Fusion reactor design: plasma physics, fuel cycle system, operation and maintenance
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41403-1/ Inhaltsverzeichnis |
Beschreibung: | xxvi, 613 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
ISBN: | 9783527414031 3527414037 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047216499 | ||
003 | DE-604 | ||
005 | 20220324 | ||
007 | t | ||
008 | 210329s2022 gw a||| |||| 00||| eng d | ||
015 | |a 20,N49 |2 dnb | ||
016 | 7 | |a 1222299372 |2 DE-101 | |
020 | |a 9783527414031 |c : circa EUR 249.00 (DE) (freier Preis) |9 978-3-527-41403-1 | ||
020 | |a 3527414037 |9 3-527-41403-7 | ||
024 | 3 | |a 9783527414031 | |
028 | 5 | 2 | |a Bestellnummer: 1141403 000 |
035 | |a (OCoLC)1289760971 | ||
035 | |a (DE-599)DNB1222299372 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-11 |a DE-703 |a DE-19 | ||
084 | |a UR 9000 |0 (DE-625)146646: |2 rvk | ||
084 | |8 1\p |a 530 |2 23sdnb | ||
100 | 1 | |a Okazaki, Takashi |e Verfasser |0 (DE-588)1249879531 |4 aut | |
245 | 1 | 0 | |a Fusion reactor design |b plasma physics, fuel cycle system, operation and maintenance |c Takashi Okazaki |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a xxvi, 613 Seiten |b Illustrationen, Diagramme |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Fusionsreaktor |0 (DE-588)4155733-5 |2 gnd |9 rswk-swf |
653 | |a Chemical Engineering | ||
653 | |a Chemische Verfahrenstechnik | ||
653 | |a Energie | ||
653 | |a Energy | ||
653 | |a Kern- u. Hochenergiephysik | ||
653 | |a Kernenergie | ||
653 | |a Nuclear & High Energy Physics | ||
653 | |a Nuclear Energy | ||
653 | |a Physics | ||
653 | |a Physik | ||
653 | |a Process Safety | ||
653 | |a Prozesssicherheit | ||
653 | |a CG14: Prozesssicherheit | ||
653 | |a EG20: Kernenergie | ||
653 | |a PH20: Kern- u. Hochenergiephysik | ||
689 | 0 | 0 | |a Fusionsreaktor |0 (DE-588)4155733-5 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-83292-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-83294-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-83293-4 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41403-1/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032621209&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032621209 | ||
883 | 1 | |8 1\p |a vlb |d 20201127 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804182334778376192 |
---|---|
adam_text | CONTENTS
PREFACE
XXV
1
CHARACTERISTICS
OF
THE
FUSION
REACTOR
1
1.1
THE
FUSION
REACTOR
AS
AN
ENERGY
SOURCE
1
1.1.1
TRENDS
IN
WORLD
ENERGY
CONSUMPTION
1
1.1.2
ENERGY
CLASSIFICATION
1
1.1.3
NUCLEAR
FUSION
POWER
GENERATION
2
1.2
NUCLEAR
FUSION
REACTION
3
1.2.1
NUCLEAR
REACTION
USED
IN
THE
FUSION
REACTOR
3
1.2.2
CROSS
SECTION
OF
THE
FUSION
REACTION
4
1.2.3
FUSION
REACTION
RATE
5
1.3
PLASMA
CONFINEMENT
CONCEPT
7
1.3.1
MAGNETIC
CONFINEMENT
7
1.3.1.1
LINEAR
SYSTEM
(OPEN-END
SYSTEM)
7
1.3.1.2
TOROIDAL SYSTEM
9
1.3.2
INERTIAL
CONFINEMENT
13
REFERENCES
15
2
BASIS
OF
THE
FUSION
REACTOR
17
2.1
POWER
FLOW
17
2.2
FUSION
REACTOR
STRUCTURE
19
2.3
POWER
GENERATION
CONDITIONS
OF
THE
FUSION
REACTOR
20
2.3.1
POWER
FLOW
OF
THE
POWER
PLANT
20
2.3.2
PLANT
EFFICIENCY
21
2.3.3
FUEL
SUPPLY
SCENARIO
22
2.4
CORE
PLASMA
CONDITIONS
22
2.4.1
BREAK-EVEN
CONDITION
AND
SELF-IGNITION
CONDITION
22
2.4.2
LAWSON
CRITERION
22
2.4.3
TYPICAL
REACTOR
CONCEPTS
24
2.5
REQUIREMENTS
OF
PLASMA
IN
THE
FUSION
REACTOR
24
2.5.1
FUSION
TRIPLE
PRODUCT
25
2.5.2
P
VALUE
25
2.5.3
CURRENT
DRIVE
EFFICIENCY
25
VI
