Green energy: solar energy, photovoltaics, and smart cities
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Beverly, MA
Scrivener Publishing
[2021]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxi, 599 Seiten Illustrationen, Diagramme |
ISBN: | 9781119760764 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047261588 | ||
003 | DE-604 | ||
005 | 20220324 | ||
007 | t | ||
008 | 210429s2021 a||| |||| 00||| eng d | ||
020 | |a 9781119760764 |9 978-1-119-76076-4 | ||
035 | |a (OCoLC)1263261662 | ||
035 | |a (DE-599)BVBBV047261588 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-703 | ||
082 | 0 | |a 333.794 | |
084 | |a ZP 3730 |0 (DE-625)157971: |2 rvk | ||
245 | 1 | 0 | |a Green energy |b solar energy, photovoltaics, and smart cities |c edited by Suman Lata Tripathi and Sanjeevikumar Padmanaban |
264 | 1 | |a Beverly, MA |b Scrivener Publishing |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a xxi, 599 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Smart City |0 (DE-588)1061057097 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sonnenenergie |0 (DE-588)4055572-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fotovoltaik |0 (DE-588)4121476-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sonnenenergie |0 (DE-588)4055572-0 |D s |
689 | 0 | 1 | |a Fotovoltaik |0 (DE-588)4121476-6 |D s |
689 | 0 | 2 | |a Smart City |0 (DE-588)1061057097 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tripathi, Suman Lata |0 (DE-588)1240855079 |4 edt | |
700 | 1 | |a Sanjeevikumar, Padmanaban |d 1978- |0 (DE-588)1220850691 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032665442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032665442 |
Datensatz im Suchindex
_version_ | 1815423680628391936 |
---|---|
adam_text |
Contents Preface 1 2 Fabrication and Manufacturing Process of Solar Cell: Part I S. Dwivedi 1.1 Introduction 1.1.1 Introduction to Si-Based Fabrication Technology 1.1.2 Introduction to Si Wafer 1.1.3 Introduction to Diode Physics 1.1.3.1 Equilibrium Fermi Energy (Er) 1.2 Fabrication Technology of Diode 1.3 Energy Production by Equivalent Cell Circuitry 1.4 Conclusion References Fabrication and Manufacturing Process of Solar Cell: Part II Prabhansu and Nayan Kumar 2.1 Introduction 2.2 Silicon Solar Cell Technologies 2.2.1 Crystalline Structured Silicon (c-Si) 2.2.2 Silicon-Based Thin-Film PV Cell 2.3 Homojunction Silicon Solar Cells 2.3.1 Classic Structure and Manufacture Process 2.3.2 Plans for High Productivity 2.4 Solar Si-Heterojunction Cell 2.5 Si Thin-Film PV Cells 2.5.1 PV Cell Development Based on p-I-n and n-I-p 2.5.2 Light-Based Trapping Methodologies 2.5.3 Approach to Tandem 2.5.4 Current Trends 2.6 Perovskite Solar Cells 2.6.1 Introduction xix 1 2 2 4 5 10 19 27 30 31 39 39 41 41 43 44 44 45 46 48 49 49 51 51 52 52 v
vi Contents 2.6.2 2.7 2.8 3 Specific Properties with Perovskites-Based Metaldhalide for Photovoltaics 2.6.3 Crystallization of Perovskite 2.6.4 Current Trends Future Possibility and Difficulties Conclusions References Fabrication and Manufacturing Process of Perovskite Solar Cell Nandhakumar Eswaramoorthy and Kamatchi R 3.1 Introduction 3.2 Architectures of Perovskite Solar Cells 3.3 Working Principle of Perovskite Solar Cell 3.4 Components of Perovskite Solar Cell 3.4.1 Transparent Conducting Metal Oxide (TCO) Layer 3.4.2 Electron Transport Layer (ETL) 3.4.3 Perovskite Layer 3.4.4 Hole Transport Layer (HTL) 3.4.5 Electrodes 3.5 Fabrication of Perovskite Films 3.5.1 One-Step Method 3.5.2 Two-Step Method 3.5.3 Solid-State Method 3.5.4 Bifacial Stamping Method 3.5.5 Solvent-Solvent Extraction Method 3.5.6 Pulse Laser Deposition Method 3.5.7 Vapor Deposition Method 3.5.8 Solvent Engineering 3.5.9 Additive Engineering 3.6 Manufacturing Techniques of Perovskite Solar Cells 3.6.1 Solution-Based Manufacturing Technique 3.6.1.1 Spin Coating 3.6.1.2 Dip Coating 3.6.2 Roll-to-Roll (R2R) Process 3.6.2.1 Knife-Over-Roll Coating 3.6.2.2 Slot-Die Coating 3.6.2.3 Flexographic Printing 3.6.2.4 Gravure Printing 3.6.2.5 Screen Printing 3.6.2.6 Inkjet Printing 3.6.2.7 Spray Coating 53 55 56 56 57 58 67 67 68 70 73 73 74 74 75 75 76 77 77 78 78 78 78 79 79 79 79 80 80 81 82 82 83 84 85 85 86 87
