P-adic analytic functions:
"P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite-Lindemann theorem in a p-adic field, with...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2021
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite-Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of an open disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions--in the whole field or inside an open disk--is a Bezout ring is also examined"--Publisher's website |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 online resource (348 pages) |
ISBN: | 9789811226229 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047240481 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210415s2021 |||| o||u| ||||||eng d | ||
020 | |a 9789811226229 |9 978-981-122-622-9 | ||
035 | |a (ZDB-124-WOP)00011990 | ||
035 | |a (OCoLC)1249681924 | ||
035 | |a (DE-599)BVBBV047240481 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 512.74 | |
100 | 1 | |a Escassut, Alain |4 aut | |
245 | 1 | 0 | |a P-adic analytic functions |c Alain Escassut |
264 | 1 | |a Singapore |b World Scientific |c 2021 | |
300 | |a 1 online resource (348 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a "P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite-Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of an open disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions--in the whole field or inside an open disk--is a Bezout ring is also examined"--Publisher's website | ||
650 | 4 | |a p-adic analysis | |
650 | 4 | |a Analytic functions | |
650 | 4 | |a Nevanlinna theory | |
650 | 0 | 7 | |a p-adische Analysis |0 (DE-588)4252360-6 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a p-adische Analysis |0 (DE-588)4252360-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789811226212 |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/11990#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
940 | 1 | |q TUM_PDA_WOP | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032644768 |
Datensatz im Suchindex
_version_ | 1804182377465905152 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Escassut, Alain |
author_facet | Escassut, Alain |
author_role | aut |
author_sort | Escassut, Alain |
author_variant | a e ae |
building | Verbundindex |
bvnumber | BV047240481 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00011990 (OCoLC)1249681924 (DE-599)BVBBV047240481 |
dewey-full | 512.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.74 |
dewey-search | 512.74 |
dewey-sort | 3512.74 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02277nmm a2200421zc 4500</leader><controlfield tag="001">BV047240481</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210415s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811226229</subfield><subfield code="9">978-981-122-622-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00011990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1249681924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047240481</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.74</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Escassut, Alain</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P-adic analytic functions</subfield><subfield code="c">Alain Escassut</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (348 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite-Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of an open disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions--in the whole field or inside an open disk--is a Bezout ring is also examined"--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nevanlinna theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische Analysis</subfield><subfield code="0">(DE-588)4252360-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">p-adische Analysis</subfield><subfield code="0">(DE-588)4252360-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789811226212</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11990#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUM_PDA_WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032644768</subfield></datafield></record></collection> |
id | DE-604.BV047240481 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:04:04Z |
indexdate | 2024-07-10T09:06:35Z |
institution | BVB |
isbn | 9789811226229 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032644768 |
oclc_num | 1249681924 |
open_access_boolean | |
physical | 1 online resource (348 pages) |
psigel | ZDB-124-WOP TUM_PDA_WOP |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
spelling | Escassut, Alain aut P-adic analytic functions Alain Escassut Singapore World Scientific 2021 1 online resource (348 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such as the Hermite-Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of an open disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions--in the whole field or inside an open disk--is a Bezout ring is also examined"--Publisher's website p-adic analysis Analytic functions Nevanlinna theory p-adische Analysis (DE-588)4252360-6 gnd rswk-swf Electronic books p-adische Analysis (DE-588)4252360-6 s DE-604 Erscheint auch als Druck-Ausgabe 9789811226212 https://www.worldscientific.com/worldscibooks/10.1142/11990#t=toc Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Escassut, Alain P-adic analytic functions p-adic analysis Analytic functions Nevanlinna theory p-adische Analysis (DE-588)4252360-6 gnd |
subject_GND | (DE-588)4252360-6 |
title | P-adic analytic functions |
title_auth | P-adic analytic functions |
title_exact_search | P-adic analytic functions |
title_exact_search_txtP | P-adic analytic functions |
title_full | P-adic analytic functions Alain Escassut |
title_fullStr | P-adic analytic functions Alain Escassut |
title_full_unstemmed | P-adic analytic functions Alain Escassut |
title_short | P-adic analytic functions |
title_sort | p adic analytic functions |
topic | p-adic analysis Analytic functions Nevanlinna theory p-adische Analysis (DE-588)4252360-6 gnd |
topic_facet | p-adic analysis Analytic functions Nevanlinna theory p-adische Analysis |
url | https://www.worldscientific.com/worldscibooks/10.1142/11990#t=toc |
work_keys_str_mv | AT escassutalain padicanalyticfunctions |