CONTENTS
2.6
2.6.1
2.6.2
2.6.3
2.7
2.7.1
2.7.2
2.7.3
OPERATION
SCENARIO
26
PULSE
OPERATION
26
QUASI-STEADY-STATE
OPERATION
27
STEADY-STATE
OPERATION
28
STEPWISE
DEVELOPMENT
RESEARCH
OF
THE
FUSION
REACTOR
28
EXPERIMENTAL
REACTOR
29
PROTOTYPE
REACTOR
29
DEMONSTRATION
REACTOR/COMMERCIAL
REACTOR
29
REFERENCES
29
3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.2
3.3.3
3.3.4
3.4
3.5
3.6
3.7
3.8
3.8.1
3.8.1.1
3.8.1.2
3.8.1.3
3.8.1.4
3.8.2
3.9
3.9.1
3.9.2
BASICS
OF
PLASMA
ANALYSIS
31
BOLTZMANN
EQUATION
31
PLASMA
ANALYSIS
32
VELOCITY
INFORMATION
33
NONLINEAR
EFFECTS
33
EXTERNAL
ELECTROMAGNETIC
FIELD
33
NUMERICAL
SIMULATION
33
MAIN
PLASMA
THEORIES
33
MAGNETOHYDRODYNAMIC
EQUATION
35
MACROSCOPIC
PHYSICAL
QUANTITY
35
MOMENTUM
FLOW
TENSOR
P(R,
T)
36
PRESSURE
TENSOR
P(R,
T)
36
ENERGY
DENSITY
E(R,
T)
36
INTERNAL
ENERGY
DENSITY
I7(R,
T)
36
ENERGY
FLUX
VECTOR
Q(R,
T)
36
PARTICLE
NUMBER
CONSERVATION
LAW
(EQUATION
OF
CONTINUITY)
37
MOMENTUM
CONSERVATION
LAW
38
ENERGY
CONSERVATION
LAW
39
KINETIC
EQUATION
39
LINEARIZED
KINETIC
ANALYSIS
(ONE
DIMENSION)
41
LINEARIZED
KINETIC
ANALYSIS
(THREE
DIMENSIONS)
43
QUASI-LINEAR
THEORY
46
TURBULENCE
THEORY
49
WEAK
TURBULENCE
THEORY
49
WAVE-PARTICLE
INTERACTION
51
WAVE-WAVE
(3
WAVES)
INTERACTION
52
NONLINEAR
WAVE-PARTICLE
INTERACTION
52
WAVE-WAVE
(4
WAVES)
INTERACTION
52
STRONG
TURBULENCE
THEORY
53
NEUTRON
TRANSPORT
ANALYSIS
53
TRANSPORT
EQUATION
53
INTERACTION
BETWEEN
NEUTRONS
AND
MATERIALS
54
REFERENCES
55
CONTENTS
VII
4
PLASMA
EQUILIBRIUM
AND
STABILITY
57
4.1
PLASMA
EQUILIBRIUM
57
4.1.1
PLASMA
PRESSURE
57
4.1.2
EQUILIBRIUM
EQUATION
59
4.1.3
TOKAMAK
EQUILIBRIUM
61
4.1.4
PLASMA
CROSS
SECTION
63
4.2
MHD
STABILITY
64
4.2.1
ENERGY
PRINCIPLE
64
4.2.1.1
MHD
EQUATION
64
4.2.1.2
LINEARIZED
IDEAL
MHD
EQUATION
66
4.2.1.3
ENERGY
PRINCIPLE
67
4.2.2
ENERGY
INTEGRAL
68
4.2.3
MHD
INSTABILITY
69
4.2.4
MHD
MODE
AND
RESONANT
SURFACE
69
4.3
PLASMA
POSITIONAL
INSTABILITY
71
4.4
KINK
INSTABILITY
74
4.4.1
CHARACTERISTICS
74
4.4.2
DISPERSION
RELATION
74
4.4.3
STABILIZATION
METHOD
76
4.5
INTERCHANGE
INSTABILITY
77
4.6
BALLOONING
INSTABILITY
78
4.6.1
CHARACTERISTICS
78
4.6.2
ENERGY
INTEGRAL
79
4.6.3
STABILIZATION
METHOD
81
4.7
RESISTIVE
INSTABILITY
82
4.7.1
TEARING
MODE
83
4.7.1.1
CHARACTERISTICS
83
4.7.1.2
BASIC
EQUATIONS
84
4.7.1.3
MAGNETIC
ISLAND
WIDTH
85
4.7.1.4
MAGNETIC
ISLAND
EVOLUTION
EQUATION
86
4.7.1.5
STABILIZATION
METHOD
88
4.7.2
NEOCLASSICAL
TEARING
MODE
88
4.7.2.1
CHARACTERISTICS
88
4.7.2.2
DIFFERENCE
IN
THE
LOGARITHMIC
DERIVATIVE
DUE
TO
BOOTSTRAP
CURRENT
89
4.7.2.3
MAGNETIC
ISLAND
EVOLUTION
EQUATION
89
4.7.2.4
STABILIZATION
METHOD
89
4.8
DRIFT
INSTABILITY
90
4.8.1
DENSITY
GRADIENT
90
4.8.2
DENSITY
GRADIENT
AND
TEMPERATURE
GRADIENT
90
4.8.3
RESISTIVE
DRIFT
MODE
92
4.8.4
INFLUENCE
OF
DRIFT
WAVE
ON
PLASMA
TRANSPORT
95
4.9
RESISTIVE
WALL
INSTABILITY
96
4.9.1
CHARACTERISTICS
96
4.9.2
STABILIZATION
METHOD
97
VIII
CONTENTS
4.10
4.10.1
4.10.1.1
4.10.1.2
4.10.1.3
4.10.2
4.11
4.12
4.13
4.14
INSTABILITY
DUE
TO
HIGH
ENERGY
PARTICLES
98
ALFVEN
EIGENMODE
98
CHARACTERISTICS
98
DISPERSION
RELATION
99
INSTABILITY
CONDITION
AND
STABILIZATION
METHOD
100
FISHBONE
OSCILLATION
102
SAWTOOTH
OSCILLATION
102
EDGE
LOCALIZED MODE
102
LOCKED
MODE
103
FUTURE
CHALLENGES
103
APPENDIX
4A
103
APPENDIX
4B
107
REFERENCES
111
5
5.1
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
5.7
5.8
5.8.1
5.8.1.1
5.8.1.2
5.8.2
5.8.2.1
5.8.2.2
PLASMA
TRANSPORT
AND
CONFINEMENT
113
CONFINEMENT
TIME
113
PLASMA
TRANSPORT
114
DIFFUSION
BY
COLLISION
