Engineering solutions for CO2 conversion:
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim, Germany
Wiley-VCH
[2021]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34639-4/ Inhaltsverzeichnis |
Beschreibung: | xiii, 471 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
ISBN: | 3527346392 9783527346394 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047290755 | ||
003 | DE-604 | ||
005 | 20220221 | ||
007 | t | ||
008 | 210519s2021 gw a||| |||| 00||| eng d | ||
015 | |a 20,N32 |2 dnb | ||
016 | 7 | |a 1214957420 |2 DE-101 | |
020 | |a 3527346392 |9 3-527-34639-2 | ||
020 | |a 9783527346394 |c hbk: circa EUR 349.00 (DE) (freier Preis) |9 978-3-527-34639-4 | ||
024 | 3 | |a 9783527346394 | |
028 | 5 | 2 | |a Bestellnummer: 1134639 000 |
035 | |a (OCoLC)1256430313 | ||
035 | |a (DE-599)DNB1214957420 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-703 | ||
084 | |a VN 5430 |0 (DE-625)147568:253 |2 rvk | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a Engineering solutions for CO2 conversion |c edited by Tomas R. Reina, José A. Odriozola, Harvey Arellano-Garcia |
264 | 1 | |a Weinheim, Germany |b Wiley-VCH |c [2021] | |
300 | |a xiii, 471 Seiten |b Illustrationen, Diagramme |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Emissionsverringerung |0 (DE-588)4113432-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Umwandlung |0 (DE-588)4186793-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohlendioxidemission |0 (DE-588)4164507-8 |2 gnd |9 rswk-swf |
653 | |a CG10: Prozesssteuerung | ||
653 | |a CH40: Katalyse | ||
653 | |a Carbon Capture & Storage | ||
653 | |a Catalysis | ||
653 | |a Chemical Engineering | ||
653 | |a Chemie | ||
653 | |a Chemische Verfahrenstechnik | ||
653 | |a Chemistry | ||
653 | |a EG13: Kohlenstoff-Abscheidung u. -Speicherung | ||
653 | |a Energie | ||
653 | |a Energy | ||
653 | |a Katalyse | ||
653 | |a Kohlenstoff-Abscheidung u. -Speicherung | ||
653 | |a Process Engineering | ||
653 | |a Prozesssteuerung | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Kohlendioxidemission |0 (DE-588)4164507-8 |D s |
689 | 0 | 1 | |a Emissionsverringerung |0 (DE-588)4113432-1 |D s |
689 | 0 | 2 | |a Umwandlung |0 (DE-588)4186793-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Reina, Tomas R. |0 (DE-588)121958987X |4 edt | |
700 | 1 | |a Odriozola, José A. |0 (DE-588)1219589977 |4 edt | |
700 | 1 | |a Arellano-Garcia, Harvey |0 (DE-588)1246456729 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-34650-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-34651-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-34652-3 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34639-4/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032694128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032694128 |
Datensatz im Suchindex
_version_ | 1812264027340931072 |
---|---|
adam_text |
CONTENTS
1
CO
2
CAPTURE
-
A
BRIEF
REVIEW
OF
TECHNOLOGIES
AND
ITS
INTEGRATION
1
MONICA
GARCIA,
THEO
CHRONOPOULOS,
AND
RUBEN
M.
MONTANES
1.1
INTRODUCTION:
THE
ROLE
OF
CARBON
CAPTURE
1
1.2
CO
2
CAPTURE
TECHNOLOGIES
2
1.2.1
STATUS
OF
CO
2
CAPTURE
DEPLOYMENT
2
1.2.2
PRE-COMBUSTION
2
1.2.3
OXYFUEL
3
1.2.4
POST-COMBUSTION
3
1.2.4.1
ADSORPTION
4
1.2.4.2
HIGH-TEMPERATURE
SOLIDS
LOOPING
TECHNOLOGIES
7
1.2.4.3
MEMBRANES
8
1.2.4.4
CHEMICAL
ABSORPTION
9
1.2.5
OTHERS
CO
2
CAPTURE/SEPARATION
TECHNOLOGIES
13
1.2.5.1
FUEL
CELLS
13
1.3
INTEGRATION
OF
POST-COMBUSTION
CO
2
CAPTURE
IN
THE
POWER
PLANT
AND
ELECTRICITY
GRID
17
1.3.1
INTEGRATION
OF
THE
CAPTURE
UNIT
IN
THE
THERMAL
POWER
PLANT
17
1.3.2
FLEXIBLE
OPERATION
OF
THERMAL
POWER
PLANTS
IN
FUTURE
ENERGY
SYSTEMS
20
1.4
CO
2
CAPTURE
IN
THE
INDUSTRIAL
SECTOR
21
1.5
CONCLUSIONS
22
REFERENCES
24
2
ADVANCING
CCSU
TECHNOLOGIES
WITH
COMPUTATIONAL
FLUID
DYNAMICS
(CFD):
A
LOOK
AT
THE
FUTURE
BY
LINKING
CFD
AND
PROCESS
SIMULATIONS
29
DANIEL
SEBASTIA-SAEZ,
EVGENIA
MECHLERI,
AND
HARVEY
ARELLANO-GARCIA
2.1
SWEEP
ACROSS
THE
GENERAL
SIMULATION
TECHNIQUES
AVAILABLE
29
2.2
MULTI-SCALE
APPROACH
FOR
CFD
SIMULATION
OF
AMINE
SCRUBBERS
32
VI
CONTENTS
2.3
EULERIAN,
EULERIAN-LAGRANGIAN,
AND
DISCRETE
ELEMENT
METHODS
FOR
THE
SIMULATION
OF
CALCIUM
LOOPING,
MINERAL
CARBONATION,
AND
ADSORPTION
IN
OTHER
SOLID
PARTICULATE
MATERIALS
38
2.4
CFD
FOR
OXY-FUEL
COMBUSTION
TECHNOLOGIES:
THE
APPLICATION
OF
SINGLE-PHASE
REACTIVE
FLOWS
AND
PARTICLE
TRACKING
ALGORITHMS
41
2.5
CFD
FOR
CARBON
STORAGE
AND
ENHANCED
OIL
RECOVERY
(EOR):
THE
LINK
BETWEEN
ADVANCED
IMAGING
TECHNIQUES
AND
CFD
41
2.6
CFD
FOR
CARBON
UTILIZATION
WITH
CHEMICAL
CONVERSION:
THE
IMPORTANCE
OF
NUMERICAL
TECHNIQUES
ON
THE
STUDY
OF
NEW
CATALYSTS
44
2.7
CFD
FOR
BIOLOGICAL
UTILIZATION:
MICROALGAE
CULTIVATION
46
2.8
WHAT
DOES
THE
FUTURE
HOLD?
47
REFERENCES
49
3
MEMBRANES
TECHNOLOGIES
FOR
EFFICIENT
C0
2
CAPTURE
-
CONVERSION
55
SONIA
REMIRO-BUENAMANANA,
LAURA
NAVARRETE,
JULIO
GARCIA-FAYOS,
SARA
ESCORT
HUELA,
SONIA
ESCOLASTICO,
AND
JOSE
M.
SERRA
3.1
INTRODUCTION
55
3.2
POLYMER
MEMBRANES
56
3.3
OXYGEN
TRANSPORT
MEMBRANES
FOR
CO
2
VALORIZATION
60
3.3.1
OXYGEN
TRANSPORT
MEMBRANE
FUNDAMENTALS
61
3.3.2
APPLICATION
CONCEPTS
OF
OTMS
FOR
CARBON
CAPTURE
AND
STORAGE
(CCS)
63
3.3.3
EXISTING
DEVELOPMENTS
63
3.4
PROTONIC
MEMBRANES
65
3.4.1
PROTON
DEFECTS
IN
OXIDE
CERAMICS
65
3.4.2
PROTON
TRANSPORT
MEMBRANE
FUNDAMENTALS
67
3.4.3
APPLICATION
CONCEPTS
OF
PROTON
CONDUCTING
MEMBRANES
68
3.5
MEMBRANES
FOR
ELECTROCHEMICAL
APPLICATIONS
69
3.5.1
ELECTROLYSIS
AND
CO-ELECTROLYSIS
PROCESSES
69
3.5.1.1
WATER
ELECTROLYSIS
70
3.5.1.2
CO
2
CO-ELECTROLYSIS
73
3.5.2
SYNTHESIS
GAS
CHEMISTRY
75
3.5.3
OTHER
APPLICATIONS
76
3.5.3.1
METHANE
STEAM
REFORMING
76
3.53.2
METHANE
DEHYDROAROMATIZATION
78
3.6
CONCLUSIONS
AND
FINAL
REMARKS
78
REFERENCES
79
4
COMPUTATIONAL
MODELING
OF
CARBON
DIOXIDE
CATALYTIC
CONVERSION
85
JAVIER
AMAYA
SUAREZ,
ELENA
R.
