary Number Theory; 0.1. Linear Equations and Congruences; 0.2. Quadratic Congruences Modulo Primes; 0.3. Quadratic Congruences Modulo Composite Integers; Part One: Quadratic Domains and Ideals; Chapter 1. Gaussian Integers and Sums of Two Squares; 1.1. Sums of Two Squares; 1.2. Gaussian Integers; 1.3. Ideal Form for Gaussian Integers; 1.4. Factorization and Multiplication with Ideal Forms; 1.5. Reduction of Ideal Forms for Gaussian Integers; 1.6. Sums of Two Squares Revisited Quadratische Form (DE-588)4128297-8 gnd rswk-swf Quadratischer Körper (DE-588)4667267-9 gnd rswk-swf Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf Electronic books Algebraische Zahlentheorie (DE-588)4001170-7 s Quadratischer Körper (DE-588)4667267-9 s Quadratische Form (DE-588)4128297-8 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-4704-4737-3 Dolciani mathematical expositions vol 52 (DE-604)BV041453181 52 |
spellingShingle | Lehman, J. L. 1957- Quadratic number theory an invitation to algebraic methods in the higher arithmetic Dolciani mathematical expositions Quadratische Form (DE-588)4128297-8 gnd Quadratischer Körper (DE-588)4667267-9 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
subject_GND | (DE-588)4128297-8 (DE-588)4667267-9 (DE-588)4001170-7 |
title | Quadratic number theory an invitation to algebraic methods in the higher arithmetic |
title_auth | Quadratic number theory an invitation to algebraic methods in the higher arithmetic |
title_exact_search | Quadratic number theory an invitation to algebraic methods in the higher arithmetic |
title_exact_search_txtP | Quadratic number theory an invitation to algebraic methods in the higher arithmetic |
title_full | Quadratic number theory an invitation to algebraic methods in the higher arithmetic J.L. Lehman |
title_fullStr | Quadratic number theory an invitation to algebraic methods in the higher arithmetic J.L. Lehman |
title_full_unstemmed | Quadratic number theory an invitation to algebraic methods in the higher arithmetic J.L. Lehman |
title_short | Quadratic number theory |
title_sort | quadratic number theory an invitation to algebraic methods in the higher arithmetic |
title_sub | an invitation to algebraic methods in the higher arithmetic |
topic | Quadratische Form (DE-588)4128297-8 gnd Quadratischer Körper (DE-588)4667267-9 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
topic_facet | Quadratische Form Quadratischer Körper Algebraische Zahlentheorie |
volume_link | (DE-604)BV041453181 |
work_keys_str_mv | AT lehmanjl quadraticnumbertheoryaninvitationtoalgebraicmethodsinthehigherarithmetic |