Development of a hybrid vortex method for wind turbine rotor aerodynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Aachen
Mainz
2021
|
Schriftenreihe: | Aachener Beiträge zur Strömungsmechanik
Band 19 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xii, 130 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 220 g |
ISBN: | 9783958864030 3958864031 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV047221748 | ||
003 | DE-604 | ||
005 | 20210909 | ||
007 | t | ||
008 | 210401s2021 gw a||| m||| 00||| eng d | ||
015 | |a 21,N12 |2 dnb | ||
016 | 7 | |a 1229454268 |2 DE-101 | |
020 | |a 9783958864030 |c : EUR 39.50 (DE), EUR 40.70 (AT) |9 978-3-95886-403-0 | ||
020 | |a 3958864031 |9 3-95886-403-1 | ||
024 | 3 | |a 9783958864030 | |
035 | |a (OCoLC)1268185466 | ||
035 | |a (DE-599)DNB1229454268 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-83 | ||
084 | |a ZL 5410 |0 (DE-625)159580: |2 rvk | ||
084 | |a 620 |2 23sdnb | ||
100 | 1 | |a Thönnißen, Frederik |d 1987- |e Verfasser |0 (DE-588)1229389970 |4 aut | |
245 | 1 | 0 | |a Development of a hybrid vortex method for wind turbine rotor aerodynamics |c Frederik Thönnißen |
263 | |a 202103 | ||
264 | 1 | |a Aachen |b Mainz |c 2021 | |
300 | |a xii, 130 Seiten |b Illustrationen, Diagramme |c 21 cm x 14.8 cm, 220 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Aachener Beiträge zur Strömungsmechanik |v Band 19 | |
502 | |b Dissertation |c RWTH Aachen University |d 2021 | ||
650 | 0 | 7 | |a Windkraftwerk |0 (DE-588)4128839-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rotorblatt |0 (DE-588)4286652-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Aerodynamik |0 (DE-588)4000589-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Berechnung |0 (DE-588)4120997-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Windlast |0 (DE-588)4133242-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Profil |g Aerodynamik |0 (DE-588)4126393-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Windturbine |0 (DE-588)4189962-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rotor |g Drehflügel |0 (DE-588)4136888-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Panelverfahren |0 (DE-588)4200495-0 |2 gnd |9 rswk-swf |
653 | |a Zukunft | ||
653 | |a Ökoenergie | ||
653 | |a Aerodynamics | ||
653 | |a wind turbines | ||
653 | |a Windenergie | ||
653 | |a Hybrid Vortex Method | ||
653 | |a Strömungsmechnaik | ||
653 | |a Erneuerbare Energie | ||
653 | |a Windturbinen | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Windturbine |0 (DE-588)4189962-3 |D s |
689 | 0 | 1 | |a Rotor |g Drehflügel |0 (DE-588)4136888-5 |D s |
689 | 0 | 2 | |a Profil |g Aerodynamik |0 (DE-588)4126393-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Windkraftwerk |0 (DE-588)4128839-7 |D s |
689 | 1 | 1 | |a Rotorblatt |0 (DE-588)4286652-2 |D s |
689 | 1 | 2 | |a Aerodynamik |0 (DE-588)4000589-6 |D s |
689 | 1 | 3 | |a Windlast |0 (DE-588)4133242-8 |D s |
689 | 1 | 4 | |a Berechnung |0 (DE-588)4120997-7 |D s |
689 | 1 | 5 | |a Panelverfahren |0 (DE-588)4200495-0 |D s |
689 | 1 | |5 DE-604 | |
710 | 2 | |a Verlag Mainz |0 (DE-588)1065499698 |4 pbl | |
830 | 0 | |a Aachener Beiträge zur Strömungsmechanik |v Band 19 |w (DE-604)BV012780166 |9 19 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032626353&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032626353 |
Datensatz im Suchindex
_version_ | 1804182343859044352 |
---|---|
adam_text | CONTENTS
ABSTRACT
I
ZUSAMMENFASSUNG
III
NOMENCLATURE
IX
LIST
OF
FIGURES
XIII
LIST
OF
TABLES
XVII
1.
INTRODUCTION
1
2.
AERODYNAMIC
ROTOR
PERFORMANCE
PREDICTION
USING
A
VORTEX
PANEL
METHOD
7
2.1.
INTRODUCTION
.......................................................................................................
7
2.2.
FUNDAMENTALS
OF
POTENTIAL
FLOW
THEORY
................................................