REMESAL,
JOSE
J.
PLATA,
ANTONIO
M.
MARQUEZ,
AND
JAVIER
FERNANDEZ
SANZ
4.1
INTRODUCTION
85
4.2
GENERAL
METHODS
FOR
THEORETICAL
CATALYSIS
RESEARCH
85
CONTENTS
|
VII
4.3
CHARACTERIZING
THE
CATALYST
AND
ITS
INTERACTION
WITH
CO
2
USING
DFT
CALCULATIONS
87
4.4
MICROKINETIC
MODELING
IN
HETEROGENEOUS
CATALYSIS
89
4.5
NEW
TRENDS:
HIGH-THROUGHPUT
SCREENING,
VOLCANO
PLOTS,
AND
MACHINE
LEARNING
92
4.5.1
HIGH-THROUGHPUT
SCREENING
92
4.5.2
VOLCANO
PLOTS
AND
SCALING
RELATIONS
93
4.5.3
DFT
AND
MACHINE
LEARNING
93
4.5.3.1
MACHINE-LEARNED
POTENTIALS
95
4.53.2
DESCRIPTORS
TO
PREDICT
CATALYTIC
PROPERTIES
95
4.5.3.3
FUTURE
CHALLENGES
IN
HT-DFT
APPLIED
TO
CATALYSIS
96
REFERENCES
97
5
AN
OVERVIEW
OF
THE
TRANSITION
TO
A
CARBON-NEUTRAL
STEEL
INDUSTRY
105
JUAN
C.
NAVARRO,
PABLO
NAVARRO,
OSCAR
H.
LAGUNA,
MIGUEL
A.
CENTENO,
AND
JOSE
A.
ODRIOZOLA
5.1
INTRODUCTION
105
5.2
GLOBAL
RELEVANCE
OF
THE
STEEL
INDUSTRY
106
5.2.1
FEATURES
THAT
MAKE
STEEL
A
SPECIAL
MATERIAL
107
5.3
CURRENT
TRENDS
IN
EMISSION
POLICIES
IN
THE
WORLD
'
S
LEADING
COUNTRIES
IN
STEEL
INDUSTRY
109
5.4
TRANSITION
TO
A
CARBON-NEUTRAL
PRODUCTION.
A
BIG
CHALLENGE
FOR
THE
STEEL
INDUSTRY
110
5.4.1
UREA
113
5.4.2
METHANOL
AND
FORMIC
ACID
114
5.4.3
CARBON
MONOXIDE
114
5.4.4
METHANE
114
5.5
CO
2
METHANATION:
AN
INTERESTING
OPPORTUNITY
FOR
THE
VALORIZATION
OF
THE
STEEL
INDUSTRY
EMISSIONS
114
5.6
RELEVANT
PROJECTS
ALREADY
LAUNCHED
FOR
THE
VALORIZATION
OF
THE
CO
2
EMITTED
BY
THE
STEEL
INDUSTRY
116
5.7
CONCLUDING
REMARKS
119
REFERENCES
120
6
POTENTIAL
PROCESSES
FOR
SIMULTANEOUS
BIOGAS
UPGRADING
AND
CARBON
DIOXIDE
UTILIZATION
125
FRANCISCO
M.
BAENA-MORENO,
MONICA
RODRIGUEZ-GALDN,
FERNANDO
VEGA,
ISABEL
MALICO,
AND
BENITO
NAVARRETE
6.1
INTRODUCTION
125
6.2
OVERVIEW
OF
BIOGAS
GENERAL
CHARACTERISTICS
AND
UPGRADING
TECHNOLOGIES
TO
BIO-METHANE
PRODUCTION
127
6.2.1
BIOGAS
COMPOSITION
AND
APPLICATIONS
127
6.2.2
BIOGAS
UPGRADING
PROCESSES
127
6.2.2.1
WATER
SCRUBBING
129
VIII
CONTENTS
6.2.2.2
PRESSURE
SWING
ADSORPTION
129
6.2.23
CHEMICAL
SCRUBBING
129
6.2.2.4
ORGANIC
PHYSICAL
SCRUBBING
129
6.2.23
MEMBRANE SEPARATION
129
6.2.2.6
CRYOGENIC
SEPARATION
130
6.3
CCU
MAIN
TECHNOLOGIES
131
6.3.1
SUPERCRITICAL
CO
2
AS
A
SOLVENT
131
6.3.2
CHEMICALS
FROM
CO
2
132
6.3.3
MINERAL
CARBONATION
132
6.3.4
FUELS
FROM
CO
2
133
6.3.5
ALGAE
PRODUCTION
133
6.3.6
ENHANCED
OIL
RECOVERY
(EOR)
133
6.4
POTENTIAL
PROCESSES
FOR
BIOGAS
UPGRADING
AND
CARBON
UTILIZATION
133
6.4.1
CHEMICAL
SCRUBBING
COUPLED
WITH
CCU
134
6.4.2
MEMBRANE
SEPARATION
COUPLED
WITH
CCU
135
6.4.3
CRYOGENIC
SEPARATION
COUPLED
WITH
CCU
136
6.5
CONCLUSIONS
138
REFERENCES
139
7
BIOGAS
SWEETENING
TECHNOLOGIES
145
NIKOLAOS
D.
CHARISIOU,
SAVVAS
L.
DOUVARTZIDES,
AND
MARIA
A.
GOULA
7.1
INTRODUCTION
145
7.2
BIOGAS
PURIFICATION
TECHNOLOGIES
146
7.2.1
REMOVAL
OF
WATER
VAPOR
(H
2
O
(G)
)
146
.
7.2.2
REMOVAL
OF
HYDROGEN
SULFIDE
(H
2
S)
AND
OTHER
SULFUR-CONTAINING
COMPOUNDS
148
7.2.2.1
IN
SITU
PRECIPITATION
OF
H
2
S
THROUGH
AIR/OXYGEN
INJECTION
148
7.2.2.2
IN
SITU
PRECIPITATION OF
H
2
S
THROUGH
IRON
CHLORIDE/OXIDE
INJECTION
148
7.2.23
ADSORPTION
BY
ACTIVATED
CARBON
149
7.2.2.4
ZEOLITE-BASED
SIEVE
(MOLECULAR
SIEVE)
150
7.2.23
WATER
SCRUBBING
150
7.2.2.6
ORGANIC
SOLVENT
SCRUBBING
151
7.2.2.7
SODIUM
HYDROXIDE
SCRUBBING
151
7.2.2.8
CHEMICAL
ADSORPTION
VIA
IRON
OXIDE
OR
HYDROXIDE
(IRON
SPONGE)
152
7.