Contents 3.7 3.8 4 5 3.6.2.8 Brush Painting 3.6.2.9 Doctor BladeCoating Encapsulation Conclusions References Parameter Estimation of Solar Cells: A State-of-the-Art Review with Metaheuristic Approaches and Future Recommendations Shilpy Goyal, Parag Nijhawan and Souvik Gangulі 4.1 Introduction 4.2 Related Works 4.3 Problem Formulation 4.3.1 Single-Diode Model (SDM) 4.3.2 Double-Diode Model (DDM) 4.3.3 Three-Diode Model (TDM) 4.4 Salient Simulations and Discussions for Future Work 4.5 Conclusions References Power Electronics and Solar Panel: Solar Panel Design and Implementation Nayan Kumar, Tapas Kumar Saha and Jayati Dey 5.1 Chapter Overview 5.2 Challenges in Solar Power 5.3 Solar PV Cell Design and Implementation 5.3.1 Solar PV Cell Basics 5.3.2 Single-Diode-Based PV Cells (SDPVCs) 5.3.3 Determination of the Parameters 5.3.4 Double-Diode-Based PV Cell (DDPVC) 5.3.5 Solar PV System Configuration 5.4 MPPT Scheme for PV Panels 5.4.1 Operation and Modeling of MPPT Schemes for Solar PV Panels 5.4.2 Comparisons of Existing Solar MPPT Schemes 5.4.2.1 Perturbation and Observation (P O)MPPT Algorithms 5.4.2.2 Incremental-Conductance MPPT Algorithm 5.5 Way for Utilization of PV Schemes 5.5.1 Stand-Alone (SA) Based PV System ' 5.5.2 Grid-Integration-Based PV System vii 88 88 89 90 90 103 104 106 107 113 115 117 121 134 134 139 139 141 141 145 148 151 152 153 154 155 156 156 158 159 159 161
viii Contents 5.6 5.7 6 7 Future Trends Conclusion References An Effective Li-Ion Battery State of Health Estimation Based on Event-Driven Processing Saeed Mian Qaisar and Maram Alguthami 6.1 Introduction 6.2 Background and Literature Review 6.2.1 Rechargeable Batteries 6.2.2 Applications of Li-Ion Batteries 6.2.3 Battery Management Systems 6.2.4 State of Health Estimation Methods 6.2.4.1 Direct Assessment Approaches 6.2.4.2 Adaptive Model-Based Approaches 6.2.4.3 Data-Driven Approaches 6.3 The Proposed Approach 6.3.1 The Li-Ion Battery Model 6.3.2 The Event-Driven Sensing 6.3.3 The Event-Driven State of Health Estimation 6.3.3.1 The Conventional Coulomb Counting Based SoH Estimation 6.3.3.2 The Event-Driven Coulomb Counting Based SoH Estimation 6.3.4 The Evaluation Measures 6.3.4.1 The Compression Ratio 6.3.4.2 The Computational Complexity 6.3.4.3 The SoH Estimation Error 6.4 Experimental Results and Discussion 6.4.1 Experimental Results 6.4.2 Discussion 6.5 Conclusion Acknowledgement References Effective Power Quality Disturbances Identification Based on Event-Driven Processing and Machine Learning Saeed Mian Qaisar and Raheef Aljefri 7.1 Introduction 7.2 Background and Literature Review 7.2.1 Types of PQ Disturbances 161 162 162 167 168 169 169 171 171 173 173 173 174 175 175 176 177 178 178 179 179 179 181 181 181 185 187 187 188 191 192 194 195
Contents 7.2.1.1 Transient 7.2.1.2 Voltage Fluctuation 7.2.1.3 Long Duration Voltage Interruption 7.2.1.4 Noise 7.2.1.5 Flicker 7.2.1.6 Waveform Distortion 7.2.2 Reasons for Generation of the PQ Disturbances 7.2.3 PQ Disturbances Monitoring Techniques 7.2.4 Facilities Effected by Power Quality Disturbances 7.2.5 Power Quality (PQ) DisturbancesModel 7.2.6 Extraction of Features 7.2.7 Classification Techniques 7.3 Proposed Solution 7.3.1 Power Quality (PQ) Disturbances Model 7.3.1.1 The Pure Signal 7.3.1.2 The Sag 7.3.1.3 The Interruption 7.3.1.4 The Swell 7.3.2 The Signal Reconstruction 7.3.3 The Event-Driven Sensing 7.3.4 The Event-Driven Segmentation 7.3.5 Extraction of Features 7.3.6 Classification Techniques 7.3.6.1 k-Nearest Neighbor (KNN) 7.3.6.2 Naïve Bayes 7.3.7 Evaluation Measures 7.4 Results 7.5 Discussion 7.6 Conclusion Acknowledgement References 8 ՏրշՏո04 Ruddlesden Popper Oxide: Future Material for Renewable Energy Applications Upendra Kumar and Shail Upadhya 8.1 Introduction 8.1.1 Needs of Renewable Energy 8.1.2 Ruddlesden Popper Oxide Phase 8.1.3 Application of Ruddlesden PopperPhase 8.1.4 Motivation of Present Work 8.2 Experimental Work ix 196 196 196 196 196 196 196 197 198 198 199 200 201 201 202 203 203 203 204 206 207 207 208 208 209 209 210 213 215 215 215 221 222 222 224 227 229 230
x Contents 8.2.1 Preparation of Materials 8.2.2 Characterizations of Materials 8.3 Experimental Results 8.3.1 Thermogravimetric and Differential Scanning Calorimetry Analysis 8.3.2 Characterization of Տրշ xBaxSn04 8.3.2.1 Phase Determination using XRD 8.3.2.2 Optical Properties 8.3.2.3 Dielectric Analysis of Samples 8.3.3 Characterization of Տրշ xLaxSn04 8.3.3.1 Structural Analysis using XRD 8.3.3.2 UV-Vis. Spectroscopy 8.3.3.3 Electrical Analysis 8.4 Conclusions Acknowledgement References 9 A Universal Approach to Solar Photovoltaic Panel Modeling Chitra A., M. Manimozhi, Sanjeevikumar P, Nirupama Nambiar and Saransh Chhawchharia 9.1 Introduction 9.2 PV Panel Modeling: A Brief Overview 9.3 Proposed Model 9.4 Current Model 9.5 Voltage Model 9.6 Simulation Results 9.7 Conclusion Acknowledgement References 10 Stepped DC Link Converters for Solar Power Applications Dr. R. Uthirasamy, Dr. V. Kumar Chinnaiyan, Dr. J. Karpagam and Dr. V. J.Vijayalakshmi 10.1 Introduction 10.1.1 Photovoltaic Cell 10.1.2 Photovoltaic Module 10.1.3 Photovoltaic Array 10.1.4 Working of Solar Cell 10.1.5 Modeling of Solar Cell 10.1.6 Effect of Irradiance 10.1.7 Effect of Temperature 230 231 231 231 232 232 234 236 239 239 242 244 245 246 246 251 251 252 254 259 260 260 265 265 266 271 272 272 272 273 273 273 277 279