9
2.2.1.
THE
NAVIER-STOKES
EQUATIONS
.....................................................
9
2.2.2.
FUNDAMENTALS
OF
AN
INVISCID,
INCOMPRESSIBLE
FLOW
....
9
2.2.3.
FUNDAMENTALS
OF
AN
IRROTATIONAL
FLOW
.....................................
12
2.2.4.
VELOCITY
POTENTIAL
..........................................................................
13
2.2.5.
SOLUTION
TO
THE
LAPLACE
EQUATION
FOR
THE
VELOCITY
POTENTIAL
15
2.2.6.
SUMMARY
............................................................................................
16
2.3.
IMPLEMENTATION
OF
A
VORTEX
PANEL
METHOD
...........................................
17
2.3.1.
SPATIAL
DISCRETIZATION
AND
SELECTION
OF
ELEMENTARY
SOLUTIONS
17
2.3.2.
BOUNDARY
CONDITIONS
...................................................................
19
2.3.3.
NUMERICAL
SOLUTION
OF
THE
GOVERNING
SYSTEM
OF
EQUATIONS
20
2.3.4.
CALCULATION
OF
THE
AERODYNAMIC
PROPERTIES
.........................
21
2.3.5.
TEMPORAL
ADVANCE
OF
THE
TRANSIENT
SOLUTION
.....................
22
2.4.
GPU-BASED
CODE
ACCELERATION
...................................................................
24
2.5.
VALIDATION
OF
THE
IMPLEMENTED
VORTEX
PANEL
METHOD
.....................
26
2.5.1.
TEST
CASES
FOR
A
TWO-DIMENSIONAL
STEADY
FLOW
...................
26
2.5.2.
TEST
CASES
FOR
A
TWO-DIMENSIONAL
UNSTEADY
FLOW
....
29
2.5.3.
TEST
CASES
FOR
A
THREE-DIMENSIONAL
STEADY
FLOW
...............
36
2.5.4.
TEST
CASES
FOR
A
THREE-DIMENSIONAL
TRANSIENT
FLOW
....
37
2.6.
PREDICTION
OF
THE
AERODYNAMIC
PERFORMANCE
OF
A
WIND
TURBINE
ROTOR
.................................................................................................................
39
2.6.1.
DESCRIPTION
OF
THE
MEXICO
PROJECT
......................................
39
VI
CONTENTS
2.6.2.
DESCRIPTION
OF
THE
ROTOR
BLADE
GEOMETRY
.............................
40
2.6.3.
SENSITIVITY
ANALYSIS
.......................................................................
40
2.6.3.1.
SPATIAL
DISCRETIZATION
..................................................
41
2.6.3.2.
TEMPORAL
DISCRETIZATION
..............................................
43
2.6.4.
COMPARISON
TO
EXPERIMENTAL
RESULTS
.......................................
46
2.6.4.1.
AXIAL
INFLOW
CONDITIONS
..............................................
47
2.6.4.2.
YAWED
INFLOW
CONDITIONS
...........................................
57
2.7.
CONCLUSION
.......................................................................................................
61
3.
MODELING
OF
A
ROTOR
WAKE
USING
A
VORTEX
PARTICLE
METHOD
63
3.1.
INTRODUCTION
.......................................................................................................
63
3.2.
FUNDAMENTALS
OF
VORTEX
PARTICLE
METHODS
...........................................
65
3.3.
REGULARIZATION
OF
SINGULAR
PARTICLES
.........................................................
66
3.4.
VORTICITY
STRETCHING
.........................................................................................
67
3.5.
VISCOUS
DIFFUSION
.............................................................................................
68
3.6.
IMPLEMENTATION
OF
A
VORTEX
PARTICLE
METHOD
....................................
69
3.6.1.
TRANSFORMATION
OF
VORTEX
PANELS
INTO
VORTEX
PARTICLES
.
.
69
3.6.2.
PRESERVATION
OF
THE
INTEGRITY
OF
THE
LAGRANGIAN
APPROACH
70
3.6.2.1.
REDUCTION
OF
THE
DIVERGENCE
OF
THE
VORTICITY
FIELD
70
3.6.2.2.
REDISTRIBUTION
OF
PARTICLES
.......................................
71
3.7.
APPLICATION
OF
THE
VORTEX
PARTICLE
METHOD
...........................................
72
3.7.1.
INFLUENCE
OF
THE
POINT
IN
TIME
OF
THE
PANEL
TRANSFORMATION
73
3.7.2.