2.2.9
BIOLOGICAL
FILTERS
152
7.23
REMOVAL
OF
SILOXANES
153
7.2.3.1
ORGANIC
SOLVENT
SCRUBBING
154
7.23.2
ADSORPTION ON
ACTIVATED
CARBON,
MOLECULAR
SIEVES,
AND
SILICA
GEL
154
7.23.3
MEMBRANE
SEPARATION
155
7.23.4
BIOLOGICAL
FILTERS
156
7.2.33
CRYOGENIC
CONDENSATION
156
7.2.4
REMOVAL
OF
VOLATILE
ORGANIC
COMPOUND
(VOCS)
156
7.23
REMOVAL
OF
AMMONIA
(NH
3
)
156
7.2.6
REMOVAL
OF
OXYGEN
(O
2
)
AND
NITROGEN
(N
2
)
157
7.3
BIOGAS
UPGRADING
TECHNOLOGIES
157
7.3.1
WATER
SCRUBBING
157
CONTENTS
IX
7.3.2
ORGANIC
SOLVENT
SCRUBBING
160
7.3.3
CHEMICAL
SCRUBBING
160
7.3.4
PRESSURE
SWING
ADSORPTION
162
7.3.5
POLYMERIC
MEMBRANES
163
73.6
CRYOGENIC
TREATMENT
165
7.4
CONCLUSIONS
166
REFERENCES
166
8
CO
2
CONVERSION
TO
VALUE-ADDED
GAS-PHASE
PRODUCTS:
TECHNOLOGY
OVERVIEW
AND
CATALYSTS
SELECTION
175
QI
ZHANG,
LAURA
PASTOR-PEREZ,
XIANGPING
ZHANG,
SAI
GU,
AND
TOMAS
R
REINA
8.1
CHAPTER
OVERVIEW
175
8.2
CO
2
METHANATION
176
8.2.1
BACKGROUND
176
8.2.2
FUNDAMENTALS
177
8.2.3
CATALYSTS
178
8.2.3.1
RUTHENIUM-BASED
CATALYSTS
178
8.23.2
NICKEL-BASED
CATALYSTS
179
8.233
RHODIUM
AND
PALLADIUM-BASED
CATALYSTS
182
8.3
RWGS
REACTION
183
8.3.1
BACKGROUND
183
8.3.2
FUNDAMENTALS
184
8.3.3
CATALYSTS
184
8.3.3.1
NOBLE
METAL-BASED
CATALYSTS
185
833.2
COPPER-BASED
CATALYSTS
185
8333
CERIA-BASED
SUPPORT
CATALYSTS
186
8.3.3.4
CARBIDE
SUPPORT
CATALYSTS
187
8.4
CO
2
REFORMING
REACTIONS
188
8.4.1
BACKGROUND
188
8.4.2
FUNDAMENTALS
189
8.4.3
CATALYSTS
190
8.4.3.1
NOBLE
METAL-BASED
CATALYSTS
190
8.4.3.2
NI-BASED
CATALYSTS
191
8.4.3.3
CATALYTIC
SUPPORTS
193
8.5
CONCLUSIONS
AND
FINAL
REMARKS
195
REFERENCES
195
9
CO
2
UTILIZATION
ENABLED
BY
MICROCHANNEL
REACTORS
205
LUIS
F.
BOBADILLA,
LOLA
AZANCOT,
AND
JOSE
A.
ODRIOZOLA
9.1
INTRODUCTION
205
9.2
TRANSPORT
PHENOMENA
AND
HEAT
EXCHANGE
IN
MICROCHANNEL
REACTORS
207
9.2.1
MICROFLUIDICS
AND
MIXING
FLOW
208
9.2.2
HEAT
EXCHANGE
AND
TEMPERATURE
CONTROL
210
9.3
APPLICATION
OF
MICROREACTORS
IN
CO
2
CAPTURE,
STORAGE,
AND
UTILIZATION
PROCESSES
212
CONTENTS
9.3.1
C0
2
CAPTURE
AND
STORAGE
(CCS)
212
9.3.2
CO
2
AS
A
FEEDSTOCK
FOR
PRODUCING
VALUABLE
COMMODITY
CHEMICALS
214
9.3.2.1
METHANATION
OF
CARBON
DIOXIDE
(SABATIER
REACTION)
214
93.2.2
CO
2
-TO-METHANOL
AND
DIMETHYL
ETHER
(DME)
TRANSFORMATION
217
93.23
CO
2
-TO-HIGHER
HYDROCARBONS
AND
FUELS
218
9.3.2.4
PRODUCTION
OF
CYCLIC
ORGANIC
CARBONATES
219
9.4
CONCLUDING
REMARKS
AND FUTURE
PERSPECTIVES
221
REFERENCES
221
10
ANALYSIS
OF
HIGH-PRESSURE
CONDITIONS
IN
CO
2
HYDROGENATION
PROCESSES
227
ANDREA
ALVAREZ
MORENO,
ESMERALDA
PORTILLO,
AND
OSCAR
HERNANDO
LAGUNA
10.1
INTRODUCTION
227
10.2
THERMODYNAMIC
ASPECTS
229
10.2.1
LE
CHATELIER
PRINCIPLE
AS
A
SIMPLE
WAY
TO
UNDERSTAND
THE
EFFECT
OF
PRESSURE
IN
CHEMICAL
REACTIONS
230
10.2.2
EQUILIBRIUM
COMPOSITION
CALCULATIONS
OF
HIGH-PRESSURE
GAS
REACTIONS
BASED
ON
THE
COMPUTERIZED
GIBBS
ENERGY
MINIMIZATION
232
10.3
OVERVIEW
OF
SOME
INDUSTRIAL
APPROACHES
FOCUSED
ON
THE
PRODUCTION
OF
VALUABLE
COMPOUNDS
FORM
CO
2
USING
A
CARBON
CAPTURE
AND
UTILIZATION
(CCU)
APPROACH
234
10.3.1
INDUSTRIAL
PRODUCTION
OF
METHANOL
235
10.3.2
PRODUCTION
OF
METHANE
237
10.4
TECHNO-ECONOMIC
CONSIDERATIONS
FOR
THE
METHANOL
PRODUCTION
FROM
A
CCU
APPROACH
WITH
THE
USE
OF
HIGH
PRESSURE
238
10.5
CONCLUDING
REMARKS
248
REFERENCES
248
11
SABATIER-BASED
DIRECT
SYNTHESIS
OF
METHANE
AND
METHANOL
USING
CO
2
FROM
INDUSTRIAL
GAS
MIXTURES
253
K.
MULLER,
J.
ISRAEL,
F.
RACHOW,
AND
D.
SCHMEIFIER
11.1
OVERVIEW
253
11.2
METHANE
SYNTHESIS
OF
GAS
MIXTURES
255
11.2.1
THERMODYNAMICS
OF
METHANE
CONVERSION
255
11.2.2
EXPERIMENTAL
SETUP,
GENERAL
DEFINITIONS,
AND
CATALYSTS
256
11.2.3
INDUSTRIAL
GAS
MIXTURES
258
11.3
APPLICATIONS
260
11.3.1
APP-01:
COMBUSTION
PLANT
FLUE
GAS
260
11.3.2
APP-02:
COKE
OVEN
GAS
(COG)
264
11.3.3
APP-03:
SALINE
AQUIFER
BACK-PRODUCED
CO
2
267
11.3.4
APP-04:
BIOGENIC
CO
2
SOURCES
268
11.3.5
APP-05:
OXYFUEL
OPERATION
IN
GAS
ENGINES
269
11.3.6
APP-06:
REUSAGE
OF
CH
4
PRODUCT
GAS
MIXTURES
270
11.4
METHANOL
SYNTHESIS
274
ACKNOWLEDGMENTS
277
REFERENCES
277
CONTENTS
XI
12
SURVEY
OF
HETEROGENEOUS
CATALYSTS
FOR
THE
CO
2
REDUCTION
TO
CO
VIA
REVERSE
WATER
GAS
SHIFT
281
THOMAS
MATHEW,
SIMI
SAJU,
AND
SHIJU
N.
RAVEENDRAN
12.1
12.2
12.2.1
12.2.1.1
12.2.1.2
12.2.1.3
12.2.1.4
12.2.1.5
12.2.1.6
12.2.1.7
12.2.2
12.2.3
12.3
INTRODUCTION
281
RWGS
CATALYSTS
281
SUPPORTED
METAL
CATALYSTS
282
AU-BASED
CATALYSTS
282
PT-BASED
CATALYSTS
286
RH-BASED
CATALYSTS
286
RU-BASED
CATALYSTS
288
PD
AND
IR-BASED
CATALYSTS
289
CU-BASED
CATALYSTS
290
NI-BASED
CATALYSTS
295
OXIDE
SYSTEMS
298
TRANSITION
METAL
CARBIDES
300
MECHANISM
OF
RWGS
REACTION
306
REFERENCES
307
13
ELECTROCATALYTIC
CONVERSION
OF
CO
2
TO
SYNGAS
317
MANUEL
ANTONIO
DIAZ-PEREZ,
A.
DE
LUCAS
CONSUEGRA,
AND
JUAN
CARLOS
SERRANO-RUIZ
13.1
13.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4
INTRODUCTION
317
PRODUCTION
OF
SYNGAS
319
ELECTROREDUCTION
OF
CO
2
/WATER
MIXTURES
TO
SYNGAS
320
EFFECT
OF
CELL
CONFIGURATION
AND
CHEMICAL
ENVIRONMENT
321
EFFECT
OF
THE
CATHODE
COMPOSITION
AND
STRUCTURE
324
EFFECT
OF
THE
REACTION
PARAMETERS
327
ELECTROCHEMICAL
PROMOTION
OF
CATALYST
(EPOC)
FOR
CO
2
HYDROGENATION
328
13.4
CONCLUSIONS
329
ACKNOWLEDGMENTS
330
REFERENCES
330
14
RECENT
PROGRESS
ON
CATALYST
DEVELOPMENT
FOR
CO
2
CONVERSION
INTO
VALUE-ADDED
CHEMICALS
BY
PHOTO
AND
ELECTROREDUCTION
335
LUQMAN
ATANDA,
MOHAMMAD
A.