114
DIFFUSION
BY
TURBULENCE
116
BOHM
DIFFUSION
116
GYRO-BOHM
DIFFUSION
118
ENERGY
CONFINEMENT
119
SCALING
LAW
OF
ENERGY
CONFINEMENT
119
PARAMETER
DEPENDENCE
OF
ENERGY
CONFINEMENT
TIME
119
SCALING
LAW
120
L-H
TRANSITION
THRESHOLD
POWER
122
IMPROVED
CONFINEMENT
MODE
122
EDGE
LOCALIZED
MODE
124
TYPES
OF
EDGE
LOCALIZED
MODE
124
ENERGY
RELEASED
BY
ELM
125
MEASURES
AGAINST
ELM
127
P
LIMIT
127
PLASMA
CURRENT
PROFILE
128
PLASMA
PRESSURE
PROFILE
128
SHAPE
OF
PLASMA
CROSS
SECTION
129
NEOCLASSICAL
TEARING
MODE
129
DENSITY
LIMIT
129
CONFINEMENT
OF
HIGH-ENERGY
PARTICLES
129
DISRUPTION
130
PLASMA
BEHAVIOR
IN
DISRUPTION
AND
CAUSE
OF
THE
OCCURRENCE
131
PLASMA
BEHAVIOR
131
CAUSES
OF
DISRUPTION
133
EFFECT
ON
EQUIPMENT
133
THERMAL
LOAD
133
ELECTROMAGNETIC
FORCE
134
CONTENTS
IX
5.8.3
COUNTERMEASURES
AGAINST
DISRUPTION
135
5.9
FUTURE
CHALLENGES
137
REFERENCES
137
6
PLASMA
DESIGN
141
6.1
PARTICLE
AND
ENERGY
BALANCES
OF
PLASMA
(ONE
DIMENSION)
141
6.1.1
THERMAL
CONDUCTION
LOSS
POWER
143
6.1.2
CONVECTION
LOSS
POWER
143
6.1.3
A
HEATING
POWER
143
6.1.4
ADDITIONAL
HEATING
POWER
144
6.1.5
JOULE
(OHMIC)
HEATING
POWER
144
6.1.6
ELECTRON-ION
ENERGY
TRANSFER
144
6.1.7
RADIATION
LOSS
POWER
145
6.2
PARTICLE
AND
ENERGY
BALANCES
OF
PLASMA
(ZERO
DIMENSION)
145
6.2.1
ZERO-DIMENSIONAL
PARTICLE
AND
ENERGY
BALANCES
145
6.2.2
PLASMA
TEMPERATURE
AND
DENSITY
IN
STEADY-STATE
OPERATION
146
6.3
BURN-UP
FRACTION
148
6.4
PLASMA
CIRCUIT
150
6.5
REACTOR
STRUCTURE
152
6.5.1
RADIAL
BUILD
152
6.5.2
MAGNETIC
FLUX
REQUIRED
FOR
OPERATION
153
6.5.3
MAGNETIC
FLUX
TO
BE
SUPPLIED
154
6.6
FUTURE
CHALLENGES
155
REFERENCES
156
7
BLANKET
157
7.1
FUNCTIONS
REQUIRED
FOR
THE
BLANKET
157
7.2
TRITIUM
PRODUCTION
157
7.2.1
NECESSITY
OF
TRITIUM
PRODUCTION
157
7.2.2
TRITIUM
BREEDING
RATIO
159
7.2.3
TRITIUM
DOUBLING
TIME
159
7.2.4
IMPROVEMENT
OF
TRITIUM
BREEDING
RATIO
160
7.2.4.1
6
LI(N,
T)A
REACTION
CROSS
SECTION
161
7.2.4.2
7
LI(N,
N
T)A
REACTION
CROSS
SECTION
161
7.2.4.3
TRITIUM
BREEDING
MATERIAL
161
7.2.4.4
NEUTRON
FLUX
163
7.2.4.5
BLANKET
COVERAGE
164
7.2.5
RECOVERY
OF
TRITIUM
165
7.3
TAKING
OUT
OF
THERMAL
ENERGY
165
7.3.1
ENERGY
MULTIPLICATION
FACTOR
OF
THE
BLANKET
165
7.3.2
POWER
GENERATION
EFFICIENCY
AND
COOLANT
TEMPERATURE
166
7.3.2.1
TEMPERATURE
OF
BREEDER
AND
MULTIPLIER
MATERIALS
166
7.3.2.2
TEMPERATURE
OF
THE
BLANKET
STRUCTURAL
MATERIAL
167
7.3.23
COOLANT
167
7.3.3
TEMPERATURE
PROFILE
168
X
CONTENTS
7.3.4
POWER
GENERATION
METHOD
170
7.3.4.1
POWER
GENERATION
METHODS
OF
FISSION
REACTOR
AND
THERMAL
POWER
PLANT
171
7.3
.4.2
CHARACTERISTICS
OF
FUSION
POWER
GENERATION
172
7.3.4.3
COMBINATION
OF
COOLANTS
173
7.3.4.4
FUSION
POWER
GENERATION
175
7.4
RADIATION
SHIELDING
FUNCTION
175
7.4.1
BLANKET
THICKNESS
175
7.4.2
LOW
RADIOACTIVATION
176
7.5
MAINTENANCE
176
7.5.1
EXTENSION
OF
LIFE
176
7.5.1.1
WEAR
AMOUNT
OF
LITHIUM
BY
BURNING
OF
TRITIUM
BREEDING
MATERIAL
177
7.5.1.2
WEAR
AMOUNT
OF
BERYLLIUM
BY
BURNING
OF
NEUTRON
MULTIPLIER
MATERIAL
178
7.5.1.3
WEAR
AMOUNT
OF
FIRST
WALL
179
7.5.1.4
NUCLEAR
DAMAGE
DUE
TO
DISPLACEMENT
DAMAGE,
HYDROGEN
AND
HELIUM
PRODUCTIONS,
SWELLING,
ETC.
179
7.5.1.5
CHANGE
IN
THERMAL
LIFE
OF
STRUCTURAL
MATERIALS
DUE
TO
CYCLE
THERMAL
FATIGUE
179
7.5.2
MAINTENANCE
METHOD
179
7.5.2.1
WEAR
AMOUNT
AND
REPLACEMENT
FREQUENCY
179
7.5.2.2
REMOTE
MAINTENANCE
METHOD
180
7.6
BLANKET
DESIGN
181
7.6.1
BLANKET
CLASSIFICATION
181
7.6.2
DESIGN
CONDITIONS
181
7.6.3
BLANKET
CONCEPT
181
7.6.3.1
BLANKET
CONFIGURATION
181
7.6.3.2
SIZE
OF
A
BLANKET
183
7.6.4
DESIGN
EXAMPLE
185
7.7
FUTURE
