Deep learning with Python: learn best practices of deep learning models with PyTorch
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress
[2021]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHD01 FHI01 FHM01 FHN01 FHO01 FHR01 FKE01 FLA01 FWS01 FWS02 HTW01 UBR01 UBW01 UEI03 Volltext |
Beschreibung: | 1 Online-Ressource (XVII, 306 Seiten) 82 Illustrationen |
ISBN: | 9781484253649 |
DOI: | 10.1007/978-1-4842-5364-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047271237 | ||
003 | DE-604 | ||
005 | 20220916 | ||
007 | cr|uuu---uuuuu | ||
008 | 210505s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781484253649 |c Online |9 978-1-4842-5364-9 | ||
024 | 7 | |a 10.1007/978-1-4842-5364-9 |2 doi | |
035 | |a (ZDB-2-CWD)9781484253649 | ||
035 | |a (OCoLC)1252703370 | ||
035 | |a (DE-599)BVBBV047271237 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-1046 |a DE-1043 |a DE-Aug4 |a DE-898 |a DE-188 |a DE-523 |a DE-859 |a DE-863 |a DE-1050 |a DE-20 |a DE-1051 |a DE-862 |a DE-92 |a DE-573 |a DE-M347 |a DE-355 |a DE-945 |a DE-83 | ||
082 | 0 | |a 005.133 |2 23 | |
100 | 1 | |a Ketkar, Nikhil |e Verfasser |0 (DE-588)1136665285 |4 aut | |
245 | 1 | 0 | |a Deep learning with Python |b learn best practices of deep learning models with PyTorch |c Nikhil Ketkar, Jojo Moolayil |
250 | |a Second edition | ||
264 | 1 | |a Berkeley, CA |b Apress |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (XVII, 306 Seiten) |b 82 Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Python | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Open Source | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Open source software | |
650 | 4 | |a Computer programming | |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Moolayil, Jojo |e Verfasser |0 (DE-588)1176216465 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-5363-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-5365-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4842-5364-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD |a ZDB-30-PQE |a ZDB-4-NLEBK | ||
940 | 1 | |q ZDB-2-CWD_2021 | |
940 | 1 | |q ZDB-30-PQE | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032674932 | ||
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FAB01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FAW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FHA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FHD01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FHI01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FHM01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FHN01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FHO01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FHR01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FKE01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FLA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FWS01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l FWS02 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l HTW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6543728 |l UBR01 |p ZDB-30-PQE |q UBR Sammelbestellung 2021 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-5364-9 |l UBW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://opac.ku.de/w/OPAC/EBookNotAvl |l UEI03 |p ZDB-4-NLEBK |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 905213 |
---|---|
_version_ | 1806194662896041984 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ketkar, Nikhil Moolayil, Jojo |
author_GND | (DE-588)1136665285 (DE-588)1176216465 |
author_facet | Ketkar, Nikhil Moolayil, Jojo |
author_role | aut aut |
author_sort | Ketkar, Nikhil |
author_variant | n k nk j m jm |
building | Verbundindex |
bvnumber | BV047271237 |
collection | ZDB-2-CWD ZDB-30-PQE ZDB-4-NLEBK |
ctrlnum | (ZDB-2-CWD)9781484253649 (OCoLC)1252703370 (DE-599)BVBBV047271237 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4842-5364-9 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03909nmm a2200769zc 4500</leader><controlfield tag="001">BV047271237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220916 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210505s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484253649</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-5364-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-5364-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484253649</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1252703370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047271237</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ketkar, Nikhil</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1136665285</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning with Python</subfield><subfield code="b">learn best practices of deep learning models with PyTorch</subfield><subfield code="c">Nikhil Ketkar, Jojo Moolayil</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 306 Seiten)</subfield><subfield code="b">82 Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open source software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moolayil, Jojo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1176216465</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-5363-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-5365-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2021</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032674932</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FHO01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6543728</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBR Sammelbestellung 2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-5364-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://opac.ku.de/w/OPAC/EBookNotAvl</subfield><subfield code="l">UEI03</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047271237 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:14:18Z |
indexdate | 2024-08-01T16:11:00Z |
institution | BVB |
isbn | 9781484253649 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032674932 |
oclc_num | 1252703370 |
open_access_boolean | |
owner | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-355 DE-BY-UBR DE-945 DE-83 |
owner_facet | DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-355 DE-BY-UBR DE-945 DE-83 |
physical | 1 Online-Ressource (XVII, 306 Seiten) 82 Illustrationen |
psigel | ZDB-2-CWD ZDB-30-PQE ZDB-4-NLEBK ZDB-2-CWD_2021 ZDB-30-PQE UBR Sammelbestellung 2021 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Apress |
record_format | marc |
spellingShingle | Ketkar, Nikhil Moolayil, Jojo Deep learning with Python learn best practices of deep learning models with PyTorch Python Machine Learning Open Source Python (Computer program language) Machine learning Open source software Computer programming Python Programmiersprache (DE-588)4434275-5 gnd Deep learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4434275-5 (DE-588)1135597375 (DE-588)4193754-5 |
title | Deep learning with Python learn best practices of deep learning models with PyTorch |
title_auth | Deep learning with Python learn best practices of deep learning models with PyTorch |
title_exact_search | Deep learning with Python learn best practices of deep learning models with PyTorch |
title_exact_search_txtP | Deep learning with Python learn best practices of deep learning models with PyTorch |
title_full | Deep learning with Python learn best practices of deep learning models with PyTorch Nikhil Ketkar, Jojo Moolayil |
title_fullStr | Deep learning with Python learn best practices of deep learning models with PyTorch Nikhil Ketkar, Jojo Moolayil |
title_full_unstemmed | Deep learning with Python learn best practices of deep learning models with PyTorch Nikhil Ketkar, Jojo Moolayil |
title_short | Deep learning with Python |
title_sort | deep learning with python learn best practices of deep learning models with pytorch |
title_sub | learn best practices of deep learning models with PyTorch |
topic | Python Machine Learning Open Source Python (Computer program language) Machine learning Open source software Computer programming Python Programmiersprache (DE-588)4434275-5 gnd Deep learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Python Machine Learning Open Source Python (Computer program language) Machine learning Open source software Computer programming Python Programmiersprache Deep learning Maschinelles Lernen |
url | https://doi.org/10.1007/978-1-4842-5364-9 |
work_keys_str_mv | AT ketkarnikhil deeplearningwithpythonlearnbestpracticesofdeeplearningmodelswithpytorch AT moolayiljojo deeplearningwithpythonlearnbestpracticesofdeeplearningmodelswithpytorch |