Contents 10.1.8 10.1.9 10.1.10 10.1.11 Maximum Efficiency Fill Factor Modeling of Solar Panel Simulation Model of P V Interfaced Boost Chopper Unit 10.2 Power Converters for Solar Power Applications 10.2.1 Introduction 10.2.2 DC-DC Converters 10.2.2.1 Boost Converter 10.2.2.2 Buck-Boost Converter 10.2.3 DC-AC Converters 10.2.3.1 Structure of Boost Cascaded Multilevel Inverter 10.2.3.2 Analysis of DC Sources in BCMLI System 10.2.4 Structure of Single-Phase Seven-Level BCDCLHBI 10.2.4.1 Operation of Boost Cascaded DC Link Configuration 10.2.4.2 Operation of H-Bridge Inverter Configuration 10.2.4.3 Calculation of Losses in BCDCLHBI 10.2.5 Realization of Boost Cascaded Dc Link H-Bridge Inverter 10.2.5.1 Peripheral Interface Controller 10.2.5.2 Features of PIC16F877A Microcontroller 10.2.5.3 Equivalent Circuit of Boost Cascaded DC Link Η-Bridge Inverter 10.2.5.4 Design of Boost Chopper Parameters 10.2.6 Conclusion References A Harris Hawks Optimization (HHO)-Based Parameter Assessment for Modified Two-Diode Model of Solar Cells Shilpy Goyal, ParagNijhawan and Souvik Ganguli 11.1 Introduction 11.2 Problem Formulation 11.3 Proposed Methodology of Work 11.3.1 Exploration Phase 11.3.2 Switching from Exploration to Exploitation 11.3.3 Exploitation Phase xi 280 280 281 282 283 283 284 285 286 288 288 298 298 300 309 310 312 312 312 313 314 315 315 319 320 322 325 326 327 327
xii Contents 11.4 11.5 Simulation Results Conclusions References 327 340 341 12 A Large-Gain Continuous Input-Current DC-DC Converter Applicable for Solar Energy Systems 345 Tohid Taghiloo, Kazem Varest and Sanjeevikumar Padmanaban 12.1 Introduction 345 12.2 Proposed Configuration 348 12.3 Steady-State Analysis 351 12.4 Component Design 354 12.5 Real Gain Relation 355 12.6 Comparative Analysis 356 12.7 Simulation Outcomes 360 12.8 Conclusions 364 References 364 13 Stability Issues in Microgrids: A Review Šonam Khurana and Sheela Tiwari 13.1 Introduction 13.2 Stability Issues 13.2.1 Control System Stability 13.2.2 Power Supply and BalanceStability 13.3 Analysis Techniques 13.3.1 Large-Perturbation Stability 13.3.2 Small-Perturbation Stability 13.4 Microgrid Control System 13.4.1 Control Methods for AC Microgrids 13.4.1.1 Primary Control 13.4.1.2 Secondary Control 13.4.1.3 Tertiary Control 13.4.2 Control Methods for DC Microgrid 13.4.2.1 Primary Control 13.4.2.2 Secondary Control 13.4.2.3 Tertiary Control 13.5 Conclusion References 369 370 373 375 376 378 379 381 382 384 384 389 391 392 392 394 396 396 396
Contents 14 Theoretical Analysis of Torque Ripple Reduction in the SPMSM Drives Using PWM Control-Based Variable Switching Frequency Mohamed G. Hussien and Sanjeevikumar Padmanaban 14.1 Introduction 14.2 Prediction of Current and Torque Ripples 14.2.1 Current Ripple Prediction 14.2.2 Torque Ripple Prediction 14.3 Variable Switching Frequency PWM (VSFPWM) Method for Torque Ripple Control 14.4 Conclusion References Appendix: Simulation Model Circuits Main Model Speed Current Loop Controllers VSFPWM for Torque Ripple Control 15 Energy-Efficient System for Smart Cities Dushyant Kumar Singh, Ashish Kumar Singh and Himani Jerath 15.1 Introduction 15.2 Factors Promoting Energy-Efficient System 15.2.1 Smart and Clean Energy 15.2.2 Smart Grid 15.2.3 Smart Infrastructure 15.2.4 Smart Home 15.2.4.1 Home Automation 15.2.5 Smart Surveillance 15.2.6 Smart Roads and Traffic Management 15.2.7 Smart Agriculture and Water Distribution References xiii 411 411 413 413 416 418 422 422 424 424 425 426 427 428 429 429 430 431 431 432 437 438 439 440
xiv Contents 16 Assessment of Economic and Environmental Impacts of Energy Conservation Strategies in a University Campus Sunday O. Oyedepo, Emmanuel G. Anifowose, Elizabeth O. Obembe, Joseph O. Dirisu, Shoaib Khanmohamadi, Riianko O., Babalola P.O., Ohunakin O.S., Leramo R.O. and Olawole O.C. 16.1 Introduction 16.2 Materials and Methods 16.2.1 Study Location 16.2.2 Instrumentation 16.2.2.1 Building Energy Simulation Tool eQUEST Software 16.2.3 Procedure for Data Collection and Analysis 16.2.4 Analysis of Electrical Energy Consumption 16.2.5 Economic Analysis 16.2.6 Environmental Impacts Analysis 16.3 Electricity Consumption Pattern in Covenant University 16.3.1 Result of Electricity Demand in Covenant University for Various End Uses Results of Energy Audit 16.3.1.1 in Cafeterias 1 2 Results of Energy Audit in Academic 16.3.1.2 Buildings (Mechanical Engineering Building) Results of Energy Audit in University 16.3.1.3 Library 16.3.1.4 Results of Energy Audit in Health Center Results of Energy Audit in the Student 16.3.1.5 Halls of Residence (Daniel Hall) 16.3.2 Comparison of Energy Use Among the University Buildings 16.3.3 Results of Greenhouse Gas Emissions 16.3.4 Qualitative Recommendation Analysis Replacement of Lighting Fixtures 16.3.4.1 with LED Bulbs Installation of Solar Panels on the Roofs 16.3.4.2 of Selected Buildings 16.4 Conclusion References 441 442 444 445 446 446 446 447 448 449 449 450 450 453 455 457 459 461 462 463 463 464 465 466