CHALLENGES
187
REFERENCES
189
8
PLASMA-FACING
COMPONENTS
191
8.1
FUNCTIONS
REQUIRED
FOR
PLASMA-FACING
COMPONENTS
191
8.1.1
REQUIRED
FUNCTIONS
191
8.1.1.1
IMPURITY
CONTROL
191
8.1.1.2
PLASMA
PARTICLE
CONTROL
191
8.1.1.3
THERMAL
TREATMENT
OF
PLASMA
THERMAL
ENERGY
192
8.1.2
LIMITER
AND
DIVERTOR
192
8.2
DIVERTOR
CHARACTERISTICS
(IN
STEADY
STATE)
193
8.2.1
BASIC
CHARACTERISTICS
OF
DIVERTOR
PLASMA
193
8.2.2
TWO-POINT
MODEL
194
8.2.3
ATTACHED
STATE
AND
DETACHED
STATE
196
8.2.4
TWO-DIMENSIONAL
DIVERTOR
ANALYSIS
MODEL
197
8.2.5
MEASURES
FOR
REDUCING
PARTICLE
AND
THERMAL
LOADS
200
CONTENTS
XI
8.2.5.1
8.2.5.2
8.2.5.3
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3
8.4.1.4
8.4.2
8.4.3
8.5
8.5.1
8.5.2
8.5.3
8.5.3.1
8.5.3.2
8.5.3.3
8.5.3.4
8.5.4
8.6
8.6.1
8.6.2
8.6.2.1
8.6.2.2
8.6.2.3
8.6.2.4
8.6.3
8.7
IMPURITY
CONTROL
200
PARTICLE
CONTROL
200
AVERAGE
HEAT
FLUX
TO
THE
DIVERTOR
PLATE
200
DIVERTOR
CHARACTERISTICS
(IN
NON-STEADY
STATE)
201
ELM
201
DISRUPTION
202
THERMAL
LOAD
202
ELECTROMAGNETIC
FORCE
203
STRUCTURES
OF
LIMITER
AND
DIVERTOR
203
SHAPE
AND
TYPE
OF
LIMITER
AND
DIVERTOR
203
TRENDS
IN
IMPURITY
CONTROL
RESEARCH
203
LIMITER
AND
PUMPED
LIMITER
204
DIVERTOR
204
COMPARISON
OF
PUMPED
LIMITER
AND
DIVERTOR
205
COMPARISON
OF
SINGLE
NULL
DIVERTOR
AND
DOUBLE
NULL
DIVERTOR
206
SHAPE
OF
DIVERTOR
206
DIVERTOR
DESIGN
208
DESIGN
CONDITIONS
AND
DESIGN
ITEMS
208
MATERIAL
SELECTION
210
STRUCTURAL
CONCEPT
212
HEAT
RECEIVING
PLATE
STRUCTURE
212
EDDY
CURRENT
SUPPRESSION
STRUCTURE
213
REDUCTION
OF
STRESS
AND
STRAIN
213
COOLING
TUBE
213
DESIGN
EXAMPLE
214
FIRST
WALL
217
PARTICLE
LOAD
AND
THERMAL
LOAD
217
FIRST-WALL
STRUCTURE
218
OVERALL
STRUCTURE
218
PROTECTION
STRUCTURE
218
FLOW
PATH
CROSS
SECTION
218
AMOUNT
OF
WEAR
220
DESIGN
EXAMPLE
220
FUTURE
CHALLENGES
222
REFERENCES
222
9
9.1
9.1.1
9.1.2
9.2
9.2.1
9.2.2
9.2.3
9.2.3.1
COIL
SYSTEM
227
FUSION
REACTOR
COILS
227
TYPES
OF
COILS
227
NECESSITY
OF
SUPERCONDUCTING
COIL
227
BASICS
OF
SUPERCONDUCTING
COILS
228
CHARACTERISTICS
OF
SUPERCONDUCTIVITY
228
SUPERCONDUCTING
MATERIALS
228
MANUFACTURING
METHODS
FOR
SUPERCONDUCTING
WIRES
229
NBTI
229
XII
CONTENTS
9.23.2
NB
3
SN
230
9.2.33
NB
3
AL
230
9.23.4
MGB
2
231
9.23.5
BISMUTH-BASED
OXIDE
231
9.23.6
YTTRIUM-BASED
OXIDE
231
9.2.4
SUPERCONDUCTING
WIRES
231
9.2.4.1
HYSTERESIS
LOSS
231
9.2.4.2
STABILIZING
MATERIALS
(STABILIZERS)
232
9.2.43
TWIST
232
9.2.4.4
COOLING
PERFORMANCE
232
9.2.5
THERMAL
LOAD
AND
COOLING
METHODS
232
9.2.5.1
THERMAL
LOAD
232
9.2.5.2
COOLING
METHODS
233
9.2.6
CONDUCTOR
STRUCTURE
234
9.2.6.1
CRITICAL
CURRENT
235
9.2.6.2
LIMITED
CURRENT
236
9.2.63
STABILITY
MARGIN
236
9.2.6.4
COIL
AVERAGE
CURRENT
DENSITY
237
9.2.6.5
CONDUCTOR
DESIGN
237
9.2.7
COIL
STRUCTURE
237
9.2.7.1
STRUCTURE
237
9.2.7.2
STRUCTURAL
MATERIAL
238
93
BASICS
OF
TOROIDAL
MAGNETIC
FIELD
COIL
238
93.1
FUNCTIONS
FOR
TOROIDAL
MAGNETIC
FIELD
COIL
239
93.2
COIL
CURRENT
AND
NUMBER
OF
COILS
239
93.2.1
COIL
CURRENT
239
93.2.2
NUMBER
OF
COILS
239
93.2.3
STORED
ENERGY
241
9.33
ELECTROMAGNETIC
FORCE
GENERATED
IN
COIL
241
9.33.1
EXTENSIONAL
FORCE
241
9.33.2
CENTERING
FORCE
242
9.3.33
OVERTURNING
FORCE
242
9.3.4
COIL
SHAPE
242
93.4.1
SHAPE
242
93.4.2
THREE-ARC
APPROXIMATION
243
9.3.5
MAXIMUM
MAGNETIC
FIELD
245
9.4
DESIGN
OF
TOROIDAL
MAGNETIC
FIELD
COIL
245
9.4.1
CONDUCTOR
DESIGN
246
9.4.1.1
SELECTION
OF
SUPERCONDUCTING
MATERIAL
246
9.4.1.2
COOLING
METHOD
246
9.4.2
DESIGN
OF
COIL
STRUCTURE
246
9.4.2.1
COIL
STRUCTURE
246
9A.2.2
SELECTION
OF
STRUCTURAL
MATERIALS
246
9.4.3
SUPPORT
STRUCTURE
