Modern impact and penetration mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY
Cambridge University Press
2021
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiv, 680 Seiten Illustrationen, Diagramme |
ISBN: | 9781108497107 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047226005 | ||
003 | DE-604 | ||
005 | 20220505 | ||
007 | t | ||
008 | 210407s2021 a||| |||| 00||| eng d | ||
020 | |a 9781108497107 |c hbk |9 978-1-108-49710-7 | ||
035 | |a (OCoLC)1256438655 | ||
035 | |a (DE-599)BVBBV047226005 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-862 | ||
084 | |a UF 2000 |0 (DE-625)145568: |2 rvk | ||
100 | 1 | |a Walker, James D. |e Verfasser |0 (DE-588)1234718707 |4 aut | |
245 | 1 | 0 | |a Modern impact and penetration mechanics |c James D. Walker (Southwest Research Institute) |
264 | 1 | |a Cambridge ; New York, NY |b Cambridge University Press |c 2021 | |
300 | |a xiv, 680 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Durchschlag |0 (DE-588)4197018-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Durchschlag |0 (DE-588)4197018-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-1-108-68402-6 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032630547&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032630547 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/UF 2000 W181 |
DE-BY-FWS_katkey | 928083 |
DE-BY-FWS_media_number | 083000525220 |
_version_ | 1806177090104459264 |
adam_text | Contents Preface xiii 1. Introduction 1.1. Launchers 1.2. Launch Packages 1.3. Diagnostics 1.4. Noniinearities and Confinement 1.5. Sources Exercise 1 3 8 8 9 10 10 2. Conservation Laws and the Hugoniot JumpConditions 2.1. Conservation Laws in the EulerianReference Frame 2.2. Tractions and the Cauchy Stress Tensor 2.3. Conservation of Mass 2.4. Conservation of Momentum 2.5. Conservation of Energy 2.6. Conserved Quantities 2.7. The Rankine-Hugoniot Jump Conditions 2.8. Differential Jump Conditions 2.9. Cylindrical and Spherical Shock Fronts 2.10. Equations of State 2.11. Initial and Boundary Conditions 2.12. Comments on Waves and ClassicalContinuum Mechanics 2.13. Sources Exercises 11 11 12 14 16 17 19 20 27 28 29 33 34 38 38 3. Elastic-Plastic Solids 3.1. Strain 3.2. Small Strain Linear Elasticity 3.3. Metal Plasticity 3.4. Uniaxial Stress 3.5. Uniaxial Strain 3.6. Various Yield Surfaces 3.7. Rigid Plasticity 3.8. Energy Dissipation through PlasticFlow 3.9. Energy Stored in Elastic Deformation 3.10. Thermal Terms 3.11. A Discussion of Strain 3.12. Characterization of Real Materials 3.13. Constitutive Models for Yield and Flow Stress 43 43 45 47 53 56 59 63 64 67 68 68 70 79 ѴІІ
viii CONTENTS 3.14. Damage, Failure, and Stress State 3.15. Effects of Scale 3.16. Exact Solution for an Arbitrary StrainIncrement 3.17. Sources Exercises 84 95 97 102 102 4. Mechanical Waves, Shocks,andRarefactions 4.1. Linear Elastic Waves; Pushing on a Half Space 4.2. Compressive Shocks 4.3. Rarefaction Fans and the Rarefaction Shock Approximation 4.4. Impacting a Rigid Wall 4.5. Reflection off a Free Surface 4.6. Finite Impactor Striking a Rigid Wall 4.7. Finite Impactor with Hysteresis Striking a Rigid Wall 4.8. A Finite Projectile Impacting a Material Wall 4.9. Wave Reflection and Transmission at an Internal Interface 4.10. Square Pulse Reflection:Tensile Stress States and Tensile Spall 4.11. Exact Solution for Viscoelastic Smooth WaveFronts 4.12. A Warning about the (и, ·) Plane 4.13. Sources Exercises 117 117 119 133 143 145 146 148 149 156 158 164 167 168 168 5. Elastic-Plastic Deformation and Shocks 175 5.1. Cylindrical Impactor Striking a Rigid Wall (Taylor Anvil) 175 5.2. The Split-Hopkinson Pressure Bar 183 5.3. Pushing on an Elastic-Plastic Half Space: The Two-Wave Structure and Flyer Plate Impacts 190 5.4. The Question of Path 194 5.5. The Hugoniot Elastic Limit 196 5.6. The Hugoniot and Rarefaction of Real Materials 197 5.7. Flyer Plate Impact Test 204 5.8. Elastic-Plastic Shock Rise Times 205 5.9. Thermal Terms 207 5.10. Mie-Grüneisen Equation of State 209 5.11. Temperature 213 5.12. Reflection and Transmission 218 5.13. Additional Comments on Sound Speedand Precursors 221 5.14. Initial Porosity 224 5.15. Phase Changes 232 5.16. Detonation of Explosives 236