INFLUENCE
OF
THE
SPATIAL
DISCRETIZATION
OF
THE
WAKE
....
76
3.7.3.
INFLUENCE
OF
THE
TEMPORAL
DISCRETIZATION
................................
79
3.7.4.
INFLUENCE
OF
THE
DIVERGENCE
FILTERING
METHOD
.....................
83
3.7.5.
COMPARISON
OF
THE
PREDICTION
PERFORMANCE
OF
THE
PANEL
AND
PARTICLE
METHOD
.......................................................................
88
3.8.
CONCLUSION
.......................................................................................................
93
4.
ACCELERATION
OF
VORTEX
METHODS
95
4.1.
INTRODUCTION
.......................................................................................................
95
4.2.
METHODOLOGY
OF
THE
PSEUDO-PARTICLE
METHOD
.........................................
97
4.2.1.
THE
CONCEPT
OF
PSEUDO-PARTICLES
..............................................
97
4.2.2.
OCTREE-BASED
SUBDIVISION
OF
THE
COMPUTATIONAL
DOMAIN
.
98
4.3.
PERFORMANCE
EVALUATION
..................................................................................101
4.3.1.
INFLUENCE
OF
THE
SUBDIVISION
OF
THE
COMPUTATIONAL
DOMAIN
104
4.3.1.1.
INFLUENCE
OF
THE
SPATIAL
RESOLUTION
OF
THE
OCTREE
104
4.3.1.2.
INFLUENCE
OF
THE
BOX
ASPECT
RATIO
................................105
4.3.2.
INFLUENCE
OF
THE
TIP-SPEED
RATIO
.....................................................
107
4.4.
ERROR
ESTIMATION
................................................................................................
108
4.5.
PERFORMANCE
COMPARISON
BETWEEN
THE
PSEUDO-PARTICLE
AND
THE
PANEL
METHOD
.......................................................................................................
110
4.6.
CONCLUSION
...........................................................................................................
114
CONTENTS
VII
5.
SUMMARY
AND
CONCLUSION
115
BIBLIOGRAPHY
119
APPENDIX
127
A.
AUTHOR-RELATED
PUBLISHED
PAPERS
AND
THESES
129
A.L.
PREVIOUSLY
PUBLISHED
.......................................................................................
129
A.
1.1.
PEER-REVIEWED
PUBLICATIONS
..............................................................
129
A.
2.
STUDENT
THESES
..................................................................................................
129
|
adam_txt |
CONTENTS
ABSTRACT
I
ZUSAMMENFASSUNG
III
NOMENCLATURE
IX
LIST
OF
FIGURES
XIII
LIST
OF
TABLES
XVII
1.
INTRODUCTION
1
2.
AERODYNAMIC
ROTOR
PERFORMANCE
PREDICTION
USING
A
VORTEX
PANEL
METHOD
7
2.1.
INTRODUCTION
.
7
2.2.
FUNDAMENTALS
OF
POTENTIAL
FLOW
THEORY
.
9
2.2.1.
THE
NAVIER-STOKES
EQUATIONS
.
9
2.2.2.
FUNDAMENTALS
OF
AN
INVISCID,
INCOMPRESSIBLE
FLOW
.
9
2.2.3.
FUNDAMENTALS
OF
AN
IRROTATIONAL
FLOW
.
12
2.2.4.
VELOCITY
POTENTIAL
.
13
2.2.5.
SOLUTION
TO
THE
LAPLACE
EQUATION
FOR
THE
VELOCITY
POTENTIAL
15
2.2.6.
SUMMARY
.
16
2.3.
IMPLEMENTATION
OF
A
VORTEX
PANEL
METHOD
.
17
2.3.1.
SPATIAL
DISCRETIZATION
AND
SELECTION
OF
ELEMENTARY
SOLUTIONS
17
2.3.2.
BOUNDARY
CONDITIONS
.
19
2.3.3.
NUMERICAL
SOLUTION
OF
THE
GOVERNING
SYSTEM
OF
EQUATIONS
20
2.3.4.
CALCULATION
OF
THE
AERODYNAMIC
PROPERTIES
.
21
2.3.5.
TEMPORAL
ADVANCE
OF
THE
TRANSIENT
SOLUTION
.
22
2.4.
GPU-BASED
CODE
ACCELERATION
.
24
2.5.
VALIDATION
OF
THE
IMPLEMENTED
VORTEX
PANEL
METHOD
.
26
2.5.1.