247
9.43.1
SUPPORT
STRUCTURE
FOR
THE
CENTERING
FORCE
247
CONTENTS
XIII
9.4.3.2
SUPPORT
STRUCTURE
FOR
THE
OVERTURNING
FORCE
249
9.4.3.3
SUPPORT
STRUCTURE
OF
OWN
WEIGHT
249
9.4.4
DESIGN
EXAMPLE
249
9.5
BASICS
OF
POLOIDAL
MAGNETIC
FIELD
COIL
254
9.5.1
FUNCTIONS
OF
POLOIDAL
MAGNETIC
FIELD
COIL
254
9.5.2
WAVEFORM
PATTERN
OF
COIL
CURRENT
FOR
CONTROL
OF
PLASMA
POSITION
AND
SHAPE
255
9.5.3
POSITION
OF
POLOIDAL
MAGNETIC
FIELD
COIL
256
9.6
CURRENT
CONTROL
OF
POLOIDAL
MAGNETIC
FIELD
COIL
256
9.6.1
MAGNETIC
FIELD
CONFIGURATION
TO
DETERMINE
THE
PLASMA
SHAPE
256
9.6.2
CONTROL
OF
PLASMA
POSITION
AND
SHAPE
257
9.6.3
GENERATION
TYPES
OF
POLOIDAL
MAGNETIC
FIELD
258
9.6.4
FUNCTION-SPECIFIC
COIL
SYSTEM
259
9.6.5
HYBRID
COIL
SYSTEM
260
9.6.5.1
N
UMBER
OFPFCOILS
260
9.6.5.2
DETERMINING
THE
PF
COIL
POSITION
260
9.6.5.3
DETERMINING
THE
PF
COIL
CURRENT
260
9.7
DESIGN
OF
POLOIDAL
MAGNETIC
FIELD
COIL
263
9.7.1
CONDUCTOR
DESIGN
263
9.7.1.1
SELECTION
OF
SUPERCONDUCTING
MATERIAL
263
9.7.1.2
COOLING
METHOD
263
9.7.2
DESIGN
OF
COIL
STRUCTURE
263
9.7.2.1
COIL
STRUCTURE
263
9.7.2.2
SELECTION
OF
STRUCTURAL
MATERIALS
263
9.7.23
SUPPORT
STRUCTURE
264
9.7.3
DESIGN
EXAMPLE
264
9.8
BASICS
OF
CENTRAL
SOLENOID
COIL
265
9.8.1
FUNCTIONS
OF
CENTRAL
SOLENOID
COIL
265
9.8.2
MAGNETIC
FIELD
OF
CENTRAL
SOLENOID
COIL
266
9.8.3
SUPPLIED
MAGNETIC
FLUX
266
9.9
DESIGN
OF
CENTRAL
SOLENOID
COIL
267
9.9.1
CONDUCTOR
DESIGN
267
9.9.1.1
SELECTION
OF
SUPERCONDUCTING
MATERIAL
267
9.9.1.2
COOLING
METHOD
268
9.9.2
DESIGN
OF
COIL
STRUCTURE
268
9.9.2.1
COIL
STRUCTURE
268
9.9.2.2
SELECTION
OF
STRUCTURAL
MATERIALS
268
9.9.23
SUPPORT
STRUCTURE
268
9.9.3
DESIGN
EXAMPLE
268
9.10
FUTURE
CHALLENGES
270
REFERENCES
271
10
PLASMA
HEATING
AND
CURRENT
DRIVE
273
10.1
NECESSITY
OF
PLASMA
HEATING
AND
CURRENT
DRIVE
273
10.1.1
PLASMA
HEATING
273
XIV
CONTENTS
10.1.2
CURRENT
DRIVE
274
10.2
BASICS
OF
NBI
HEATING
275
10.2.1
IONIZATION
OF
NEUTRAL
PARTICLE
BEAM
275
10.2.2
TRAJECTORY
OF
ION
BEAM
276
10.2.2.1
DIRECTION
OF
INJECTION
276
10.2.2.2
TRAPPED
CONDITION
277
10.2.2.3
TRAJECTORY
OF
BEAM
ION
278
10.2.3
PLASMA
HEATING
BY
ENERGY
RELAXATION
279
10.3
BASICS
OF
NBI
CURRENT
DRIVE
281
10.3.1
DRIVEN
CURRENT
281
10.3.2
CURRENT
DRIVE
EFFICIENCY
282
10.3.3
SHINE
THROUGH
RATE
284
10.3.4
CURRENT
DRIVE
EFFICIENCY
OBTAINED
BY
EXPERIMENTS
284
10.4
BOOTSTRAP
CURRENT
285
10.4.1
TRAPPED
ELECTRON
ORBIT
AND
BOOTSTRAP
CURRENT
285
10.4.2
RATIO
OF
THE
BOOTSTRAP
CURRENT
286
10.5
BASICS
OF
RADIO
FREQUENCY
HEATING
287
10.5.1
DISPERSION
RELATION
287
10.5.2
DISPERSION
RELATION
OF
COLD
PLASMA
288
10.5.3
DISPERSION
RELATION
OF
HOT
PLASMA
289
10.5.4
DISPERSION
RELATION
OF
PLASMA
WITH
MAXWELL
DISTRIBUTION
290
10.5.5
CHARACTERISTICS
OF
RF
WAVES
291
10.5.5.1
PHASE
VELOCITY
AND
GROUP
VELOCITY
291
10.5.5.2
CUTOFF
AND
RESONANCE
292
10.5.5.3
POLARIZATION
292
10.5.6
PROPAGATION
CHARACTERISTICS
OF
RF
WAVES
293
10.5.6.1
WHEN
THE
WAVE
NUMBER
VECTOR
IS
PARALLEL
TO
THE
MAGNETIC
FIELD
294
10.5.6.2
WHEN
THE
WAVE
NUMBER
VECTOR
IS
PERPENDICULAR
TO
THE
MAGNETIC
FIELD
296
10.5.7
PRINCIPLES
OF
PLASMA
HEATING
297
10.5.7.1
LANDAU
DAMPING
298
10.5.7.2
TRANSIT
TIME
DAMPING
298
10.5.7.3
CYCLOTRON
DAMPING
299
10.5.7.4
ABSORPTION
POWER
299
10.5.8
PROPAGATION
IN
NONUNIFORM
PLASMA
300
10.6
VARIOUS
RF
WAVES
301
10.6.1
ALFV6N
WAVE
301
10.6.2
ION
CYCLOTRON
WAVE
303
10.6.2.1
RIGHT-HANDED
CUT
OFF
AND
LEFT-HANDED
CUT
OFF
304
10.6.2.2
DENSITY
AT
WHICH
THE
WAVE
CAN
PROPAGATE
305
10.6.2.3
CHARACTERISTICS
OF
THE
SLOW
WAVE
305
10.6.2.4
CHARACTERISTICS
OF
THE
FAST
