Deep reinforcement learning with Python: with PyTorch, TensorFlow and OpenAI Gym
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress
[2021]
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-Aug4 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-859 DE-860 DE-863 DE-862 DE-523 DE-20 DE-945 Volltext |
Beschreibung: | 1 Online-Ressource (XIX, 382 Seiten) Illustrationen |
ISBN: | 9781484268094 |
DOI: | 10.1007/978-1-4842-6809-4 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047271393 | ||
003 | DE-604 | ||
005 | 20230210 | ||
007 | cr|uuu---uuuuu | ||
008 | 210505s2021 xx a||| o|||| 00||| eng d | ||
020 | |a 9781484268094 |c Online |9 978-1-4842-6809-4 | ||
024 | 7 | |a 10.1007/978-1-4842-6809-4 |2 doi | |
035 | |a (ZDB-2-CWD)9781484268094 | ||
035 | |a (OCoLC)1256439090 | ||
035 | |a (DE-599)BVBBV047271393 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-1046 |a DE-1043 |a DE-Aug4 |a DE-898 |a DE-188 |a DE-523 |a DE-859 |a DE-863 |a DE-1050 |a DE-20 |a DE-1051 |a DE-862 |a DE-92 |a DE-573 |a DE-M347 |a DE-945 |a DE-83 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Sanghi, Nimish |e Verfasser |0 (DE-588)1234419130 |4 aut | |
245 | 1 | 0 | |a Deep reinforcement learning with Python |b with PyTorch, TensorFlow and OpenAI Gym |c Nimish Sanghi |
264 | 1 | |a Berkeley, CA |b Apress |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (XIX, 382 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a PyTorch |0 (DE-588)1202487386 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a TensorFlow |0 (DE-588)1153577011 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | 3 | |a TensorFlow |0 (DE-588)1153577011 |D s |
689 | 0 | 4 | |a PyTorch |0 (DE-588)1202487386 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-6808-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-6810-0 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4842-6809-4 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD | ||
912 | |a ZDB-4-NLEBK | ||
940 | 1 | |q ZDB-2-CWD_2021 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032675088 | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-1043 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-1046 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-Aug4 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-1050 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-573 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-M347 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-92 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-1051 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-898 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-859 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-860 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-863 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-862 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-523 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-6809-4 |l DE-20 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2903515 |l DE-945 |p ZDB-4-NLEBK |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 905308 |
---|---|
_version_ | 1824555086989230081 |
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sanghi, Nimish |
author_GND | (DE-588)1234419130 |
author_facet | Sanghi, Nimish |
author_role | aut |
author_sort | Sanghi, Nimish |
author_variant | n s ns |
building | Verbundindex |
bvnumber | BV047271393 |
classification_rvk | ST 601 |
collection | ZDB-2-CWD ZDB-4-NLEBK |
ctrlnum | (ZDB-2-CWD)9781484268094 (OCoLC)1256439090 (DE-599)BVBBV047271393 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4842-6809-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047271393</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230210</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210505s2021 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484268094</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-6809-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-6809-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484268094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256439090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047271393</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanghi, Nimish</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1234419130</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep reinforcement learning with Python</subfield><subfield code="b">with PyTorch, TensorFlow and OpenAI Gym</subfield><subfield code="c">Nimish Sanghi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 382 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">PyTorch</subfield><subfield code="0">(DE-588)1202487386</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">PyTorch</subfield><subfield code="0">(DE-588)1202487386</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-6808-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-6810-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2021</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032675088</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-1051</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-6809-4</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2903515</subfield><subfield code="l">DE-945</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047271393 |
illustrated | Illustrated |
index_date | 2024-07-03T17:14:21Z |
indexdate | 2025-02-20T07:02:05Z |
institution | BVB |
isbn | 9781484268094 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032675088 |
oclc_num | 1256439090 |
open_access_boolean | |
owner | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-945 DE-83 |
owner_facet | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-945 DE-83 |
physical | 1 Online-Ressource (XIX, 382 Seiten) Illustrationen |
psigel | ZDB-2-CWD ZDB-4-NLEBK ZDB-2-CWD_2021 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Apress |
record_format | marc |
spellingShingle | Sanghi, Nimish Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym Künstliche Intelligenz (DE-588)4033447-8 gnd Deep Learning (DE-588)1135597375 gnd Python Programmiersprache (DE-588)4434275-5 gnd PyTorch (DE-588)1202487386 gnd TensorFlow (DE-588)1153577011 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)1135597375 (DE-588)4434275-5 (DE-588)1202487386 (DE-588)1153577011 |
title | Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym |
title_auth | Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym |
title_exact_search | Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym |
title_exact_search_txtP | Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym |
title_full | Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym Nimish Sanghi |
title_fullStr | Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym Nimish Sanghi |
title_full_unstemmed | Deep reinforcement learning with Python with PyTorch, TensorFlow and OpenAI Gym Nimish Sanghi |
title_short | Deep reinforcement learning with Python |
title_sort | deep reinforcement learning with python with pytorch tensorflow and openai gym |
title_sub | with PyTorch, TensorFlow and OpenAI Gym |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Deep Learning (DE-588)1135597375 gnd Python Programmiersprache (DE-588)4434275-5 gnd PyTorch (DE-588)1202487386 gnd TensorFlow (DE-588)1153577011 gnd |
topic_facet | Künstliche Intelligenz Deep Learning Python Programmiersprache PyTorch TensorFlow |
url | https://doi.org/10.1007/978-1-4842-6809-4 |
work_keys_str_mv | AT sanghinimish deepreinforcementlearningwithpythonwithpytorchtensorflowandopenaigym |