5.17. Sources 242 Exercises 242 6. The Cavity Expansion 6.1. The One-Dimensional Cavity Expansion 6.2. The Boundary Condition at the Elastic-Plastic Interface 6.3. The Compressible Cylindrical Cavity Expansion 6.4. The Compressible Spherical Cavity Expansion Solution 257 257 260 261 269
CONTENTS 6.5. Comparing the One-Dimensional, Cylindrical, and Spherical Cavity Expansions 6.6. Effect of Incompressibility and Velocity Bounds for the Cylindrical Cavity Expansion 6.7. Extending the Cavity Expansion to AddressNonlinear Pressure Response 6.8. Numerical Implementation 6.9. Sources Exercises 283 285 285 286 7. Penetration 7.1. Steel Projectiles Penetrating Aluminum Targets 7.2. Tungsten Projectiles Penetrating Steel Targets 7.3. Projectile Erosion 7.4. Phases of Penetration 7.5. Centerline Momentum Balance and Hydrodynamic Approximation 7.6. Numerical Simulations 7.7. NumericalSimulations of L/D =10 Tungsten Impacting Steel 7.8. The Stress at theProjectile-Target Interface 7.9. Crater Radii, Plastic and Elastic Strains, and the Energy Partition 7.10. The L/D Effect 7.11. Hypervelocity Impact 7.12. Sources Exercises 293 293 295 297 300 300 302 303 313 315 319 329 330 330 8. The Tate-Alekseevskii Model 8.1. Bernoulli’s Equation for Steady Flow 8.2. The Tate Model 8.3. Behavior of the Tate Model 8.4. An Example 8.5. Further Examples with the Tate Model 8.6. Tate’s Later Modifications 8.7. The Link between Rt and the Cavity Expansion 8.8. Target Resistance and the Rt Dilemma 8.9. Sensitivity of the Tate Model to Various Parameters 8.10. The Minimum Speed for Penetration 8.11. Sources Exercises 333 333 335 338 340 345 348 353 357 363 364 366 366 9. The Crater and Ejecta 9.1. Axial Change in Momentum for the Target 9.2. Axial Change in Momentum for the Projectile 9.3. Radial Momentum and the Crater Radius 9.4. Two Empirical Relations 9.5. Where Does the Material Go?
9.6. A Shear Band Motivated Damage Model 9.7. Damage Saturation 9.8. Sources Exercises 371 371 371 372 376 378 384 388 389 389 278 280
CONTENTS 10. The Walker-Anderson Model 10.1. The Centerline Momentum Balance 10.2. The Model 10.3. A Velocity Profile in the Projectile 10.4. A Velocity Profile in the Target 10.5. The Deceleration of the Rear of the Projectile 10.6. The Stress in the Target and the Penetration Resistance 10.7. The Momentum Balance Equation 10.8. The Extent of the Plastically Flowing Region in the Target 10.9. The Extent of the Plastically Flowing Region inthe Projectile 10.10. Initial Impact Conditions 10.11. Examples 10.12. Comparison of Velocities and Projectile Residual Length 10.13. Comparison to the Hohler-Stilp Data from Chapter 8 10.14. Comparison to Hypervelocity Penetration vs. Time Data 10.15. Tungsten into Aluminum: Rigid and Secondary Penetration 10.16. Plastic Strain in the Target 10.17. Finding a using the Dynamic Plasticity Approach 10.18. Sources Exercises 11. Finite Targets 11.1. A Velocity Field for Back Surface Bulging 11.2. Model Bulge and Breakout and Experimental Comparisons 11.3. Multiple Plates 11.4. Ductility vs. Strength Influences on Ѵы and Vr 11.5. Fragmentation and Behind Armor Debris 11.6. Sources Exercises 12. Nondeforming (Rigid) Impactors 12.1. Thin Plate Perforation by Blunt Rigid Projectiles 12.2. Flow Fields for Pointed Projectiles 12.3. Examples with the Walker-Anderson Model 12.4. Direct Use of the Cavity Expansion 12.5. Projectile Eroding-Noneroding Transition Velocity 12.6. Sources Exercises 13. Yarns, Fabrics, and Fiber-Based Composites 13.1. Deformation, Strain, and the First Piola-Kirchhoff Stress 13.2. The Behavior of a Single Yarn under Impact
13.3. Static Deflection of a Fabric Sheet Composed of0/90 Yarns 13.4. The Ballistic Limit of a Fabric 13.5. Fiber-Based Composites 13.6. Behavior of Other Fibers 13.7. One, Two, Many 13.8. General Anisotropy 13.9. Sources 391 391 393 394 395 399 401 405 407 408 409 411 416 418 419 422 426 429 434 434 443 445 454 459 461 471 476 476 481 481 484 490 497 502 502 503 607 508 515 525 534 539 541 543 544 548