WAVE
305
10.6.3
LOWER
HYBRID
WAVE
307
10.6.3.1
RESONANCE
AND
CUT
OFF
307
10.6.3.2
ACCESSIBILITY
CONDITION
309
CONTENTS
XV
10.6.4
ELECTRON
CYCLOTRON
WAVE
310
10.6.4.1
ABSORPTION
POWER
311
10.6.4.2
RESONANCE
AND
CUT
OFF
311
10.6.4.3
PROPAGATION
PATH
311
10.7
BASICS
OF
RF
CURRENT
DRIVE
313
10.7.1
GENERAL
THEORY
OF
RF
CURRENT
DRIVE
313
10.7.1.1
VARIOUS
NONINDUCTIVE
CURRENT
DRIVE
METHODS
313
10.7.1.2
NORMALIZED
CURRENT
DRIVE
EFFICIENCY
314
10.7.1.3
CURRENT
DRIVE
USING
MOMENTUM
OF
THE
WAVE
315
10.7.1.4
CURRENT
DRIVE
USING
ANISOTROPY
OF
THE
VELOCITY
SPACE
316
10.7.1.5
CURRENT
DRIVE
EFFICIENCY
316
10.7.2
CURRENT
DRIVE
USING
MOMENTUM
OF
THE
WAVE
316
10.7.2.1
FOKKER-PLANCK
EQUATION
IN
ONE
AND
TWO
DIMENSIONS
316
10.7.2.2
DRIVEN
CURRENT
DENSITY
AND
CURRENT
DRIVE
POWER
DENSITY
318
10.7.2.3
LHCD
(ONE-DIMENSIONAL
ANALYSIS)
318
10.7.2.4
DC
ELECTRIC
FIELD
318
10.7.2.5
LHCD
(TWO-DIMENSIONAL
ANALYSIS)
320
10.7.3
CURRENT
DRIVE
WITH
ANISOTROPY
OF
THE
VELOCITY
SPACE
321
10.7.3.1
TWO-DIMENSIONAL
FOKKER-PLANCK
EQUATION
321
10.7.3.2
RELATIVISTIC
EFFECT
323
10.7.3.3
TRAPPED
EFFECT
324
10.7.4
CURRENT
DRIVE
EFFICIENCY
OBTAINED
BY
EXPERIMENTS
327
10.7.4.1
FAST
WAVE
CURRENT
DRIVE
(FWCD)
327
10.7.4.2
LHCD
328
10.7.4.3
ECCD
329
10.8
NBI
SYSTEM
DESIGN
330
10.8.1
DESIGN
REQUIREMENTS
330
10.8.1.1
REQUIRED
FUNCTIONS
330
10.8.1.2
DESIGN
REQUIREMENTS
330
10.8.1.3
SYSTEM
EFFICIENCY
330
10.8.2
SYSTEM
CONFIGURATION
331
10.8.2.1
POSITIVE-ION
NBI
331
10.8.2.2
NEGATIVE-ION
NBI
332
10.8.3
NEGATIVE-ION SOURCE
332
10.8.3.1
NEGATIVE-ION
GENERATOR
332
10.8.3.2
ACCELERATOR
334
10.8.4
BEAM
TRANSPORT
SYSTEM
334
10.8.4.1
BEAM
PROFILE
CONTROL
UNIT
334
10.8.4.2
NEUTRALIZATION
CELL
(NEUTRALIZER)
334
10.8.4.3
RESIDUAL
ION
BENDING
MAGNET
AND
RESIDUAL
ION
DUMP
335
10.8.4.4
VACUUM
EXHAUST
SYSTEM
335
10.8.5
DESIGN
EXAMPLE
335
10.8.6
FUTURE
CHALLENGES
336
10.9
SYSTEM
DESIGN
OF
THE
ION
CYCLOTRON
WAVE
337
10.9.1
DESIGN
REQUIREMENTS
337
XVI
CONTENTS
10.9.1.1
REQUIRED
FUNCTIONS
337
10.9.1.2
ICRF
EXCITATION
METHOD
338
10.9.1.3
SYSTEM
EFFICIENCY
338
10.9.2
SYSTEM
CONFIGURATION
339
10.9.2.1
RF
SOURCE
339
10.9.2.2
TRANSMISSION
SYSTEM
339
10.9.2.3
INJECTION
SYSTEM
340
10.9.3
DESIGN
EXAMPLE
340
10.9.4
FUTURE
CHALLENGES
342
10.10
SYSTEM
DESIGN
OF
THE
LOWER
HYBRID
WAVE
342
10.10.1
DESIGN
REQUIREMENTS
342
10.10.1.1
REQUIRED
FUNCTIONS
342
10.10.1.2
LHW
EXCITATION
METHOD
343
10.10.1.3
PLASMA
DENSITY
IN
FRONT
OF
THE
LAUNCHER
344
10.10.1.4
SYSTEM
EFFICIENCY
344
10.10.2
SYSTEM
CONFIGURATION
344
10.10.2.1
RF
SOURCE
345
10.10.2.2
TRANSMISSION
SYSTEM
345
10.10.2.3
INJECTION
SYSTEM
(LAUNCHER)
346
10.10.2.4
PHASE
SHIFTER
347
10.10.3
DESIGN
EXAMPLE
348
10.10.4
FUTURE
CHALLENGES
350
10.11
SYSTEM
DESIGN
OF
THE
ELECTRON
CYCLOTRON
WAVE
350
10.11.1
DESIGN
REQUIREMENTS
350
10.11.1.1
REQUIRED
FUNCTIONS
350
10.11.1.2
ECW
EXCITATION
METHOD
351
10.11.1.3
SYSTEM EFFICIENCY
352
10.11.2
SYSTEM
CONFIGURATION
353
10.11.2.1
VARIOUS
SYSTEM
CONFIGURATIONS
353
10.11.2.2
RF
SOURCE
354
10.11.2.3
TRANSMISSION
SYSTEM
355
10.11.2.4
INJECTION
SYSTEM
(LAUNCHER)
355
10.11.3
DESIGN
EXAMPLE
356
10.11.4
FUTURE
CHALLENGES
357
APPENDIX
10A
358
APPENDIX
10B
363
APPENDIX
10C
369
APPENDIX
10D
373
APPENDIX
10E
377
REFERENCES
380
11
VACUUM
VESSEL
385
11.1
FUNCTIONS
REQUIRED
FOR
VACUUM
VESSEL
385
11.2
HOLDING
ULTRA-HIGH
VACUUM
AND
HIGH-TEMPERATURE
BAKING
385
11.2.1
DEGREE
OF
VACUUM
IN
THE
VACUUM
VESSEL
385
CONTENTS
XVII
11.2.2
11.2.3
11.3
HOLDING
THE
ULTRA-HIGH
VACUUM
386
HIGH-TEMPERATURE
BAKING
387
ENSURING
ELECTRICAL
RESISTANCE,