TEST
CASES
FOR
A
TWO-DIMENSIONAL
STEADY
FLOW
.
26
2.5.2.
TEST
CASES
FOR
A
TWO-DIMENSIONAL
UNSTEADY
FLOW
.
29
2.5.3.
TEST
CASES
FOR
A
THREE-DIMENSIONAL
STEADY
FLOW
.
36
2.5.4.
TEST
CASES
FOR
A
THREE-DIMENSIONAL
TRANSIENT
FLOW
.
37
2.6.
PREDICTION
OF
THE
AERODYNAMIC
PERFORMANCE
OF
A
WIND
TURBINE
ROTOR
.
39
2.6.1.
DESCRIPTION
OF
THE
MEXICO
PROJECT
.
39
VI
CONTENTS
2.6.2.
DESCRIPTION
OF
THE
ROTOR
BLADE
GEOMETRY
.
40
2.6.3.
SENSITIVITY
ANALYSIS
.
40
2.6.3.1.
SPATIAL
DISCRETIZATION
.
41
2.6.3.2.
TEMPORAL
DISCRETIZATION
.
43
2.6.4.
COMPARISON
TO
EXPERIMENTAL
RESULTS
.
46
2.6.4.1.
AXIAL
INFLOW
CONDITIONS
.
47
2.6.4.2.
YAWED
INFLOW
CONDITIONS
.
57
2.7.
CONCLUSION
.
61
3.
MODELING
OF
A
ROTOR
WAKE
USING
A
VORTEX
PARTICLE
METHOD
63
3.1.
INTRODUCTION
.
63
3.2.
FUNDAMENTALS
OF
VORTEX
PARTICLE
METHODS
.
65
3.3.
REGULARIZATION
OF
SINGULAR
PARTICLES
.
66
3.4.
VORTICITY
STRETCHING
.
67
3.5.
VISCOUS
DIFFUSION
.
68
3.6.
IMPLEMENTATION
OF
A
VORTEX
PARTICLE
METHOD
.
69
3.6.1.
TRANSFORMATION
OF
VORTEX
PANELS
INTO
VORTEX
PARTICLES
.
.
69
3.6.2.
PRESERVATION
OF
THE
INTEGRITY
OF
THE
LAGRANGIAN
APPROACH
70
3.6.2.1.
REDUCTION
OF
THE
DIVERGENCE
OF
THE
VORTICITY
FIELD
70
3.6.2.2.
REDISTRIBUTION
OF
PARTICLES
.
71
3.7.
APPLICATION
OF
THE
VORTEX
PARTICLE
METHOD
.
72
3.7.1.
INFLUENCE
OF
THE
POINT
IN
TIME
OF
THE
PANEL
TRANSFORMATION
73
3.7.2.
INFLUENCE
OF
THE
SPATIAL
DISCRETIZATION
OF
THE
WAKE
.
76
3.7.3.
INFLUENCE
OF
THE
TEMPORAL
DISCRETIZATION
.
79
3.7.4.
INFLUENCE
OF
THE
DIVERGENCE
FILTERING
METHOD
.
83
3.7.5.
COMPARISON
OF
THE
PREDICTION
PERFORMANCE
OF
THE
PANEL
AND
PARTICLE
METHOD
.
88
3.8.
CONCLUSION
.
93
4.
ACCELERATION
OF
VORTEX
METHODS
95
4.1.
INTRODUCTION
.
95
4.2.
METHODOLOGY
OF
THE
PSEUDO-PARTICLE
METHOD
.
97
4.2.1.
THE
CONCEPT
OF
PSEUDO-PARTICLES
.
97
4.2.2.
OCTREE-BASED
SUBDIVISION
OF
THE
COMPUTATIONAL
DOMAIN
.
98
4.3.
PERFORMANCE
EVALUATION
.101
4.3.1.
INFLUENCE
OF
THE
SUBDIVISION
OF
THE
COMPUTATIONAL
DOMAIN
104
4.3.1.1.
INFLUENCE
OF
THE
SPATIAL
RESOLUTION
OF
THE
OCTREE
104
4.3.1.2.
INFLUENCE
OF
THE
BOX
ASPECT
RATIO
.105
4.3.2.
INFLUENCE
OF
THE
TIP-SPEED
RATIO
.
107
4.4.
ERROR
ESTIMATION
.
108
4.5.
PERFORMANCE
COMPARISON
BETWEEN
THE
PSEUDO-PARTICLE
AND
THE
PANEL
METHOD
.