CONTENTS Exercises xi 548 14. Rotation, Stretch, and Finite Elasticity 14.1. The Deformation Gradient 14.2. Deformation: Rotation and Stretch in Two Dimensions 14.3. Deformation: Stretch and Rotation in Three Dimensions 14.4. Stress and Strain in Original and Current Configurations 14.5. Rate of Deformation and Rotation Rate 14.6. Finite Strain Elasticity 14.7. Blatz-Ko and Mooney-Rivlin Constitutive Models 14.8. Incremental Constitutive Models and Corotational Stress Rates 14.9. Sources Exercises 553 553 555 560 564 567 569 572 579 586 586 Appendix A. Conservation Laws and Curvilinear Coordinates A.l. Indiciai Notation A.2. The Three Conservation Laws A.3. Curvilinear Geometry and Differential Operators A.4. Cartesian Coordinates A. 5. Cylindrical Coordinates A.6. Spherical Coordinates A.7. General Coordinates A.8. Sources Exercises 599 599 600 605 619 622 625 629 647 647 Appendix B. Units, Conversions, and Constants B.l. Consistent Units B.2. Useful Conversions B.3. Constants of Interest 651 651 652 652 Appendix C. Elastic, Shock, and Strength Properties of Materials 653 Appendix D. Exercises Figure Acknowledgments 663 664 Bibliography 665 Index 675
|
adam_txt |
Contents Preface xiii 1. Introduction 1.1. Launchers 1.2. Launch Packages 1.3. Diagnostics 1.4. Noniinearities and Confinement 1.5. Sources Exercise 1 3 8 8 9 10 10 2. Conservation Laws and the Hugoniot JumpConditions 2.1. Conservation Laws in the EulerianReference Frame 2.2. Tractions and the Cauchy Stress Tensor 2.3. Conservation of Mass 2.4. Conservation of Momentum 2.5. Conservation of Energy 2.6. Conserved Quantities 2.7. The Rankine-Hugoniot Jump Conditions 2.8. Differential Jump Conditions 2.9. Cylindrical and Spherical Shock Fronts 2.10. Equations of State 2.11. Initial and Boundary Conditions 2.12. Comments on Waves and ClassicalContinuum Mechanics 2.13. Sources Exercises 11 11 12 14 16 17 19 20 27 28 29 33 34 38 38 3. Elastic-Plastic Solids 3.1. Strain 3.2. Small Strain Linear Elasticity 3.3. Metal Plasticity 3.4. Uniaxial Stress 3.5. Uniaxial Strain 3.6. Various Yield Surfaces 3.7. Rigid Plasticity 3.8. Energy Dissipation through PlasticFlow 3.9. Energy Stored in Elastic Deformation 3.10. Thermal Terms 3.11. A Discussion of Strain 3.12. Characterization of Real Materials 3.13. Constitutive Models for Yield and Flow Stress 43 43 45 47 53 56 59 63 64 67 68 68 70 79 ѴІІ
viii CONTENTS 3.14. Damage, Failure, and Stress State 3.15. Effects of Scale 3.16. Exact Solution for an Arbitrary StrainIncrement 3.17. Sources Exercises 84 95 97 102 102 4. Mechanical Waves, Shocks,andRarefactions 4.1. Linear Elastic Waves; Pushing on a Half Space 4.2. Compressive Shocks 4.3. Rarefaction Fans and the Rarefaction Shock Approximation 4.4. Impacting a Rigid Wall 4.5. Reflection off a Free Surface 4.6. Finite Impactor Striking a Rigid Wall 4.7. Finite Impactor with Hysteresis Striking a Rigid Wall 4.8. A Finite Projectile Impacting a Material Wall 4.9. Wave Reflection and Transmission at an Internal Interface 4.10. Square Pulse Reflection:Tensile Stress States and Tensile Spall 4.11. Exact Solution for Viscoelastic Smooth WaveFronts 4.12. A Warning about the (и, ·) Plane 4.13. Sources Exercises 117 117 119 133 143 145 146 148 149 156 158 164 167 168 168 5. Elastic-Plastic Deformation and Shocks 175 5.1. Cylindrical Impactor Striking a Rigid Wall (Taylor Anvil) 175 5.2. The Split-Hopkinson Pressure Bar 183 5.3. Pushing on an Elastic-Plastic Half Space: The Two-Wave Structure and Flyer Plate Impacts 190 5.4. The Question of Path 194 5.5. The Hugoniot Elastic Limit 196 5.6. The Hugoniot and Rarefaction of Real Materials 197 5.7. Flyer Plate Impact Test 204 5.8. Elastic-Plastic Shock Rise Times 205 5.9. Thermal Terms 207 5.10. Mie-Grüneisen Equation of State 209 5.11. Temperature 213 5.12. Reflection and Transmission 218 5.13. Additional Comments on Sound Speedand Precursors 221 5.14. Initial Porosity 224 5.15. Phase Changes 232 5.16. Detonation of Explosives 236
5.17. Sources 242 Exercises 242 6. The Cavity Expansion 6.1. The One-Dimensional Cavity Expansion 6.2. The Boundary Condition at the Elastic-Plastic Interface 6.3. The Compressible Cylindrical Cavity Expansion 6.4. The Compressible Spherical Cavity Expansion Solution 257 257 260 261 269