WAHAB,
AND
JORGE
BELTRAMINI
14.1
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.2
INTRODUCTION
335
CO
2
CATALYTIC
CONVERSION
BY
PHOTOREDUCTION
336
PRINCIPLE
OF
CO
2
PHOTOTHERMAL
REDUCTION
337
CATALYST
DEVELOPMENT
FOR
CO
2
PHOTOTHERMAL
REDUCTION
339
CO
2
CATALYTIC
CONVERSION
BY
ELECTROREDUCTION
346
PRINCIPLE
OF
CO
2
ELECTROCATALYTIC
REDUCTION
347
CATALYSTS
DEVELOPMENT
FOR
CO
2
ELECTROREDUCTION
349
REFERENCES
357
XII
CONTENTS
15
YOLK@SHELL
MATERIALS
FOR
C0
2
CONVERSION:
CHEMICAL
AND
PHOTOCHEMICAL
APPLICATIONS
361
CAMERON
ALEXANDER
HURD
PRICE,
LAURA
PASTOR-PEREZ,
TOMAS
RAMIREZ-REINA,
AND
LION
LIU
15.1
15.2
15.2.1
15.3
15.3.1
15.3.2
15.3.2.1
15.3.2.2
15.3.2.3
15.4
15.4.1
15.4.2
15.4.2.1
15.5
OVERVIEW
361
KEY
BENEFITS
OF
HIERARCHICAL
MORPHOLOGY
363
CONFINEMENT
EFFECTS
363
MATERIALS
FOR
CHEMICAL
CO
2
RECYCLING
REACTIONS
366
CO
2
UTILIZATION
REACTIONS
366
PHOTOCHEMICAL
REACTIONS
WITH
CO
2
368
PRINCIPLES
OF
PHOTOCATALYSIS
368
PROMINENT
MATERIALS
369
BENEFITS
OF
YS
IN
PHOTOCATALYSIS
369
SYNTHESIS
TECHNIQUES
FOR
CS/YS:
A
BRIEF
OVERVIEW
372
SOFT
TEMPLATING
TECHNIQUES
373
HARD
TEMPLATING
TECHNIQUES
374
METAL
OXIDE/CARBIDE
SHELLS
375
FUTURE
ADVANCEMENT
375
REFERENCES
376
16
ALIPHATIC
POLYCARBONATES
DERIVED
FROM
EPOXIDES
AND
CO
2
385
SEBASTIAN
KERNBICHL
AND
BERNHARD
RIEGER
16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.3
16.3.1
16.3.2
16.3.3
16.3.4
INTRODUCTION
385
ALIPHATIC
POLYCARBONATES
386
SYNTHESIS
OF
THE
MONOMERS
386
MECHANISTIC
ASPECTS
OF
THE
COPOLYMERIZATION
OF
EPOXIDES
AND
CO
2
387
THERMAL
STABILITY
AND
POSSIBLE
DEGRADATION
PATHWAYS
389
MECHANICAL
PROPERTIES
390
CATALYST
SYSTEMS
FOR
THE
CO
2
/EPOXIDE
COPOLYMERIZATION
392
HETEROGENEOUS
CATALYSTS
393
OVERVIEW
OF
THE
HOMOGENEOUS
CATALYTIC
SYSTEMS
393
TERPOLYMERIZATION
PATHWAYS
398
LIMONENE
OXIDE:
RECENT
ADVANCES
IN
CATALYSIS
AND
MECHANISM
ELUCIDATION
399
16.4
CONCLUSION
402
REFERENCES
402
17
METAL-ORGANIC
FRAMEWORKS
(MOFS)
FOR
CO
2
CYCLOADDITION
REACTIONS
407
IGNACIO
CAMPELLO,
ANTONIO
SEPULVEDA-ESCRIBANO,
AND
ENRIQUE
V.
RAMOS-FERNANDEZ
17.1
17.2
17.2.1
INTRODUCTION
TO
MOF
407
MOFS
AS
CATALYSTS
407
ACTIVE
SITES
IN
MOFS:
LEWIS
ACID
SITES
409
CONTENTS
XIII
17.2.1.1
HISTORICAL
OVERVIEW
409
17.2.1.2
TUNABILITY
OF
THE
LEWIS
ACID
SITES
411
17.2.1.3
ACTIVE
SITES
IN
MOFS:
LEWIS
BASIC
SITES
413
17.3
CO
2
CYCLOADDITIONS
414
17.3.1
REACTION
MECHANISM
414
17.3.2
CO
2
CYCLOADDITIONS
REACTIONS
CATALYZED
BY
LEWIS
ACID
MOFS
415
17.3.3
CO
2
CYCLOADDITION
REACTIONS
CATALYZED
BY
LEWIS
ACID
AND
BASIC
MOFS
416
17.3.4
DEFECTIVE
MOFS
FOR
CO
2
CYCLOADDITION
REACTIONS
416
17.3.5
MOFS
HAVING
FUNCTIONAL
LINKERS
FOR
CO
2
CYCLOADDITION
REACTIONS
419
17.4
OXIDATIVE
CARBOXYLATION
420
REFERENCES
420
18
PLASMA-ASSISTED
CONVERSION
OF
CO
2
429
KEVIN
H.
R.
ROUWEN
HORST,
GERARD
J.
VAN
ROOIJ,
AND
LEON
LEFFERTS
18.1
INTRODUCTION
429
18.1.1
WHAT
IS
A
PLASMA?
430
18.1.2
HISTORY
430
18.1.3
ELECTRIFICATION
431
18.1.4
THERMODYNAMICS
431
18.1.5
HOMOGENEOUS
PLASMA
ACTIVATION
OF
CO
2
432
18.1.6
MECHANISMS
433
18.1.7
PLASMA
REACTORS
435
18.1.8
PERFORMANCE
IN
VARIOUS
PLASMA
REACTORS
436
18.2
PLASMA-CATALYTIC
CO
2
CONVERSION
437
18.2.1
INTRODUCTION
437
18.2.2
MUTUAL
INFLUENCE
OF
PLASMA
AND
CATALYST
439
18.2.3
CATALYST
DEVELOPMENT
440
18.2.4
EXPERIMENTAL
PERFORMANCE
442
18.2.4.1
CO
2
DISSOCIATION
443
18.2.4.2
DRY
REFORMING
OF
METHANE
444
18.2.4.3
CO
2
HYDROGENATION
446
18.2.4.4
ARTIFICIAL
PHOTOSYNTHESIS
447
18.3
PERSPECTIVE
448
18.3.1
MODELS
DESCRIBING
PLASMA
CATALYSIS
448
18.3.2
SCALE-UP
AND
PROCESS
CONSIDERATIONS
449
18.4
CONCLUSION
450
REFERENCES
451
INDEX
463 |
adam_txt |
CONTENTS
1
CO
2
CAPTURE
-
A
BRIEF
REVIEW
OF
TECHNOLOGIES
AND
ITS
INTEGRATION
1
MONICA
GARCIA,
THEO
CHRONOPOULOS,
AND
RUBEN
M.