110
4.6.
CONCLUSION
.
114
CONTENTS
VII
5.
SUMMARY
AND
CONCLUSION
115
BIBLIOGRAPHY
119
APPENDIX
127
A.
AUTHOR-RELATED
PUBLISHED
PAPERS
AND
THESES
129
A.L.
PREVIOUSLY
PUBLISHED
.
129
A.
1.1.
PEER-REVIEWED
PUBLICATIONS
.
129
A.
2.
STUDENT
THESES
.
129 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Thönnißen, Frederik 1987- |
author_GND | (DE-588)1229389970 |
author_facet | Thönnißen, Frederik 1987- |
author_role | aut |
author_sort | Thönnißen, Frederik 1987- |
author_variant | f t ft |
building | Verbundindex |
bvnumber | BV047221748 |
classification_rvk | ZL 5410 |
ctrlnum | (OCoLC)1268185466 (DE-599)DNB1229454268 |
discipline | Maschinenbau / Maschinenwesen |
discipline_str_mv | Maschinenbau / Maschinenwesen |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03054nam a22007698cb4500</leader><controlfield tag="001">BV047221748</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210909 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210401s2021 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N12</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1229454268</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783958864030</subfield><subfield code="c">: EUR 39.50 (DE), EUR 40.70 (AT)</subfield><subfield code="9">978-3-95886-403-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3958864031</subfield><subfield code="9">3-95886-403-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783958864030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268185466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1229454268</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZL 5410</subfield><subfield code="0">(DE-625)159580:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thönnißen, Frederik</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1229389970</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of a hybrid vortex method for wind turbine rotor aerodynamics</subfield><subfield code="c">Frederik Thönnißen</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">202103</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Aachen</subfield><subfield code="b">Mainz</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 130 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm x 14.8 cm, 220 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Aachener Beiträge zur Strömungsmechanik</subfield><subfield code="v">Band 19</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">RWTH Aachen University</subfield><subfield code="d">2021</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windkraftwerk</subfield><subfield code="0">(DE-588)4128839-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rotorblatt</subfield><subfield code="0">(DE-588)4286652-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnung</subfield><subfield code="0">(DE-588)4120997-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windlast</subfield><subfield code="0">(DE-588)4133242-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Profil</subfield><subfield code="g">Aerodynamik</subfield><subfield code="0">(DE-588)4126393-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windturbine</subfield><subfield code="0">(DE-588)4189962-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rotor</subfield><subfield code="g">Drehflügel</subfield><subfield code="0">(DE-588)4136888-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Panelverfahren</subfield><subfield code="0">(DE-588)4200495-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Zukunft</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ökoenergie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Aerodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wind turbines</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Windenergie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hybrid Vortex Method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Strömungsmechnaik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Erneuerbare Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Windturbinen</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Windturbine</subfield><subfield code="0">(DE-588)4189962-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rotor</subfield><subfield code="g">Drehflügel</subfield><subfield code="0">(DE-588)4136888-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Profil</subfield><subfield code="g">Aerodynamik</subfield><subfield code="0">(DE-588)4126393-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Windkraftwerk</subfield><subfield code="0">(DE-588)4128839-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Rotorblatt</subfield><subfield code="0">(DE-588)4286652-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Windlast</subfield><subfield code="0">(DE-588)4133242-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Berechnung</subfield><subfield code="0">(DE-588)4120997-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Panelverfahren</subfield><subfield code="0">(DE-588)4200495-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Verlag Mainz</subfield><subfield code="0">(DE-588)1065499698</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Aachener Beiträge zur Strömungsmechanik</subfield><subfield code="v">Band 19</subfield><subfield code="w">(DE-604)BV012780166</subfield><subfield code="9">19</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032626353&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032626353</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047221748 |
illustrated | Illustrated |
index_date | 2024-07-03T16:57:43Z |
indexdate | 2024-07-10T09:06:03Z |
institution | BVB |
institution_GND | (DE-588)1065499698 |
isbn | 9783958864030 3958864031 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032626353 |
oclc_num | 1268185466 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xii, 130 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 220 g |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Mainz |
record_format | marc |
series | Aachener Beiträge zur Strömungsmechanik |
series2 | Aachener Beiträge zur Strömungsmechanik |
spelling | Thönnißen, Frederik 1987- Verfasser (DE-588)1229389970 aut Development of a hybrid vortex method for wind turbine rotor aerodynamics Frederik Thönnißen 202103 Aachen Mainz 2021 xii, 130 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 220 g txt rdacontent n rdamedia nc rdacarrier Aachener Beiträge zur Strömungsmechanik Band 19 Dissertation RWTH Aachen University 2021 Windkraftwerk (DE-588)4128839-7 gnd rswk-swf Rotorblatt (DE-588)4286652-2 gnd rswk-swf Aerodynamik (DE-588)4000589-6 gnd rswk-swf Berechnung (DE-588)4120997-7 gnd rswk-swf Windlast (DE-588)4133242-8 gnd rswk-swf Profil Aerodynamik (DE-588)4126393-5 gnd rswk-swf Windturbine (DE-588)4189962-3 gnd rswk-swf Rotor Drehflügel (DE-588)4136888-5 gnd rswk-swf Panelverfahren (DE-588)4200495-0 gnd rswk-swf Zukunft Ökoenergie Aerodynamics wind turbines Windenergie Hybrid Vortex Method Strömungsmechnaik Erneuerbare Energie Windturbinen (DE-588)4113937-9 Hochschulschrift gnd-content Windturbine (DE-588)4189962-3 s Rotor Drehflügel (DE-588)4136888-5 s Profil Aerodynamik (DE-588)4126393-5 s DE-604 Windkraftwerk (DE-588)4128839-7 s Rotorblatt (DE-588)4286652-2 s Aerodynamik (DE-588)4000589-6 s Windlast (DE-588)4133242-8 s Berechnung (DE-588)4120997-7 s Panelverfahren (DE-588)4200495-0 s Verlag Mainz (DE-588)1065499698 pbl Aachener Beiträge zur Strömungsmechanik Band 19 (DE-604)BV012780166 19 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032626353&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Thönnißen, Frederik 1987- Development of a hybrid vortex method for wind turbine rotor aerodynamics Aachener Beiträge zur Strömungsmechanik Windkraftwerk (DE-588)4128839-7 gnd Rotorblatt (DE-588)4286652-2 gnd Aerodynamik (DE-588)4000589-6 gnd Berechnung (DE-588)4120997-7 gnd Windlast (DE-588)4133242-8 gnd Profil Aerodynamik (DE-588)4126393-5 gnd Windturbine (DE-588)4189962-3 gnd Rotor Drehflügel (DE-588)4136888-5 gnd Panelverfahren (DE-588)4200495-0 gnd |
subject_GND | (DE-588)4128839-7 (DE-588)4286652-2 (DE-588)4000589-6 (DE-588)4120997-7 (DE-588)4133242-8 (DE-588)4126393-5 (DE-588)4189962-3 (DE-588)4136888-5 (DE-588)4200495-0 (DE-588)4113937-9 |
title | Development of a hybrid vortex method for wind turbine rotor aerodynamics |
title_auth | Development of a hybrid vortex method for wind turbine rotor aerodynamics |
title_exact_search | Development of a hybrid vortex method for wind turbine rotor aerodynamics |
title_exact_search_txtP | Development of a hybrid vortex method for wind turbine rotor aerodynamics |
title_full | Development of a hybrid vortex method for wind turbine rotor aerodynamics Frederik Thönnißen |
title_fullStr | Development of a hybrid vortex method for wind turbine rotor aerodynamics Frederik Thönnißen |
title_full_unstemmed | Development of a hybrid vortex method for wind turbine rotor aerodynamics Frederik Thönnißen |
title_short | Development of a hybrid vortex method for wind turbine rotor aerodynamics |
title_sort | development of a hybrid vortex method for wind turbine rotor aerodynamics |
topic | Windkraftwerk (DE-588)4128839-7 gnd Rotorblatt (DE-588)4286652-2 gnd Aerodynamik (DE-588)4000589-6 gnd Berechnung (DE-588)4120997-7 gnd Windlast (DE-588)4133242-8 gnd Profil Aerodynamik (DE-588)4126393-5 gnd Windturbine (DE-588)4189962-3 gnd Rotor Drehflügel (DE-588)4136888-5 gnd Panelverfahren (DE-588)4200495-0 gnd |
topic_facet | Windkraftwerk Rotorblatt Aerodynamik Berechnung Windlast Profil Aerodynamik Windturbine Rotor Drehflügel Panelverfahren Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032626353&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV012780166 |
work_keys_str_mv | AT thonnißenfrederik developmentofahybridvortexmethodforwindturbinerotoraerodynamics AT verlagmainz developmentofahybridvortexmethodforwindturbinerotoraerodynamics |