Contents 17 A Solar Energy-Based Multi-Level Inverter Structure with Enhanced Output-Voltage Quality and Increased Levels per Components Fatemeli Esmaeili, Kazem Varėsi and Sanjeevikumar Padmanaban 17.1 Introduction 17.2 Proposed Basic Topology 17.2.1 Topology of Basic Unit 17.2.2 Operation of Basic Configuration 17.2.3 Switching of Basic Unit for Different Magnitudes of Input Sources 17.2.3.1 Symmetric Value of Input DC Supplies (Pj) 17.2.3.2 DC Sources with Binary Order Magnitudes (P2) 17.2.3.3 DC Sources with Trinary Manner Magnitudes (P3) 17.3 Proposed Extended Structure 17.3.1 Structure 17.3.2 Determination of Values of DC Supplies 17.3.3 Blocking Voltage (BV) on Switches 17.4 Efficiency and Losses Analysis in Suggested Structure 17.4.1 Conduction Power Loss 17.4.2 Switching Power Loss 17.5 Comparison Results 17.6 Nearest Level Technique 17.7 Simulation Results 17.8 Conclusions References 18 Operations of Doubly Fed Induction Generators Applied in Green Energy Systems Bhagwan Shree Ram and Suman Lata Tripathi 18.1 Introduction 18.2 Doubly Fed Induction Generators (DFIG) Systems Operated by Wind Turbines 18.3 Control Scheme of Direct Current Controller 18.4 Simulation Studies of Direct Current Control of DFIG System 18.5 Characteristics of DFIG at Transient and AfterTransient Situation xv 469 470 471 471 472 473 473 475 476 478 478 478 479 480 480 481 483 485 485 490 490 495 496 496 497 498 499
xvi Contents 18.6 18.7 18.8 18.9 18.10 18.11 18.12 18.13 18.14 Pulsation of DFIG Parameters with DCC Control Technique Effects of 5th and 7th Harmonics of կ and VGMD Load Contribution of DFIG in Grid with DCC Control Technique Speed Control Scheme of Generators DFIG Control Scheme General Description About PI Controller Design GSC Controller Characteristics of DFIG with Wind Speed Variations Conclusion References 19 A Developed Large Boosting Factor DC-DC Converter Feasible for Photovoltaic Applications Hussein Mostafapour, Kazem Varest and Sanjeevikumar Padmanaban 19.1 Introduction 19.2 Suggested Topology 19.2.1 Configuration 19.2.2 Operating Modes during CCM 19.2.3 Operating Modes during DCM 19.3 Steady State Analyses 19.3.1 Gain Calculation 19.3.2 Average Currents and Current Ripple of Inductors 19.3.3 Stress on Semiconductors 19.3.4 Efficiency 19.4 Design Consideration 19.4.1 Design Consideration of Capacitors 19.4.2 Design Consideration of Inductors 19.5 Comparison 19.6 Simulation 19.7 Conclusion References 501 502 503 505 506 507 508 509 511 512 515 515 518 518 520 521 524 524 527 528 529 531 531 531 532 539 544 545
Contents 20 Photovoltaic-Based Switched-Capacitor Multi-Level Inverters with Self-Voltage Balancing and Step-Up Capabilities Saeid Deliri Khatoonabad, Kazem Varėsi and Sanjeevikumar Padmanaban 20.1 Introduction 20.2 Suggested First (13-Level) Basic Configuration 20.3 Suggested Second Basic Configuration 20.4 Modulation Method 20.5 Design Consideration of Capacitors 20.6 Efficiency and Losses Analysis 20.7 Simulation Results 20.7.1 First Structure 20.7.2 Second Structure 20.8 Comparative Analysis 20.9 Conclusions References Index xvii 549 550 551 556 561 562 563 567 567 571 575 578 579 583 |
adam_txt |
Contents Preface 1 2 Fabrication and Manufacturing Process of Solar Cell: Part I S. Dwivedi 1.1 Introduction 1.1.1 Introduction to Si-Based Fabrication Technology 1.1.2 Introduction to Si Wafer 1.1.3 Introduction to Diode Physics 1.1.3.1 Equilibrium Fermi Energy (Er) 1.2 Fabrication Technology of Diode 1.3 Energy Production by Equivalent Cell Circuitry 1.4 Conclusion References Fabrication and Manufacturing Process of Solar Cell: Part II Prabhansu and Nayan Kumar 2.1 Introduction 2.2 Silicon Solar Cell Technologies 2.2.1 Crystalline Structured Silicon (c-Si) 2.2.2 Silicon-Based Thin-Film PV Cell 2.3 Homojunction Silicon Solar Cells 2.3.1 Classic Structure and Manufacture Process 2.3.2 Plans for High Productivity 2.4 Solar Si-Heterojunction Cell 2.5 Si Thin-Film PV Cells 2.5.1 PV Cell Development Based on p-I-n and n-I-p 2.5.2 Light-Based Trapping Methodologies 2.5.3 Approach to Tandem 2.5.4 Current Trends 2.6 Perovskite Solar Cells 2.6.1 Introduction xix 1 2 2 4 5 10 19 27 30 31 39 39 41 41 43 44 44 45 46 48 49 49 51 51 52 52 v
vi Contents 2.6.2 2.7 2.8 3 Specific Properties with Perovskites-Based Metaldhalide for Photovoltaics 2.6.3 Crystallization of Perovskite 2.6.4 Current Trends Future Possibility and Difficulties Conclusions References Fabrication and Manufacturing Process of Perovskite Solar Cell Nandhakumar Eswaramoorthy and Kamatchi R 3.1 Introduction 3.2 Architectures of Perovskite Solar Cells 3.3 Working Principle of Perovskite Solar Cell 3.4 Components of Perovskite Solar Cell 3.4.1 Transparent Conducting Metal Oxide (TCO) Layer 3.4.2 Electron Transport Layer (ETL) 3.4.3 Perovskite Layer 3.4.4 Hole Transport Layer (HTL) 3.4.5 Electrodes 3.5 Fabrication of Perovskite Films 3.5.1 One-Step Method 3.5.2 Two-Step Method 3.5.3 Solid-State Method 3.5.4 Bifacial Stamping Method 3.5.5 Solvent-Solvent Extraction Method 3.5.6 Pulse Laser Deposition Method 3.5.7 Vapor Deposition Method 3.5.8 Solvent Engineering 3.5.9 Additive Engineering 3.6 Manufacturing Techniques of Perovskite Solar Cells 3.6.1 Solution-Based Manufacturing Technique 3.6.1.1 Spin Coating 3.6.1.2 Dip Coating 3.6.2 Roll-to-Roll (R2R) Process 3.6.2.1 Knife-Over-Roll Coating 3.6.2.2 Slot-Die Coating 3.6.2.3 Flexographic Printing 3.6.2.4 Gravure Printing 3.6.2.5 Screen Printing 3.6.2.6 Inkjet Printing 3.6.2.7 Spray Coating 53 55 56 56 57 58 67 67 68 70 73 73 74 74 75 75 76 77 77 78 78 78 78 79 79 79 79 80 80 81 82 82 83 84 85 85 86 87