CONTENTS 6.5. Comparing the One-Dimensional, Cylindrical, and Spherical Cavity Expansions 6.6. Effect of Incompressibility and Velocity Bounds for the Cylindrical Cavity Expansion 6.7. Extending the Cavity Expansion to AddressNonlinear Pressure Response 6.8. Numerical Implementation 6.9. Sources Exercises 283 285 285 286 7. Penetration 7.1. Steel Projectiles Penetrating Aluminum Targets 7.2. Tungsten Projectiles Penetrating Steel Targets 7.3. Projectile Erosion 7.4. Phases of Penetration 7.5. Centerline Momentum Balance and Hydrodynamic Approximation 7.6. Numerical Simulations 7.7. NumericalSimulations of L/D =10 Tungsten Impacting Steel 7.8. The Stress at theProjectile-Target Interface 7.9. Crater Radii, Plastic and Elastic Strains, and the Energy Partition 7.10. The L/D Effect 7.11. Hypervelocity Impact 7.12. Sources Exercises 293 293 295 297 300 300 302 303 313 315 319 329 330 330 8. The Tate-Alekseevskii Model 8.1. Bernoulli’s Equation for Steady Flow 8.2. The Tate Model 8.3. Behavior of the Tate Model 8.4. An Example 8.5. Further Examples with the Tate Model 8.6. Tate’s Later Modifications 8.7. The Link between Rt and the Cavity Expansion 8.8. Target Resistance and the Rt Dilemma 8.9. Sensitivity of the Tate Model to Various Parameters 8.10. The Minimum Speed for Penetration 8.11. Sources Exercises 333 333 335 338 340 345 348 353 357 363 364 366 366 9. The Crater and Ejecta 9.1. Axial Change in Momentum for the Target 9.2. Axial Change in Momentum for the Projectile 9.3. Radial Momentum and the Crater Radius 9.4. Two Empirical Relations 9.5. Where Does the Material Go?
9.6. A Shear Band Motivated Damage Model 9.7. Damage Saturation 9.8. Sources Exercises 371 371 371 372 376 378 384 388 389 389 278 280
CONTENTS 10. The Walker-Anderson Model 10.1. The Centerline Momentum Balance 10.2. The Model 10.3. A Velocity Profile in the Projectile 10.4. A Velocity Profile in the Target 10.5. The Deceleration of the Rear of the Projectile 10.6. The Stress in the Target and the Penetration Resistance 10.7. The Momentum Balance Equation 10.8. The Extent of the Plastically Flowing Region in the Target 10.9. The Extent of the Plastically Flowing Region inthe Projectile 10.10. Initial Impact Conditions 10.11. Examples 10.12. Comparison of Velocities and Projectile Residual Length 10.13. Comparison to the Hohler-Stilp Data from Chapter 8 10.14. Comparison to Hypervelocity Penetration vs. Time Data 10.15. Tungsten into Aluminum: Rigid and Secondary Penetration 10.16. Plastic Strain in the Target 10.17. Finding a using the Dynamic Plasticity Approach 10.18. Sources Exercises 11. Finite Targets 11.1. A Velocity Field for Back Surface Bulging 11.2. Model Bulge and Breakout and Experimental Comparisons 11.3. Multiple Plates 11.4. Ductility vs. Strength Influences on Ѵы and Vr 11.5. Fragmentation and Behind Armor Debris 11.6. Sources Exercises 12. Nondeforming (Rigid) Impactors 12.1. Thin Plate Perforation by Blunt Rigid Projectiles 12.2. Flow Fields for Pointed Projectiles 12.3. Examples with the Walker-Anderson Model 12.4. Direct Use of the Cavity Expansion 12.5. Projectile Eroding-Noneroding Transition Velocity 12.6. Sources Exercises 13. Yarns, Fabrics, and Fiber-Based Composites 13.1. Deformation, Strain, and the First Piola-Kirchhoff Stress 13.2. The Behavior of a Single Yarn under Impact
13.3. Static Deflection of a Fabric Sheet Composed of0/90 Yarns 13.4. The Ballistic Limit of a Fabric 13.5. Fiber-Based Composites 13.6. Behavior of Other Fibers 13.7. One, Two, Many 13.8. General Anisotropy 13.9. Sources 391 391 393 394 395 399 401 405 407 408 409 411 416 418 419 422 426 429 434 434 443 445 454 459 461 471 476 476 481 481 484 490 497 502 502 503 607 508 515 525 534 539 541 543 544 548