PLASMA
POSITION
CONTROL,
AND
TOROIDAL
FIELD
RIPPLE
387
11.3.1
11.3.2
11.3.3
11.3.4
11.4
11.4.1
11.4.2
11.5
ELECTRICAL
RESISTANCE
OF
THE
VACUUM
VESSEL
387
ENSURING
ELECTRICAL
RESISTANCE
390
PLASMA
POSITION
CONTROL
391
TOROIDAL
FIELD
RIPPLE
391
SUPPORTING
THE
ELECTROMAGNETIC
FORCE
AND
IN-VESSEL
EQUIPMENT
392
SUPPORTING
THE
ELECTROMAGNETIC
FORCE
392
SUPPORTING
THE
VACUUM
VESSEL
392
COOLING
PERFORMANCE,
RADIATION
SHIELDING,
CONFINEMENT,
ASSEMBLY,
AND
MAINTENANCE
394
11.5.1
11.5.2
11.5.3
11.5.4
11.5.4.1
11.5.4.2
11.6
11.6.1
11.6.2
11.6.3
11.6.3.1
11.6.3.2
11.6.3.3
COOLING
PERFORMANCE
394
RADIATION
SHIELDING
394
CONFINEMENT
OF
RADIOACTIVE
MATERIAL
394
ASSEMBLY
AND
MAINTENANCE
395
ASSEMBLY
395
MAINTENANCE
395
DESIGN
OF
VACUUM
VESSEL
396
STRUCTURAL
STANDARD
396
DESIGN
ITEMS
396
DESIGN
EXAMPLE
398
HOLDING
ULTRA-HIGH
VACUUM
398
SURFACE
CLEANING
SYSTEM
399
ENSURING
ELECTRICAL
RESISTANCE,
PLASMA
POSITION
CONTROL,
AND
TOROIDAL
FIELD
RIPPLE
400
11.6.3.4
11.6.3.5
11.6.3.6
11.6.3.7
11.7
SUPPORTING
ELECTROMAGNETIC
FORCE
AND
IN-VESSEL
EQUIPMENT
400
COOLING
OF
VACUUM
VESSEL,
RADIATION
SHIELDING,
AND
CONFINEMENT
400
ASSEMBLY
401
MAINTENANCE
401
FUTURE
CHALLENGES
402
REFERENCES
402
12
12.1
12.2
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.2.1
12.4.2.2
FUEL
CYCLE
SYSTEM
405
FUNCTIONS
REQUIRED
FOR
THE
FUEL
CYCLE
SYSTEM
405
CONFIGURATION
OF
THE
FUEL
CYCLE
SYSTEM
405
FUELING
SYSTEM
407
FUELING
METHOD
407
FUELING
AMOUNT
407
GAS
EXHAUST
SYSTEM
408
EXHAUST
GASES
BY
SOURCE
408
PLASMA
VACUUM
EXHAUST
SYSTEM
408
TYPES
OF
VACUUM
EXHAUST
PUMP
408
CONFIGURATION
409
XVIII
CONTENTS
12.4.2.3
INITIAL
ULTIMATE
PRESSURE
409
12.4.2.4
HELIUM
PUMPING
SPEED
411
12.4.2.5
CRYOPANEL
AREA
412
12.4.2.6
HELIUM
ACCUMULATION
ON
THE
CRYOPANEL
412
12.4.2.7
EXHAUST
TIME
413
12.5
FUEL
CLEAN-UP
SYSTEM
414
12.5.1
KINDS
OF
RECOVERED
GAS
AND
AMOUNT
OF
EXHAUST
GAS
414
12.5.2
CONFIGURATION
OF
THE
FUEL
CLEAN-UP
SYSTEM
414
12.6
HYDROGEN
ISOTOPE
SEPARATION
SYSTEM
416
12.7
ATMOSPHERE
DETRITIATION
SYSTEM
418
12.8
WATER
DETRITIATION
SYSTEM
418
12.9
FUEL
STORAGE
SYSTEM
419
12.10
MATERIAL
ACCOUNTANCY
OF
TRITIUM
420
12.11
DESIGN
EXAMPLE
420
12.11.1
FUEL
CYCLE
SYSTEM
420
12.11.2
FUELING
SYSTEM
421
12.11.3
TOKAMAK
EXHAUST
PROCESSING
SYSTEM
422
12.11.4
HYDROGEN
ISOTOPE
SEPARATION
SYSTEM
422
12.11.5
ATMOSPHERE
DETRITIATION
SYSTEM
422
12.11.6
WATER
DETRITIATION
SYSTEM
423
12.11.7
FUEL
STORAGE
SYSTEM
423
12.12
FUTURE
CHALLENGES
423
REFERENCES
424
13
CRYOSTAT
425
13.1
FUNCTIONS
OF
CRYOSTAT
425
13.2
CRYOSTAT
STRUCTURE
425
13.3
THERMAL
SHIELD
425
13.3.1
DESIGN
REQUIREMENTS
427
13.3.2
STRUCTURE
428
13.4
DESIGN
EXAMPLE
429
13.5
FUTURE
CHALLENGES
432
REFERENCES
433
14
NUCLEAR
DESIGN
435
14.1
ITEMS
REQUIRED
FOR
NUCLEAR
DESIGN
435
14.2
RADIATION
SHIELDING
437
14.2.1
MAIN
SHIELD
437
14.2.1.1
EQUIPMENT
SHIELDING
AND
BIOLOGICAL
SHIELDING
437
14.2.1.2
INSTALLATION
POSITION
OF
SHIELDS
438
14.2.1.3
ACTIVATION
OF
AIR
AND
COOLING
WATER
439
14.2.2
EVALUATION
METHOD
OF
RADIATION
SHIELDING
440
14.2.2.1
INTENSITY
OF
NEUTRON
SOURCE
440
14.2.2.2
NUCLEAR
DATA
440
CONTENTS
XIX
14.2.2.3
14.2.2.4
14.3
14.4
14.5
14.5.1
14.5.1.1
14.5.1.2
14.5.2
14.5.2.1
14.5.2.2
14.6
14.7
14.7.1
14.7.2
14.7.3
14.7.4
14.7.5
14.7.6
14.8
ANALYSIS
CODE
440
ANALYSIS
PROCEDURE
440
DOSE
RATE
441
NUCLEAR
HEATING
441
RADIATION
DAMAGE
442
SURFACE
DAMAGE
442
SPUTTERING
442
BLISTERING
444
BULK
DAMAGE
444
DISPLACEMENT
DAMAGE
444
DAMAGE
DUE
TO
NUCLEAR
TRANSMUTATION
445
RADIOACTIVE
WASTE
447
DESIGN
EXAMPLE
448
NEUTRON
FLUX
449
DPA
DISTRIBUTION