Contents 3.7 3.8 4 5 3.6.2.8 Brush Painting 3.6.2.9 Doctor BladeCoating Encapsulation Conclusions References Parameter Estimation of Solar Cells: A State-of-the-Art Review with Metaheuristic Approaches and Future Recommendations Shilpy Goyal, Parag Nijhawan and Souvik Gangulі 4.1 Introduction 4.2 Related Works 4.3 Problem Formulation 4.3.1 Single-Diode Model (SDM) 4.3.2 Double-Diode Model (DDM) 4.3.3 Three-Diode Model (TDM) 4.4 Salient Simulations and Discussions for Future Work 4.5 Conclusions References Power Electronics and Solar Panel: Solar Panel Design and Implementation Nayan Kumar, Tapas Kumar Saha and Jayati Dey 5.1 Chapter Overview 5.2 Challenges in Solar Power 5.3 Solar PV Cell Design and Implementation 5.3.1 Solar PV Cell Basics 5.3.2 Single-Diode-Based PV Cells (SDPVCs) 5.3.3 Determination of the Parameters 5.3.4 Double-Diode-Based PV Cell (DDPVC) 5.3.5 Solar PV System Configuration 5.4 MPPT Scheme for PV Panels 5.4.1 Operation and Modeling of MPPT Schemes for Solar PV Panels 5.4.2 Comparisons of Existing Solar MPPT Schemes 5.4.2.1 Perturbation and Observation (P O)MPPT Algorithms 5.4.2.2 Incremental-Conductance MPPT Algorithm 5.5 Way for Utilization of PV Schemes 5.5.1 Stand-Alone (SA) Based PV System ' 5.5.2 Grid-Integration-Based PV System vii 88 88 89 90 90 103 104 106 107 113 115 117 121 134 134 139 139 141 141 145 148 151 152 153 154 155 156 156 158 159 159 161
viii Contents 5.6 5.7 6 7 Future Trends Conclusion References An Effective Li-Ion Battery State of Health Estimation Based on Event-Driven Processing Saeed Mian Qaisar and Maram Alguthami 6.1 Introduction 6.2 Background and Literature Review 6.2.1 Rechargeable Batteries 6.2.2 Applications of Li-Ion Batteries 6.2.3 Battery Management Systems 6.2.4 State of Health Estimation Methods 6.2.4.1 Direct Assessment Approaches 6.2.4.2 Adaptive Model-Based Approaches 6.2.4.3 Data-Driven Approaches 6.3 The Proposed Approach 6.3.1 The Li-Ion Battery Model 6.3.2 The Event-Driven Sensing 6.3.3 The Event-Driven State of Health Estimation 6.3.3.1 The Conventional Coulomb Counting Based SoH Estimation 6.3.3.2 The Event-Driven Coulomb Counting Based SoH Estimation 6.3.4 The Evaluation Measures 6.3.4.1 The Compression Ratio 6.3.4.2 The Computational Complexity 6.3.4.3 The SoH Estimation Error 6.4 Experimental Results and Discussion 6.4.1 Experimental Results 6.4.2 Discussion 6.5 Conclusion Acknowledgement References Effective Power Quality Disturbances Identification Based on Event-Driven Processing and Machine Learning Saeed Mian Qaisar and Raheef Aljefri 7.1 Introduction 7.2 Background and Literature Review 7.2.1 Types of PQ Disturbances 161 162 162 167 168 169 169 171 171 173 173 173 174 175 175 176 177 178 178 179 179 179 181 181 181 185 187 187 188 191 192 194 195
Contents 7.2.1.1 Transient 7.2.1.2 Voltage Fluctuation 7.2.1.3 Long Duration Voltage Interruption 7.2.1.4 Noise 7.2.1.5 Flicker 7.2.1.6 Waveform Distortion 7.2.2 Reasons for Generation of the PQ Disturbances 7.2.3 PQ Disturbances Monitoring Techniques 7.2.4 Facilities Effected by Power Quality Disturbances 7.2.5 Power Quality (PQ) DisturbancesModel 7.2.6 Extraction of Features 7.2.7 Classification Techniques 7.3 Proposed Solution 7.3.1 Power Quality (PQ) Disturbances Model 7.3.1.1 The Pure Signal 7.3.1.2 The Sag 7.3.1.3 The Interruption 7.3.1.4 The Swell 7.3.2 The Signal Reconstruction 7.3.3 The Event-Driven Sensing 7.3.4 The Event-Driven Segmentation 7.3.5 Extraction of Features 7.3.6 Classification Techniques 7.3.6.1 k-Nearest Neighbor (KNN) 7.3.6.2 Naïve Bayes 7.3.7 Evaluation Measures 7.4 Results 7.5 Discussion 7.6 Conclusion Acknowledgement References 8 ՏրշՏո04 Ruddlesden Popper Oxide: Future Material for Renewable Energy Applications Upendra Kumar and Shail Upadhya 8.1 Introduction 8.1.1 Needs of Renewable Energy 8.1.2 Ruddlesden Popper Oxide Phase 8.1.3 Application of Ruddlesden PopperPhase 8.1.4 Motivation of Present Work 8.2 Experimental Work ix 196 196 196 196 196 196 196 197 198 198 199 200 201 201 202 203 203 203 204 206 207 207 208 208 209 209 210 213 215 215 215 221 222 222 224 227 229 230