MONTANES
1.1
INTRODUCTION:
THE
ROLE
OF
CARBON
CAPTURE
1
1.2
CO
2
CAPTURE
TECHNOLOGIES
2
1.2.1
STATUS
OF
CO
2
CAPTURE
DEPLOYMENT
2
1.2.2
PRE-COMBUSTION
2
1.2.3
OXYFUEL
3
1.2.4
POST-COMBUSTION
3
1.2.4.1
ADSORPTION
4
1.2.4.2
HIGH-TEMPERATURE
SOLIDS
LOOPING
TECHNOLOGIES
7
1.2.4.3
MEMBRANES
8
1.2.4.4
CHEMICAL
ABSORPTION
9
1.2.5
OTHERS
CO
2
CAPTURE/SEPARATION
TECHNOLOGIES
13
1.2.5.1
FUEL
CELLS
13
1.3
INTEGRATION
OF
POST-COMBUSTION
CO
2
CAPTURE
IN
THE
POWER
PLANT
AND
ELECTRICITY
GRID
17
1.3.1
INTEGRATION
OF
THE
CAPTURE
UNIT
IN
THE
THERMAL
POWER
PLANT
17
1.3.2
FLEXIBLE
OPERATION
OF
THERMAL
POWER
PLANTS
IN
FUTURE
ENERGY
SYSTEMS
20
1.4
CO
2
CAPTURE
IN
THE
INDUSTRIAL
SECTOR
21
1.5
CONCLUSIONS
22
REFERENCES
24
2
ADVANCING
CCSU
TECHNOLOGIES
WITH
COMPUTATIONAL
FLUID
DYNAMICS
(CFD):
A
LOOK
AT
THE
FUTURE
BY
LINKING
CFD
AND
PROCESS
SIMULATIONS
29
DANIEL
SEBASTIA-SAEZ,
EVGENIA
MECHLERI,
AND
HARVEY
ARELLANO-GARCIA
2.1
SWEEP
ACROSS
THE
GENERAL
SIMULATION
TECHNIQUES
AVAILABLE
29
2.2
MULTI-SCALE
APPROACH
FOR
CFD
SIMULATION
OF
AMINE
SCRUBBERS
32
VI
CONTENTS
2.3
EULERIAN,
EULERIAN-LAGRANGIAN,
AND
DISCRETE
ELEMENT
METHODS
FOR
THE
SIMULATION
OF
CALCIUM
LOOPING,
MINERAL
CARBONATION,
AND
ADSORPTION
IN
OTHER
SOLID
PARTICULATE
MATERIALS
38
2.4
CFD
FOR
OXY-FUEL
COMBUSTION
TECHNOLOGIES:
THE
APPLICATION
OF
SINGLE-PHASE
REACTIVE
FLOWS
AND
PARTICLE
TRACKING
ALGORITHMS
41
2.5
CFD
FOR
CARBON
STORAGE
AND
ENHANCED
OIL
RECOVERY
(EOR):
THE
LINK
BETWEEN
ADVANCED
IMAGING
TECHNIQUES
AND
CFD
41
2.6
CFD
FOR
CARBON
UTILIZATION
WITH
CHEMICAL
CONVERSION:
THE
IMPORTANCE
OF
NUMERICAL
TECHNIQUES
ON
THE
STUDY
OF
NEW
CATALYSTS
44
2.7
CFD
FOR
BIOLOGICAL
UTILIZATION:
MICROALGAE
CULTIVATION
46
2.8
WHAT
DOES
THE
FUTURE
HOLD?
47
REFERENCES
49
3
MEMBRANES
TECHNOLOGIES
FOR
EFFICIENT
C0
2
CAPTURE
-
CONVERSION
55
SONIA
REMIRO-BUENAMANANA,
LAURA
NAVARRETE,
JULIO
GARCIA-FAYOS,
SARA
ESCORT
HUELA,
SONIA
ESCOLASTICO,
AND
JOSE
M.
SERRA
3.1
INTRODUCTION
55
3.2
POLYMER
MEMBRANES
56
3.3
OXYGEN
TRANSPORT
MEMBRANES
FOR
CO
2
VALORIZATION
60
3.3.1
OXYGEN
TRANSPORT
MEMBRANE
FUNDAMENTALS
61
3.3.2
APPLICATION
CONCEPTS
OF
OTMS
FOR
CARBON
CAPTURE
AND
STORAGE
(CCS)
63
3.3.3
EXISTING
DEVELOPMENTS
63
3.4
PROTONIC
MEMBRANES
65
3.4.1
PROTON
DEFECTS
IN
OXIDE
CERAMICS
65
3.4.2
PROTON
TRANSPORT
MEMBRANE
FUNDAMENTALS
67
3.4.3
APPLICATION
CONCEPTS
OF
PROTON
CONDUCTING
MEMBRANES
68
3.5
MEMBRANES
FOR
ELECTROCHEMICAL
APPLICATIONS
69
3.5.1
ELECTROLYSIS
AND
CO-ELECTROLYSIS
PROCESSES
69
3.5.1.1
WATER
ELECTROLYSIS
70
3.5.1.2
CO
2
CO-ELECTROLYSIS
73
3.5.2
SYNTHESIS
GAS
CHEMISTRY
75
3.5.3
OTHER
APPLICATIONS
76
3.5.3.1
METHANE
STEAM
REFORMING
76
3.53.2
METHANE
DEHYDROAROMATIZATION
78
3.6
CONCLUSIONS
AND
FINAL
REMARKS
78
REFERENCES
79
4
COMPUTATIONAL
MODELING
OF
CARBON
DIOXIDE
CATALYTIC
CONVERSION
85
JAVIER
AMAYA
SUAREZ,
ELENA
R.
REMESAL,
JOSE
J.
PLATA,
ANTONIO
M.
MARQUEZ,
AND
JAVIER
FERNANDEZ
SANZ
4.1
INTRODUCTION
85
4.2
GENERAL
METHODS
FOR
THEORETICAL
CATALYSIS
RESEARCH
85
CONTENTS
|
VII
4.3
CHARACTERIZING
THE
CATALYST
AND
ITS
INTERACTION
WITH
CO
2
USING
DFT
CALCULATIONS
87
4.4
MICROKINETIC
MODELING
IN
HETEROGENEOUS
CATALYSIS
89
4.5
NEW
TRENDS:
HIGH-THROUGHPUT
SCREENING,
VOLCANO
PLOTS,
AND
MACHINE
LEARNING
92
4.5.1
HIGH-THROUGHPUT
SCREENING
92
4.5.2
VOLCANO
PLOTS
AND
SCALING
RELATIONS
93
4.5.3
DFT
AND
MACHINE
LEARNING
93
4.5.3.1
MACHINE-LEARNED
POTENTIALS
95
4.53.2
DESCRIPTORS
TO
PREDICT
CATALYTIC
PROPERTIES
95
4.5.3.3
FUTURE
CHALLENGES
IN
HT-DFT
APPLIED
TO
CATALYSIS
96
REFERENCES
97
5
AN
OVERVIEW
OF
THE
TRANSITION
TO
A
CARBON-NEUTRAL
STEEL
INDUSTRY
105
JUAN
C.
NAVARRO,
PABLO
NAVARRO,
OSCAR
H.
LAGUNA,
MIGUEL
A.
CENTENO,
AND
JOSE
A.
ODRIOZOLA
5.1
INTRODUCTION
105
5.2
GLOBAL
RELEVANCE
OF
THE
STEEL
INDUSTRY
106
5.2.1
FEATURES
THAT
MAKE
STEEL
A
SPECIAL
MATERIAL
107
5.3
CURRENT
TRENDS
IN
EMISSION
POLICIES
IN
THE
WORLD
'
S
LEADING
COUNTRIES
IN
STEEL
INDUSTRY
109
5.4
TRANSITION
TO
A
CARBON-NEUTRAL
PRODUCTION.
A
BIG
CHALLENGE
FOR
THE
STEEL
INDUSTRY
110
5.4.1
UREA
113
5.4.2
METHANOL
AND
FORMIC
ACID
114
5.4.3
CARBON
MONOXIDE
114
5.4.4
METHANE
114
5.5
CO
2
METHANATION:
AN
INTERESTING
OPPORTUNITY
FOR
THE
VALORIZATION
OF
THE
STEEL
INDUSTRY
EMISSIONS
114
5.6
RELEVANT
PROJECTS
ALREADY
LAUNCHED
FOR
THE
VALORIZATION
OF
THE
CO
2
EMITTED
BY
THE
STEEL
INDUSTRY
116
5.7
CONCLUDING
REMARKS
119
REFERENCES
120
6
POTENTIAL
PROCESSES
FOR
SIMULTANEOUS
BIOGAS
UPGRADING
AND
CARBON
DIOXIDE
UTILIZATION
125
FRANCISCO
M.
BAENA-MORENO,
MONICA
RODRIGUEZ-GALDN,
FERNANDO
VEGA,
ISABEL
MALICO,
AND
BENITO
NAVARRETE
6.1
INTRODUCTION
125
6.2
OVERVIEW
OF
BIOGAS
GENERAL
CHARACTERISTICS
AND
UPGRADING
TECHNOLOGIES
TO
BIO-METHANE
PRODUCTION
127
6.2.1
BIOGAS
COMPOSITION
AND
APPLICATIONS
127
6.2.2
BIOGAS
UPGRADING
PROCESSES
127
6.2.2.1
WATER
SCRUBBING
129
VIII
CONTENTS
6.2.2.2
PRESSURE
SWING
ADSORPTION
129
6.2.23
CHEMICAL
SCRUBBING
129
6.2.2.4
ORGANIC
PHYSICAL
SCRUBBING
129
6.2.23
MEMBRANE SEPARATION
129
6.2.2.6
CRYOGENIC
SEPARATION
130
6.3
CCU
MAIN
TECHNOLOGIES
131
6.3.1
SUPERCRITICAL
CO
2
AS
A
SOLVENT
131
6.3.2
CHEMICALS
FROM
CO
2
132
6.3.3
MINERAL
CARBONATION
132
6.3.4
FUELS
FROM
CO
2
133
6.3.5
ALGAE
PRODUCTION
133
6.3.6
ENHANCED
OIL
RECOVERY
(EOR)
133
6.4
POTENTIAL
PROCESSES
FOR
BIOGAS
UPGRADING
AND
CARBON
UTILIZATION
133
6.4.1
CHEMICAL
SCRUBBING
COUPLED
WITH
CCU
134
6.4.2
MEMBRANE
SEPARATION
COUPLED
WITH
CCU
135
6.4.3
CRYOGENIC
SEPARATION
COUPLED
WITH
CCU
136
6.5
CONCLUSIONS
138
REFERENCES
139
7
BIOGAS
SWEETENING
TECHNOLOGIES
145
NIKOLAOS
D.
CHARISIOU,
SAVVAS
L.
DOUVARTZIDES,
AND
MARIA
A.
GOULA
7.1
INTRODUCTION
145
7.2
BIOGAS
PURIFICATION
TECHNOLOGIES
146
7.2.1
REMOVAL
OF
WATER
VAPOR
(H
2
O
(G)
)
146
.
7.2.2
REMOVAL
OF
HYDROGEN
SULFIDE
(H
2
S)
AND
OTHER
SULFUR-CONTAINING
COMPOUNDS
148
7.2.2.1
IN
SITU
PRECIPITATION
OF
H
2
S
THROUGH
AIR/OXYGEN
INJECTION
148
7.2.2.2
IN
SITU
PRECIPITATION OF
H
2
S
THROUGH
IRON
CHLORIDE/OXIDE
INJECTION
148
7.2.23
ADSORPTION
BY
ACTIVATED
CARBON
149
7.2.2.4
ZEOLITE-BASED
SIEVE
(MOLECULAR
SIEVE)
150
7.2.23
WATER
SCRUBBING
150
7.2.2.6
ORGANIC
SOLVENT
SCRUBBING
151
7.2.2.7
SODIUM
HYDROXIDE
SCRUBBING
151
7.2.2.8
CHEMICAL
ADSORPTION
VIA
IRON
OXIDE
OR
HYDROXIDE
(IRON
SPONGE)
152
7.
2.2.9
BIOLOGICAL
FILTERS
152
7.23
REMOVAL
OF
SILOXANES
153
7.2.3.1
ORGANIC
SOLVENT
SCRUBBING
154
7.23.2
ADSORPTION ON
ACTIVATED
CARBON,
MOLECULAR
SIEVES,
AND
SILICA
GEL
154
7.23.3
MEMBRANE
SEPARATION
155
7.23.4
BIOLOGICAL
FILTERS
156
7.2.33
CRYOGENIC
CONDENSATION
156
7.2.4
REMOVAL
OF
VOLATILE
ORGANIC
COMPOUND
(VOCS)
156
7.23
REMOVAL
OF
AMMONIA
(NH
3
)
156
7.2.6
REMOVAL
OF
OXYGEN
(O
2
)
AND
NITROGEN
(N
2
)
157
7.3
BIOGAS
UPGRADING
TECHNOLOGIES
157
7.3.1
WATER
SCRUBBING
157
CONTENTS
IX
7.3.2
ORGANIC
SOLVENT
SCRUBBING
160
7.3.3
CHEMICAL
SCRUBBING
160
7.3.4
PRESSURE
SWING
ADSORPTION
162
7.3.5
POLYMERIC
MEMBRANES
163
73.6
CRYOGENIC
TREATMENT
165
7.4
CONCLUSIONS
166
REFERENCES
166
8
CO
2
CONVERSION
TO
VALUE-ADDED
GAS-PHASE
PRODUCTS:
TECHNOLOGY
OVERVIEW
AND
CATALYSTS
SELECTION
175
QI
ZHANG,
LAURA
PASTOR-PEREZ,
XIANGPING
ZHANG,
SAI
GU,
AND
TOMAS
R
REINA
8.1
CHAPTER
OVERVIEW
175
8.2
CO
2
METHANATION
176
8.2.1
BACKGROUND
176
8.2.2
FUNDAMENTALS
177
8.2.3
CATALYSTS
178
8.2.3.1
RUTHENIUM-BASED
CATALYSTS
178
8.23.2
NICKEL-BASED
CATALYSTS
179
8.233
RHODIUM
AND
PALLADIUM-BASED
CATALYSTS
182
8.3
RWGS
REACTION
183
8.3.1
BACKGROUND
183
8.3.2
FUNDAMENTALS
184
8.3.3
CATALYSTS
184
8.3.3.1
NOBLE
METAL-BASED
CATALYSTS
185
833.2
COPPER-BASED
CATALYSTS
185
8333
CERIA-BASED
SUPPORT
CATALYSTS
186
8.3.3.4
CARBIDE
SUPPORT
CATALYSTS
187
8.4
CO
2
REFORMING
REACTIONS
188
8.4.1
BACKGROUND
188
8.4.2
FUNDAMENTALS
189
8.4.3
CATALYSTS
190
8.4.3.1
NOBLE
METAL-BASED
CATALYSTS
190
8.4.3.2
NI-BASED
CATALYSTS
191
8.4.3.3
CATALYTIC
SUPPORTS
193
8.5
CONCLUSIONS
AND
FINAL
REMARKS
195
REFERENCES
195
9
CO
2
UTILIZATION
ENABLED
BY
MICROCHANNEL
REACTORS
205
LUIS
F.
BOBADILLA,
LOLA
AZANCOT,
AND
JOSE
A.
ODRIOZOLA
9.1
INTRODUCTION
205
9.2
TRANSPORT
PHENOMENA
AND
HEAT
EXCHANGE
IN
MICROCHANNEL
REACTORS
207
9.2.1
MICROFLUIDICS
AND
MIXING
FLOW
208
9.2.2
HEAT
EXCHANGE
AND
TEMPERATURE
CONTROL
210
9.3
APPLICATION
OF
MICROREACTORS
IN
CO
2
CAPTURE,
STORAGE,
AND
UTILIZATION
PROCESSES
212
CONTENTS
9.3.1
C0
2
CAPTURE
AND
STORAGE
(CCS)
212
9.3.2
CO
2
AS
A
FEEDSTOCK
FOR
PRODUCING
VALUABLE
COMMODITY
CHEMICALS
214
9.3.2.1
METHANATION
OF
CARBON
DIOXIDE
(SABATIER
REACTION)
214
93.2.2
CO
2
-TO-METHANOL
AND
DIMETHYL
ETHER
(DME)
TRANSFORMATION
217
93.23
CO
2
-TO-HIGHER
HYDROCARBONS
AND
FUELS
218
9.3.2.4
PRODUCTION
OF
CYCLIC
ORGANIC
CARBONATES
219
9.4
CONCLUDING
REMARKS
AND FUTURE
PERSPECTIVES
221
REFERENCES
221
10
ANALYSIS
OF
HIGH-PRESSURE
CONDITIONS
IN
CO
2
HYDROGENATION
PROCESSES
227
ANDREA
ALVAREZ
MORENO,
ESMERALDA
PORTILLO,
AND
OSCAR
HERNANDO
LAGUNA
10.1
INTRODUCTION
227
10.2
THERMODYNAMIC
ASPECTS
229
10.2.1
LE
CHATELIER
PRINCIPLE
AS
A
SIMPLE
WAY
TO
UNDERSTAND
THE
EFFECT
OF
PRESSURE
IN
CHEMICAL
REACTIONS
230
10.2.2
EQUILIBRIUM
COMPOSITION
CALCULATIONS
OF
HIGH-PRESSURE
GAS
REACTIONS
BASED
ON
THE
COMPUTERIZED
GIBBS
ENERGY
MINIMIZATION
232
10.3
OVERVIEW
OF
SOME
INDUSTRIAL
APPROACHES
FOCUSED
ON
THE
PRODUCTION
OF
VALUABLE
COMPOUNDS
FORM
CO
2
USING
A
CARBON
CAPTURE
AND
UTILIZATION
(CCU)
APPROACH
234
10.3.1
INDUSTRIAL
PRODUCTION
OF
METHANOL
235
10.3.2
PRODUCTION
OF
METHANE
237
10.4
TECHNO-ECONOMIC
CONSIDERATIONS
FOR
THE
METHANOL
PRODUCTION
FROM
A
CCU
APPROACH
WITH
THE
USE
OF
HIGH
PRESSURE
238
10.5
CONCLUDING
REMARKS
248
REFERENCES
248
11
SABATIER-BASED
DIRECT
SYNTHESIS
OF
METHANE
AND
METHANOL
USING
CO
2
FROM
INDUSTRIAL
GAS
MIXTURES
253
K.
MULLER,
J.
ISRAEL,
F.
RACHOW,
AND
D.
SCHMEIFIER
11.1
OVERVIEW
253
11.2
METHANE
SYNTHESIS
OF
GAS
MIXTURES
255
11.2.1
THERMODYNAMICS
OF
METHANE
CONVERSION
255
11.2.2
EXPERIMENTAL
SETUP,
GENERAL
DEFINITIONS,
AND
CATALYSTS
256
11.2.3
INDUSTRIAL
GAS
MIXTURES
258
11.3
APPLICATIONS
260
11.3.1
APP-01:
COMBUSTION
PLANT
FLUE
GAS
260
11.3.2
APP-02:
COKE
OVEN
GAS
(COG)
264
11.3.3
APP-03:
SALINE
AQUIFER
BACK-PRODUCED
CO
2
267
11.3.4
APP-04:
BIOGENIC
CO
2
SOURCES
268
11.3.5
APP-05:
OXYFUEL
OPERATION
IN
GAS
ENGINES
269
11.3.6
APP-06:
REUSAGE
OF
CH
4
PRODUCT
GAS
MIXTURES
270
11.4
METHANOL
SYNTHESIS
274
ACKNOWLEDGMENTS
277
REFERENCES
277
CONTENTS
XI
12
SURVEY
OF
HETEROGENEOUS
CATALYSTS
FOR
THE
CO
2
REDUCTION
TO
CO
VIA
REVERSE
WATER
GAS
SHIFT
281
THOMAS
MATHEW,
SIMI
SAJU,
AND
SHIJU
N.
RAVEENDRAN
12.1
12.2
12.2.1
12.2.1.1
12.2.1.2
12.2.1.3
12.2.1.4
12.2.1.5
12.2.1.6
12.2.1.7
12.2.2
12.2.3
12.3
INTRODUCTION
281
RWGS
CATALYSTS
281
SUPPORTED
METAL
CATALYSTS
282
AU-BASED
CATALYSTS
282
PT-BASED
CATALYSTS
286
RH-BASED
CATALYSTS
286
RU-BASED
CATALYSTS
288
PD
AND
IR-BASED
CATALYSTS
289
CU-BASED
CATALYSTS
290
NI-BASED
CATALYSTS
295
OXIDE
SYSTEMS
298
TRANSITION
METAL
CARBIDES
300
MECHANISM
OF
RWGS
REACTION
306
REFERENCES
307
13
ELECTROCATALYTIC
CONVERSION
OF
CO
2
TO
SYNGAS
317
MANUEL
ANTONIO
DIAZ-PEREZ,
A.
DE
LUCAS
CONSUEGRA,
AND
JUAN
CARLOS
SERRANO-RUIZ
13.1
13.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4
INTRODUCTION
317
PRODUCTION
OF
SYNGAS
319
ELECTROREDUCTION
OF
CO
2
/WATER
MIXTURES
TO
SYNGAS
320
EFFECT
OF
CELL
CONFIGURATION
AND
CHEMICAL
ENVIRONMENT
321
EFFECT
OF
THE
CATHODE
COMPOSITION
AND
STRUCTURE
324
EFFECT
OF
THE
REACTION
PARAMETERS
327
ELECTROCHEMICAL
PROMOTION
OF
CATALYST
(EPOC)
FOR
CO
2
HYDROGENATION
328
13.4
CONCLUSIONS
329
ACKNOWLEDGMENTS
330
REFERENCES
330
14
RECENT
PROGRESS
ON
CATALYST
DEVELOPMENT
FOR
CO
2
CONVERSION
INTO
VALUE-ADDED
CHEMICALS
BY
PHOTO
AND
ELECTROREDUCTION
335
LUQMAN
ATANDA,
MOHAMMAD
A.
WAHAB,
AND
JORGE
BELTRAMINI
14.1
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.2
INTRODUCTION
335
CO
2
CATALYTIC
CONVERSION
BY
PHOTOREDUCTION
336
PRINCIPLE
OF
CO
2
PHOTOTHERMAL
REDUCTION
337
CATALYST
DEVELOPMENT
FOR
CO
2
PHOTOTHERMAL
REDUCTION
339
CO
2
CATALYTIC
CONVERSION
BY
ELECTROREDUCTION
346
PRINCIPLE
OF
CO
2
ELECTROCATALYTIC
REDUCTION
347
CATALYSTS
DEVELOPMENT
FOR
CO
2
ELECTROREDUCTION
349
REFERENCES
357
XII
CONTENTS
15
YOLK@SHELL
MATERIALS
FOR
C0
2
CONVERSION:
CHEMICAL
AND
PHOTOCHEMICAL
APPLICATIONS
361
CAMERON
ALEXANDER
HURD
PRICE,
LAURA
PASTOR-PEREZ,
TOMAS
RAMIREZ-REINA,
AND
LION
LIU
15.1
15.2
15.2.1
15.3
15.3.1
15.3.2
15.3.2.1
15.3.2.2
15.3.2.3
15.4
15.4.1
15.4.2
15.4.2.1
15.5
OVERVIEW
361
KEY
BENEFITS
OF
HIERARCHICAL
MORPHOLOGY
363
CONFINEMENT
EFFECTS
363
MATERIALS
FOR
CHEMICAL
CO
2
RECYCLING
REACTIONS
366
CO
2
UTILIZATION
REACTIONS
366
PHOTOCHEMICAL
REACTIONS
WITH
CO
2
368
PRINCIPLES
OF
PHOTOCATALYSIS
368
PROMINENT
MATERIALS
369
BENEFITS
OF
YS
IN
PHOTOCATALYSIS
369
SYNTHESIS
TECHNIQUES
FOR
CS/YS:
A
BRIEF
OVERVIEW
372
SOFT
TEMPLATING
TECHNIQUES
373
HARD
TEMPLATING
TECHNIQUES
374
METAL
OXIDE/CARBIDE
SHELLS
375
FUTURE
ADVANCEMENT
375
REFERENCES
376
16
ALIPHATIC
POLYCARBONATES
DERIVED
FROM
EPOXIDES
AND
CO
2
385
SEBASTIAN
KERNBICHL
AND
BERNHARD
RIEGER
16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.3
16.3.1
16.3.2
16.3.3
16.3.4
INTRODUCTION
385
ALIPHATIC
POLYCARBONATES
386
SYNTHESIS
OF
THE
MONOMERS
386
MECHANISTIC
ASPECTS
OF
THE
COPOLYMERIZATION
OF
EPOXIDES
AND
CO
2
387
THERMAL
STABILITY
AND
POSSIBLE
DEGRADATION
PATHWAYS
389
MECHANICAL
PROPERTIES
390
CATALYST
SYSTEMS
FOR
THE
CO
2
/EPOXIDE
COPOLYMERIZATION
392
HETEROGENEOUS
CATALYSTS
393
OVERVIEW
OF
THE
HOMOGENEOUS
CATALYTIC
SYSTEMS
393
TERPOLYMERIZATION
PATHWAYS
398
LIMONENE
OXIDE:
RECENT
ADVANCES
IN
CATALYSIS
AND
MECHANISM
ELUCIDATION
399
16.4
CONCLUSION
402
REFERENCES
402
17
METAL-ORGANIC
FRAMEWORKS
(MOFS)
FOR
CO
2
CYCLOADDITION
REACTIONS
407
IGNACIO
CAMPELLO,
ANTONIO
SEPULVEDA-ESCRIBANO,
AND
ENRIQUE
V.
RAMOS-FERNANDEZ
17.1
17.2
17.2.1
INTRODUCTION
TO
MOF
407
MOFS
AS
CATALYSTS
407
ACTIVE
SITES
IN
MOFS:
LEWIS
ACID
SITES
409
CONTENTS
XIII
17.2.1.1
HISTORICAL
OVERVIEW
409
17.2.1.2
TUNABILITY
OF
THE
LEWIS
ACID
SITES
411
17.2.1.3
ACTIVE
SITES
IN
MOFS:
LEWIS
BASIC
SITES
413
17.3
CO
2
CYCLOADDITIONS
414
17.3.1
REACTION
MECHANISM
414
17.3.2
CO
2
CYCLOADDITIONS
REACTIONS
CATALYZED
BY
LEWIS
ACID
MOFS
415
17.3.3
CO
2
CYCLOADDITION
REACTIONS
CATALYZED
BY
LEWIS
ACID
AND
BASIC
MOFS
416
17.3.4
DEFECTIVE
MOFS
FOR
CO
2
CYCLOADDITION
REACTIONS
416
17.3.5
MOFS
HAVING
FUNCTIONAL
LINKERS
FOR
CO
2
CYCLOADDITION
REACTIONS
419
17.4
OXIDATIVE
CARBOXYLATION
420
REFERENCES
420
18
PLASMA-ASSISTED
CONVERSION
OF
CO
2
429
KEVIN
H.
R.
ROUWEN
HORST,
GERARD
J.
VAN
ROOIJ,
AND
LEON
LEFFERTS
18.1
INTRODUCTION
429
18.1.1
WHAT
IS
A
PLASMA?
430
18.1.2
HISTORY
430
18.1.3
ELECTRIFICATION
431
18.1.4
THERMODYNAMICS
431
18.1.5
HOMOGENEOUS
PLASMA
ACTIVATION
OF
CO
2
432
18.1.6
MECHANISMS
433
18.1.7
PLASMA
REACTORS
435
18.1.8
PERFORMANCE
IN
VARIOUS
PLASMA
REACTORS
436
18.2
PLASMA-CATALYTIC
CO
2
CONVERSION
437
18.2.1
INTRODUCTION
437
18.2.2
MUTUAL
INFLUENCE
OF
PLASMA
AND
CATALYST
439
18.2.3
CATALYST
DEVELOPMENT
440
18.2.4
EXPERIMENTAL
PERFORMANCE
442
18.2.4.1
CO
2
DISSOCIATION
443
18.2.4.2
DRY
REFORMING
OF
METHANE
444
18.2.4.3
CO
2
HYDROGENATION
446
18.2.4.4
ARTIFICIAL
PHOTOSYNTHESIS
447
18.3
PERSPECTIVE
448
18.3.1
MODELS
DESCRIBING
PLASMA
CATALYSIS
448
18.3.2
SCALE-UP
AND
PROCESS
CONSIDERATIONS
449
18.4
CONCLUSION
450
REFERENCES
451
INDEX
463 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Reina, Tomas R. Odriozola, José A. Arellano-Garcia, Harvey |
author2_role | edt edt edt |
author2_variant | t r r tr trr j a o ja jao h a g hag |
author_GND | (DE-588)121958987X (DE-588)1219589977 (DE-588)1246456729 |
author_facet | Reina, Tomas R. Odriozola, José A. Arellano-Garcia, Harvey |
building | Verbundindex |
bvnumber | BV047290755 |
classification_rvk | VN 5430 |
ctrlnum | (OCoLC)1256430313 (DE-599)DNB1214957420 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV047290755</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220221</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210519s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N32</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1214957420</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527346392</subfield><subfield code="9">3-527-34639-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527346394</subfield><subfield code="c">hbk: circa EUR 349.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-34639-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527346394</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1134639 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256430313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1214957420</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 5430</subfield><subfield code="0">(DE-625)147568:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering solutions for CO2 conversion</subfield><subfield code="c">edited by Tomas R. Reina, José A. Odriozola, Harvey Arellano-Garcia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim, Germany</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 471 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Emissionsverringerung</subfield><subfield code="0">(DE-588)4113432-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umwandlung</subfield><subfield code="0">(DE-588)4186793-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohlendioxidemission</subfield><subfield code="0">(DE-588)4164507-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CG10: Prozesssteuerung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH40: Katalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Carbon Capture & Storage</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Catalysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EG13: Kohlenstoff-Abscheidung u. -Speicherung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Katalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kohlenstoff-Abscheidung u. -Speicherung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Process Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Prozesssteuerung</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kohlendioxidemission</subfield><subfield code="0">(DE-588)4164507-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Emissionsverringerung</subfield><subfield code="0">(DE-588)4113432-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Umwandlung</subfield><subfield code="0">(DE-588)4186793-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reina, Tomas R.</subfield><subfield code="0">(DE-588)121958987X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Odriozola, José A.</subfield><subfield code="0">(DE-588)1219589977</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arellano-Garcia, Harvey</subfield><subfield code="0">(DE-588)1246456729</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-34650-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-34651-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-34652-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34639-4/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032694128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032694128</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047290755 |
illustrated | Illustrated |
index_date | 2024-07-03T17:20:01Z |
indexdate | 2024-10-07T14:00:57Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 3527346392 9783527346394 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032694128 |
oclc_num | 1256430313 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | xiii, 471 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Engineering solutions for CO2 conversion edited by Tomas R. Reina, José A. Odriozola, Harvey Arellano-Garcia Weinheim, Germany Wiley-VCH [2021] xiii, 471 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Emissionsverringerung (DE-588)4113432-1 gnd rswk-swf Umwandlung (DE-588)4186793-2 gnd rswk-swf Kohlendioxidemission (DE-588)4164507-8 gnd rswk-swf CG10: Prozesssteuerung CH40: Katalyse Carbon Capture & Storage Catalysis Chemical Engineering Chemie Chemische Verfahrenstechnik Chemistry EG13: Kohlenstoff-Abscheidung u. -Speicherung Energie Energy Katalyse Kohlenstoff-Abscheidung u. -Speicherung Process Engineering Prozesssteuerung (DE-588)4143413-4 Aufsatzsammlung gnd-content Kohlendioxidemission (DE-588)4164507-8 s Emissionsverringerung (DE-588)4113432-1 s Umwandlung (DE-588)4186793-2 s DE-604 Reina, Tomas R. (DE-588)121958987X edt Odriozola, José A. (DE-588)1219589977 edt Arellano-Garcia, Harvey (DE-588)1246456729 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-34650-9 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-34651-6 Erscheint auch als Online-Ausgabe 978-3-527-34652-3 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34639-4/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032694128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Engineering solutions for CO2 conversion Emissionsverringerung (DE-588)4113432-1 gnd Umwandlung (DE-588)4186793-2 gnd Kohlendioxidemission (DE-588)4164507-8 gnd |
subject_GND | (DE-588)4113432-1 (DE-588)4186793-2 (DE-588)4164507-8 (DE-588)4143413-4 |
title | Engineering solutions for CO2 conversion |
title_auth | Engineering solutions for CO2 conversion |
title_exact_search | Engineering solutions for CO2 conversion |
title_exact_search_txtP | Engineering solutions for CO2 conversion |
title_full | Engineering solutions for CO2 conversion edited by Tomas R. Reina, José A. Odriozola, Harvey Arellano-Garcia |
title_fullStr | Engineering solutions for CO2 conversion edited by Tomas R. Reina, José A. Odriozola, Harvey Arellano-Garcia |
title_full_unstemmed | Engineering solutions for CO2 conversion edited by Tomas R. Reina, José A. Odriozola, Harvey Arellano-Garcia |
title_short | Engineering solutions for CO2 conversion |
title_sort | engineering solutions for co2 conversion |
topic | Emissionsverringerung (DE-588)4113432-1 gnd Umwandlung (DE-588)4186793-2 gnd Kohlendioxidemission (DE-588)4164507-8 gnd |
topic_facet | Emissionsverringerung Umwandlung Kohlendioxidemission Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34639-4/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032694128&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT reinatomasr engineeringsolutionsforco2conversion AT odriozolajosea engineeringsolutionsforco2conversion AT arellanogarciaharvey engineeringsolutionsforco2conversion AT wileyvch engineeringsolutionsforco2conversion |