CONTENTS Exercises xi 548 14. Rotation, Stretch, and Finite Elasticity 14.1. The Deformation Gradient 14.2. Deformation: Rotation and Stretch in Two Dimensions 14.3. Deformation: Stretch and Rotation in Three Dimensions 14.4. Stress and Strain in Original and Current Configurations 14.5. Rate of Deformation and Rotation Rate 14.6. Finite Strain Elasticity 14.7. Blatz-Ko and Mooney-Rivlin Constitutive Models 14.8. Incremental Constitutive Models and Corotational Stress Rates 14.9. Sources Exercises 553 553 555 560 564 567 569 572 579 586 586 Appendix A. Conservation Laws and Curvilinear Coordinates A.l. Indiciai Notation A.2. The Three Conservation Laws A.3. Curvilinear Geometry and Differential Operators A.4. Cartesian Coordinates A. 5. Cylindrical Coordinates A.6. Spherical Coordinates A.7. General Coordinates A.8. Sources Exercises 599 599 600 605 619 622 625 629 647 647 Appendix B. Units, Conversions, and Constants B.l. Consistent Units B.2. Useful Conversions B.3. Constants of Interest 651 651 652 652 Appendix C. Elastic, Shock, and Strength Properties of Materials 653 Appendix D. Exercises Figure Acknowledgments 663 664 Bibliography 665 Index 675 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Walker, James D. |
author_GND | (DE-588)1234718707 |
author_facet | Walker, James D. |
author_role | aut |
author_sort | Walker, James D. |
author_variant | j d w jd jdw |
building | Verbundindex |
bvnumber | BV047226005 |
classification_rvk | UF 2000 |
ctrlnum | (OCoLC)1256438655 (DE-599)BVBBV047226005 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01373nam a2200325 c 4500</leader><controlfield tag="001">BV047226005</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220505 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210407s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108497107</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-108-49710-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1256438655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047226005</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walker, James D.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1234718707</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern impact and penetration mechanics</subfield><subfield code="c">James D. Walker (Southwest Research Institute)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 680 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Durchschlag</subfield><subfield code="0">(DE-588)4197018-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Durchschlag</subfield><subfield code="0">(DE-588)4197018-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-108-68402-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032630547&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032630547</subfield></datafield></record></collection> |
id | DE-604.BV047226005 |
illustrated | Illustrated |
index_date | 2024-07-03T16:59:12Z |
indexdate | 2024-08-01T11:31:40Z |
institution | BVB |
isbn | 9781108497107 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032630547 |
oclc_num | 1256438655 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-862 DE-BY-FWS |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-862 DE-BY-FWS |
physical | xiv, 680 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Walker, James D. Modern impact and penetration mechanics Durchschlag (DE-588)4197018-4 gnd |
subject_GND | (DE-588)4197018-4 |
title | Modern impact and penetration mechanics |
title_auth | Modern impact and penetration mechanics |
title_exact_search | Modern impact and penetration mechanics |
title_exact_search_txtP | Modern impact and penetration mechanics |
title_full | Modern impact and penetration mechanics James D. Walker (Southwest Research Institute) |
title_fullStr | Modern impact and penetration mechanics James D. Walker (Southwest Research Institute) |
title_full_unstemmed | Modern impact and penetration mechanics James D. Walker (Southwest Research Institute) |
title_short | Modern impact and penetration mechanics |
title_sort | modern impact and penetration mechanics |
topic | Durchschlag (DE-588)4197018-4 gnd |
topic_facet | Durchschlag |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032630547&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT walkerjamesd modernimpactandpenetrationmechanics |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 UF 2000 W181 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |