Symmetry problems: the Navier-Stokes problem
This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
San Rafael, CA
Morgan & Claypool
[2019]
|
Schriftenreihe: | Synthesis lectures on mathemathics and statistics
23 |
Schlagworte: | |
Zusammenfassung: | This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "invisible obstacles." In Chapter 5, it provides a solution to the Navier-Stokes problem in R3. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier-Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies |
Beschreibung: | xiv, 71 Seiten Diagramme |
ISBN: | 9781681735054 9781681735078 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV047229463 | ||
003 | DE-604 | ||
005 | 20210506 | ||
007 | t | ||
008 | 210408s2019 |||| |||| 00||| eng d | ||
020 | |a 9781681735054 |c pbk |9 978-1-68173-505-4 | ||
020 | |a 9781681735078 |c hbk |9 978-1-68173-507-8 | ||
035 | |a (OCoLC)1104330469 | ||
035 | |a (DE-599)BVBBV047229463 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
082 | 0 | |a 518/.64 |2 23 | |
100 | 1 | |a Ramm, Alexander G. |d 1940- |e Verfasser |0 (DE-588)1148973524 |4 aut | |
245 | 1 | 0 | |a Symmetry problems |b the Navier-Stokes problem |c Alexander G. Ramm |
246 | 1 | 3 | |a Navier-Stokes problem |
264 | 1 | |a San Rafael, CA |b Morgan & Claypool |c [2019] | |
300 | |a xiv, 71 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Synthesis lectures on mathemathics and statistics |v 23 | |
520 | |a This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "invisible obstacles." In Chapter 5, it provides a solution to the Navier-Stokes problem in R3. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier-Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies | ||
650 | 4 | |a Helmholtz equation | |
650 | 4 | |a Navier-Stokes equations | |
650 | 4 | |a Scattering (Mathematics) | |
650 | 0 | 7 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-68173-506-1 |
830 | 0 | |a Synthesis lectures on mathemathics and statistics |v 23 |w (DE-604)BV041563508 |9 23 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032633963 |
Datensatz im Suchindex
_version_ | 1804182359544692736 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ramm, Alexander G. 1940- |
author_GND | (DE-588)1148973524 |
author_facet | Ramm, Alexander G. 1940- |
author_role | aut |
author_sort | Ramm, Alexander G. 1940- |
author_variant | a g r ag agr |
building | Verbundindex |
bvnumber | BV047229463 |
ctrlnum | (OCoLC)1104330469 (DE-599)BVBBV047229463 |
dewey-full | 518/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518/.64 |
dewey-search | 518/.64 |
dewey-sort | 3518 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02490nam a2200409zcb4500</leader><controlfield tag="001">BV047229463</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210506 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210408s2019 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781681735054</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-68173-505-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781681735078</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-68173-507-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1104330469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047229463</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518/.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramm, Alexander G.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1148973524</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry problems</subfield><subfield code="b">the Navier-Stokes problem</subfield><subfield code="c">Alexander G. Ramm</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Navier-Stokes problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Rafael, CA</subfield><subfield code="b">Morgan & Claypool</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 71 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on mathemathics and statistics</subfield><subfield code="v">23</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "invisible obstacles." In Chapter 5, it provides a solution to the Navier-Stokes problem in R3. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier-Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Helmholtz equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier-Stokes equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scattering (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-68173-506-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on mathemathics and statistics</subfield><subfield code="v">23</subfield><subfield code="w">(DE-604)BV041563508</subfield><subfield code="9">23</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032633963</subfield></datafield></record></collection> |
id | DE-604.BV047229463 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:00:04Z |
indexdate | 2024-07-10T09:06:18Z |
institution | BVB |
isbn | 9781681735054 9781681735078 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032633963 |
oclc_num | 1104330469 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xiv, 71 Seiten Diagramme |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Morgan & Claypool |
record_format | marc |
series | Synthesis lectures on mathemathics and statistics |
series2 | Synthesis lectures on mathemathics and statistics |
spelling | Ramm, Alexander G. 1940- Verfasser (DE-588)1148973524 aut Symmetry problems the Navier-Stokes problem Alexander G. Ramm Navier-Stokes problem San Rafael, CA Morgan & Claypool [2019] xiv, 71 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Synthesis lectures on mathemathics and statistics 23 This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "invisible obstacles." In Chapter 5, it provides a solution to the Navier-Stokes problem in R3. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier-Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies Helmholtz equation Navier-Stokes equations Scattering (Mathematics) Navier-Stokes-Gleichung (DE-588)4041456-5 gnd rswk-swf Navier-Stokes-Gleichung (DE-588)4041456-5 s DE-604 Erscheint auch als Online-Ausgabe 978-1-68173-506-1 Synthesis lectures on mathemathics and statistics 23 (DE-604)BV041563508 23 |
spellingShingle | Ramm, Alexander G. 1940- Symmetry problems the Navier-Stokes problem Synthesis lectures on mathemathics and statistics Helmholtz equation Navier-Stokes equations Scattering (Mathematics) Navier-Stokes-Gleichung (DE-588)4041456-5 gnd |
subject_GND | (DE-588)4041456-5 |
title | Symmetry problems the Navier-Stokes problem |
title_alt | Navier-Stokes problem |
title_auth | Symmetry problems the Navier-Stokes problem |
title_exact_search | Symmetry problems the Navier-Stokes problem |
title_exact_search_txtP | Symmetry problems the Navier-Stokes problem |
title_full | Symmetry problems the Navier-Stokes problem Alexander G. Ramm |
title_fullStr | Symmetry problems the Navier-Stokes problem Alexander G. Ramm |
title_full_unstemmed | Symmetry problems the Navier-Stokes problem Alexander G. Ramm |
title_short | Symmetry problems |
title_sort | symmetry problems the navier stokes problem |
title_sub | the Navier-Stokes problem |
topic | Helmholtz equation Navier-Stokes equations Scattering (Mathematics) Navier-Stokes-Gleichung (DE-588)4041456-5 gnd |
topic_facet | Helmholtz equation Navier-Stokes equations Scattering (Mathematics) Navier-Stokes-Gleichung |
volume_link | (DE-604)BV041563508 |
work_keys_str_mv | AT rammalexanderg symmetryproblemsthenavierstokesproblem AT rammalexanderg navierstokesproblem |