x Contents 8.2.1 Preparation of Materials 8.2.2 Characterizations of Materials 8.3 Experimental Results 8.3.1 Thermogravimetric and Differential Scanning Calorimetry Analysis 8.3.2 Characterization of Տրշ xBaxSn04 8.3.2.1 Phase Determination using XRD 8.3.2.2 Optical Properties 8.3.2.3 Dielectric Analysis of Samples 8.3.3 Characterization of Տրշ xLaxSn04 8.3.3.1 Structural Analysis using XRD 8.3.3.2 UV-Vis. Spectroscopy 8.3.3.3 Electrical Analysis 8.4 Conclusions Acknowledgement References 9 A Universal Approach to Solar Photovoltaic Panel Modeling Chitra A., M. Manimozhi, Sanjeevikumar P, Nirupama Nambiar and Saransh Chhawchharia 9.1 Introduction 9.2 PV Panel Modeling: A Brief Overview 9.3 Proposed Model 9.4 Current Model 9.5 Voltage Model 9.6 Simulation Results 9.7 Conclusion Acknowledgement References 10 Stepped DC Link Converters for Solar Power Applications Dr. R. Uthirasamy, Dr. V. Kumar Chinnaiyan, Dr. J. Karpagam and Dr. V. J.Vijayalakshmi 10.1 Introduction 10.1.1 Photovoltaic Cell 10.1.2 Photovoltaic Module 10.1.3 Photovoltaic Array 10.1.4 Working of Solar Cell 10.1.5 Modeling of Solar Cell 10.1.6 Effect of Irradiance 10.1.7 Effect of Temperature 230 231 231 231 232 232 234 236 239 239 242 244 245 246 246 251 251 252 254 259 260 260 265 265 266 271 272 272 272 273 273 273 277 279
Contents 10.1.8 10.1.9 10.1.10 10.1.11 Maximum Efficiency Fill Factor Modeling of Solar Panel Simulation Model of P V Interfaced Boost Chopper Unit 10.2 Power Converters for Solar Power Applications 10.2.1 Introduction 10.2.2 DC-DC Converters 10.2.2.1 Boost Converter 10.2.2.2 Buck-Boost Converter 10.2.3 DC-AC Converters 10.2.3.1 Structure of Boost Cascaded Multilevel Inverter 10.2.3.2 Analysis of DC Sources in BCMLI System 10.2.4 Structure of Single-Phase Seven-Level BCDCLHBI 10.2.4.1 Operation of Boost Cascaded DC Link Configuration 10.2.4.2 Operation of H-Bridge Inverter Configuration 10.2.4.3 Calculation of Losses in BCDCLHBI 10.2.5 Realization of Boost Cascaded Dc Link H-Bridge Inverter 10.2.5.1 Peripheral Interface Controller 10.2.5.2 Features of PIC16F877A Microcontroller 10.2.5.3 Equivalent Circuit of Boost Cascaded DC Link Η-Bridge Inverter 10.2.5.4 Design of Boost Chopper Parameters 10.2.6 Conclusion References A Harris Hawks Optimization (HHO)-Based Parameter Assessment for Modified Two-Diode Model of Solar Cells Shilpy Goyal, ParagNijhawan and Souvik Ganguli 11.1 Introduction 11.2 Problem Formulation 11.3 Proposed Methodology of Work 11.3.1 Exploration Phase 11.3.2 Switching from Exploration to Exploitation 11.3.3 Exploitation Phase xi 280 280 281 282 283 283 284 285 286 288 288 298 298 300 309 310 312 312 312 313 314 315 315 319 320 322 325 326 327 327
xii Contents 11.4 11.5 Simulation Results Conclusions References 327 340 341 12 A Large-Gain Continuous Input-Current DC-DC Converter Applicable for Solar Energy Systems 345 Tohid Taghiloo, Kazem Varest and Sanjeevikumar Padmanaban 12.1 Introduction 345 12.2 Proposed Configuration 348 12.3 Steady-State Analysis 351 12.4 Component Design 354 12.5 Real Gain Relation 355 12.6 Comparative Analysis 356 12.7 Simulation Outcomes 360 12.8 Conclusions 364 References 364 13 Stability Issues in Microgrids: A Review Šonam Khurana and Sheela Tiwari 13.1 Introduction 13.2 Stability Issues 13.2.1 Control System Stability 13.2.2 Power Supply and BalanceStability 13.3 Analysis Techniques 13.3.1 Large-Perturbation Stability 13.3.2 Small-Perturbation Stability 13.4 Microgrid Control System 13.4.1 Control Methods for AC Microgrids 13.4.1.1 Primary Control 13.4.1.2 Secondary Control 13.4.1.3 Tertiary Control 13.4.2 Control Methods for DC Microgrid 13.4.2.1 Primary Control 13.4.2.2 Secondary Control 13.4.2.3 Tertiary Control 13.5 Conclusion References 369 370 373 375 376 378 379 381 382 384 384 389 391 392 392 394 396 396 396
Contents 14 Theoretical Analysis of Torque Ripple Reduction in the SPMSM Drives Using PWM Control-Based Variable Switching Frequency Mohamed G. Hussien and Sanjeevikumar Padmanaban 14.1 Introduction 14.2 Prediction of Current and Torque Ripples 14.2.1 Current Ripple Prediction 14.2.2 Torque Ripple Prediction 14.3 Variable Switching Frequency PWM (VSFPWM) Method for Torque Ripple Control 14.4 Conclusion References Appendix: Simulation Model Circuits Main Model Speed Current Loop Controllers VSFPWM for Torque Ripple Control 15 Energy-Efficient System for Smart Cities Dushyant Kumar Singh, Ashish Kumar Singh and Himani Jerath 15.1 Introduction 15.2 Factors Promoting Energy-Efficient System 15.2.1 Smart and Clean Energy 15.2.2 Smart Grid 15.2.3 Smart Infrastructure 15.2.4 Smart Home 15.2.4.1 Home Automation 15.2.5 Smart Surveillance 15.2.6 Smart Roads and Traffic Management 15.2.7 Smart Agriculture and Water Distribution References xiii 411 411 413 413 416 418 422 422 424 424 425 426 427 428 429 429 430 431 431 432 437 438 439 440
xiv Contents 16 Assessment of Economic and Environmental Impacts of Energy Conservation Strategies in a University Campus Sunday O. Oyedepo, Emmanuel G. Anifowose, Elizabeth O. Obembe, Joseph O. Dirisu, Shoaib Khanmohamadi, Riianko O., Babalola P.O., Ohunakin O.S., Leramo R.O. and Olawole O.C. 16.1 Introduction 16.2 Materials and Methods 16.2.1 Study Location 16.2.2 Instrumentation 16.2.2.1 Building Energy Simulation Tool eQUEST Software 16.2.3 Procedure for Data Collection and Analysis 16.2.4 Analysis of Electrical Energy Consumption 16.2.5 Economic Analysis 16.2.6 Environmental Impacts Analysis 16.3 Electricity Consumption Pattern in Covenant University 16.3.1 Result of Electricity Demand in Covenant University for Various End Uses Results of Energy Audit 16.3.1.1 in Cafeterias 1 2 Results of Energy Audit in Academic 16.3.1.2 Buildings (Mechanical Engineering Building) Results of Energy Audit in University 16.3.1.3 Library 16.3.1.4 Results of Energy Audit in Health Center Results of Energy Audit in the Student 16.3.1.5 Halls of Residence (Daniel Hall) 16.3.2 Comparison of Energy Use Among the University Buildings 16.3.3 Results of Greenhouse Gas Emissions 16.3.4 Qualitative Recommendation Analysis Replacement of Lighting Fixtures 16.3.4.1 with LED Bulbs Installation of Solar Panels on the Roofs 16.3.4.2 of Selected Buildings 16.4 Conclusion References 441 442 444 445 446 446 446 447 448 449 449 450 450 453 455 457 459 461 462 463 463 464 465 466
Contents 17 A Solar Energy-Based Multi-Level Inverter Structure with Enhanced Output-Voltage Quality and Increased Levels per Components Fatemeli Esmaeili, Kazem Varėsi and Sanjeevikumar Padmanaban 17.1 Introduction 17.2 Proposed Basic Topology 17.2.1 Topology of Basic Unit 17.2.2 Operation of Basic Configuration 17.2.3 Switching of Basic Unit for Different Magnitudes of Input Sources 17.2.3.1 Symmetric Value of Input DC Supplies (Pj) 17.2.3.2 DC Sources with Binary Order Magnitudes (P2) 17.2.3.3 DC Sources with Trinary Manner Magnitudes (P3) 17.3 Proposed Extended Structure 17.3.1 Structure 17.3.2 Determination of Values of DC Supplies 17.3.3 Blocking Voltage (BV) on Switches 17.4 Efficiency and Losses Analysis in Suggested Structure 17.4.1 Conduction Power Loss 17.4.2 Switching Power Loss 17.5 Comparison Results 17.6 Nearest Level Technique 17.7 Simulation Results 17.8 Conclusions References 18 Operations of Doubly Fed Induction Generators Applied in Green Energy Systems Bhagwan Shree Ram and Suman Lata Tripathi 18.1 Introduction 18.2 Doubly Fed Induction Generators (DFIG) Systems Operated by Wind Turbines 18.3 Control Scheme of Direct Current Controller 18.4 Simulation Studies of Direct Current Control of DFIG System 18.5 Characteristics of DFIG at Transient and AfterTransient Situation xv 469 470 471 471 472 473 473 475 476 478 478 478 479 480 480 481 483 485 485 490 490 495 496 496 497 498 499
xvi Contents 18.6 18.7 18.8 18.9 18.10 18.11 18.12 18.13 18.14 Pulsation of DFIG Parameters with DCC Control Technique Effects of 5th and 7th Harmonics of կ and VGMD Load Contribution of DFIG in Grid with DCC Control Technique Speed Control Scheme of Generators DFIG Control Scheme General Description About PI Controller Design GSC Controller Characteristics of DFIG with Wind Speed Variations Conclusion References 19 A Developed Large Boosting Factor DC-DC Converter Feasible for Photovoltaic Applications Hussein Mostafapour, Kazem Varest and Sanjeevikumar Padmanaban 19.1 Introduction 19.2 Suggested Topology 19.2.1 Configuration 19.2.2 Operating Modes during CCM 19.2.3 Operating Modes during DCM 19.3 Steady State Analyses 19.3.1 Gain Calculation 19.3.2 Average Currents and Current Ripple of Inductors 19.3.3 Stress on Semiconductors 19.3.4 Efficiency 19.4 Design Consideration 19.4.1 Design Consideration of Capacitors 19.4.2 Design Consideration of Inductors 19.5 Comparison 19.6 Simulation 19.7 Conclusion References 501 502 503 505 506 507 508 509 511 512 515 515 518 518 520 521 524 524 527 528 529 531 531 531 532 539 544 545
Contents 20 Photovoltaic-Based Switched-Capacitor Multi-Level Inverters with Self-Voltage Balancing and Step-Up Capabilities Saeid Deliri Khatoonabad, Kazem Varėsi and Sanjeevikumar Padmanaban 20.1 Introduction 20.2 Suggested First (13-Level) Basic Configuration 20.3 Suggested Second Basic Configuration 20.4 Modulation Method 20.5 Design Consideration of Capacitors 20.6 Efficiency and Losses Analysis 20.7 Simulation Results 20.7.1 First Structure 20.7.2 Second Structure 20.8 Comparative Analysis 20.9 Conclusions References Index xvii 549 550 551 556 561 562 563 567 567 571 575 578 579 583 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Tripathi, Suman Lata Sanjeevikumar, Padmanaban 1978- |
author2_role | edt edt |
author2_variant | s l t sl slt p s ps |
author_GND | (DE-588)1240855079 (DE-588)1220850691 |
author_facet | Tripathi, Suman Lata Sanjeevikumar, Padmanaban 1978- |
building | Verbundindex |
bvnumber | BV047261588 |
classification_rvk | ZP 3730 |
ctrlnum | (OCoLC)1263261662 (DE-599)BVBBV047261588 |
dewey-full | 333.794 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.794 |
dewey-search | 333.794 |
dewey-sort | 3333.794 |
dewey-tens | 330 - Economics |
discipline | Energietechnik Wirtschaftswissenschaften |
discipline_str_mv | Energietechnik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV047261588</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220324</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210429s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119760764</subfield><subfield code="9">978-1-119-76076-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1263261662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047261588</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.794</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3730</subfield><subfield code="0">(DE-625)157971:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green energy</subfield><subfield code="b">solar energy, photovoltaics, and smart cities</subfield><subfield code="c">edited by Suman Lata Tripathi and Sanjeevikumar Padmanaban</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beverly, MA</subfield><subfield code="b">Scrivener Publishing</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 599 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Smart City</subfield><subfield code="0">(DE-588)1061057097</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sonnenenergie</subfield><subfield code="0">(DE-588)4055572-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fotovoltaik</subfield><subfield code="0">(DE-588)4121476-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sonnenenergie</subfield><subfield code="0">(DE-588)4055572-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fotovoltaik</subfield><subfield code="0">(DE-588)4121476-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Smart City</subfield><subfield code="0">(DE-588)1061057097</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tripathi, Suman Lata</subfield><subfield code="0">(DE-588)1240855079</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanjeevikumar, Padmanaban</subfield><subfield code="d">1978-</subfield><subfield code="0">(DE-588)1220850691</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032665442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032665442</subfield></datafield></record></collection> |
id | DE-604.BV047261588 |
illustrated | Illustrated |
index_date | 2024-07-03T17:11:22Z |
indexdate | 2024-11-11T11:02:17Z |
institution | BVB |
isbn | 9781119760764 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032665442 |
oclc_num | 1263261662 |
open_access_boolean | |
owner | DE-11 DE-703 |
owner_facet | DE-11 DE-703 |
physical | xxi, 599 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Scrivener Publishing |
record_format | marc |
spelling | Green energy solar energy, photovoltaics, and smart cities edited by Suman Lata Tripathi and Sanjeevikumar Padmanaban Beverly, MA Scrivener Publishing [2021] © 2021 xxi, 599 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Smart City (DE-588)1061057097 gnd rswk-swf Sonnenenergie (DE-588)4055572-0 gnd rswk-swf Fotovoltaik (DE-588)4121476-6 gnd rswk-swf Sonnenenergie (DE-588)4055572-0 s Fotovoltaik (DE-588)4121476-6 s Smart City (DE-588)1061057097 s DE-604 Tripathi, Suman Lata (DE-588)1240855079 edt Sanjeevikumar, Padmanaban 1978- (DE-588)1220850691 edt Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032665442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Green energy solar energy, photovoltaics, and smart cities Smart City (DE-588)1061057097 gnd Sonnenenergie (DE-588)4055572-0 gnd Fotovoltaik (DE-588)4121476-6 gnd |
subject_GND | (DE-588)1061057097 (DE-588)4055572-0 (DE-588)4121476-6 |
title | Green energy solar energy, photovoltaics, and smart cities |
title_auth | Green energy solar energy, photovoltaics, and smart cities |
title_exact_search | Green energy solar energy, photovoltaics, and smart cities |
title_exact_search_txtP | Green energy solar energy, photovoltaics, and smart cities |
title_full | Green energy solar energy, photovoltaics, and smart cities edited by Suman Lata Tripathi and Sanjeevikumar Padmanaban |
title_fullStr | Green energy solar energy, photovoltaics, and smart cities edited by Suman Lata Tripathi and Sanjeevikumar Padmanaban |
title_full_unstemmed | Green energy solar energy, photovoltaics, and smart cities edited by Suman Lata Tripathi and Sanjeevikumar Padmanaban |
title_short | Green energy |
title_sort | green energy solar energy photovoltaics and smart cities |
title_sub | solar energy, photovoltaics, and smart cities |
topic | Smart City (DE-588)1061057097 gnd Sonnenenergie (DE-588)4055572-0 gnd Fotovoltaik (DE-588)4121476-6 gnd |
topic_facet | Smart City Sonnenenergie Fotovoltaik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032665442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tripathisumanlata greenenergysolarenergyphotovoltaicsandsmartcities AT sanjeevikumarpadmanaban greenenergysolarenergyphotovoltaicsandsmartcities |