449
HELIUM
PRODUCTION
450
DOSE
RATE
450
DOSE
RATE
BY
SKYSHINE
452
NUCLEAR
HEATING
AND
SO
ON
452
FUTURE
CHALLENGES
453
REFERENCES
453
15
15.1
15.1.1
15.1.2
15.1.3
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.8.1
15.8.2
15.8.2.1
15.8.2.2
15.8.3
15.8.4
15.8.5
15.8.6
15.9
OPERATION
AND
MAINTENANCE
457
FUNCTIONS
REQUIRED
FOR
OPERATION
AND
MAINTENANCE
457
HIGH
PLANT
AVAILABILITY
457
MAINTENANCE
METHOD
CONSISTENT
WITH
THE
REACTOR
STRUCTURE
457
REMOTE
MAINTENANCE
WITH
HIGH
EFFICIENCY
AND
HIGH
RELIABILITY
458
OPERATION
PERIOD
458
EQUIPMENT
TO
BE
INSPECTED
AND
MAINTAINED
459
FREQUENCY
OF
MAINTENANCE
461
REMOTE
MAINTENANCE
METHODS
461
PROCESS
OF
REMOTE
MAINTENANCE
463
IN-VESSEL
TRANSPORT
SYSTEM
465
DESIGN
EXAMPLE
466
FREQUENCY
OF
MAINTENANCE
AND
MAINTENANCE
PERIOD
466
IN-VESSEL
TRANSPORT
SYSTEM
466
MAINTENANCE
OF
BLANKET
MODULE
466
MAINTENANCE
OF
DIVERTOR
467
EX-VESSEL
TRANSPORT
SYSTEM
468
PIPING
CUTTING/WELDING
TOOL
469
FAILURE
OF
MAINTENANCE
DEVICE
469
HOT
CELL
BUILDING
469
FUTURE
CHALLENGES
470
REFERENCES
471
XX
CONTENTS
16
16.1
16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.4.1
16.4.1.1
16.4.1.2
16.4.1.3
16.4.1.4
16.4.2
16.4.2.1
16.4.2.2
16.5
COOLING
SYSTEM
473
FUNCTIONS
OF
COOLING
SYSTEM
473
CONFIGURATION
OF
COOLING
SYSTEM
473
OPERATION
MODE
473
COOLING
METHOD
474
HEAT
RESERVOIR
474
COOLING
PERFORMANCE
476
DESIGN
EXAMPLE
478
CONFIGURATION
OF
COOLING
SYSTEM
478
TOKAMAK
COOLING
WATER
SYSTEM
478
COMPONENT
COOLING
WATER
SYSTEM
479
CHILLED
WATER
SYSTEM
480
HEAT
REJECTION
SYSTEM
480
DECAY
HEAT
REMOVAL
IN
EMERGENCY
480
EMERGENCY
POWER
SUPPLY
480
NATURAL
CIRCULATION
MODE
480
FUTURE
CHALLENGES
480
REFERENCES
481
17
17.1
17.2
17.2.1
17.2.2
17.2.3
17.2.3.1
17.2.3.2
17.2.3.3
17.2.4
17.3
17.3.1
17.3.2
17.3.3
17.3.4
17.4
17.4.1
17.4.1.1
17.4.1.2
17.4.1.3
17.4.2
17.4.3
17.4.4
17.4.5
17.4.5.1
POWER
SUPPLY
SYSTEM
483
FUNCTIONS
REQUIRED
FOR
THE
POWER
SUPPLY
SYSTEM
483
CHARACTERISTICS
OF
THE
POWER
SUPPLY
SYSTEM
483
POWER
SUPPLY
CAPACITY
483
EQUIPMENT
AND
FACILITIES
TO
WHICH
POWER
IS
SUPPLIED
484
TECHNOLOGIES
TO
REDUCE
COIL
POWER
SUPPLY
CAPACITY
485
HYBRID
COIL
SYSTEM
485
SUPERCONDUCTIVITY
485
STEADY-STATE
OPERATION
486
CONFIGURATION
OF
POWER
SUPPLY
488
POWER
SUPPLY
FOR
TOROIDAL
MAGNETIC
FIELD
COIL
489
SELF-INDUCTANCE
489
POWER
SUPPLY
VOLTAGE
490
STORED
ENERGY
AND
COIL
PROTECTION
491
PROTECTION
RESISTOR
491
POWER
SUPPLY
FOR
POLOIDAL
MAGNETIC
FIELD
COIL
492
INDUCTANCE
492
MUTUAL
INDUCTANCE
492
SELF-INDUCTANCE
OF
PF
COIL
492
SELF-INDUCTANCE
OF
CS
COIL
493
POWER
SUPPLY
VOLTAGE
494
POWER
SUPPLY
CAPACITY
494
STORED
ENERGY
495
COIL
PROTECTION
495
AT
THE
TIME
OF
QUENCH
495
CONTENTS
XXI
17.4.5.2
17.5
17.5.1
17.5.2
AT
THE
TIME
OF
PLASMA
DISRUPTION
495
DESIGN
EXAMPLE
495
COIL
POWER
SUPPLY
496
POWER
SUPPLY
OF
PLASMA
HEATING
AND
CURRENT
DRIVE
SYSTEM
(H&CD)
497
17.6
FUTURE
CHALLENGES
498
REFERENCES
498
18
18.1
18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.5.1
18.2.5.2
18.3
18.3.1
18.3.2
18.3.2.1
18.3.2.2
18.3.2.3
18.4
18.4.1
18.4.2
18.4.2.1
18.4.2.2
18.4.2.3
18.4.3
18.4.3.1
18.4.3.2
18.4.4
18.4.4.1
18.4.4.2
18.5
18.5.1
18.5.1.1
18.5.1.2
18.5.1.3
18.5.2
18.6
OPERATION
CONTROL
AND
DIAGNOSTIC
SYSTEMS
501
FUNCTIONS
OF
OPERATION
CONTROL
AND
DIAGNOSTIC
SYSTEMS
501
BASICS
OF
CONTROL
502
CONTROL
METHOD
502
TRANSFER
FUNCTION
503
TRANSIENT
RESPONSE
OF
A
SYSTEM
504
FEEDBACK
CONTROL
504
PID
CONTROLLER
505
IDEAL
PID
CONTROLLER
505
PRACTICAL
NONINTERFERENCE-TYPE
PID
CONTROLLER
505
OPERATION
CONTROL
SYSTEM
507
CENTRAL
CONTROL
SYSTEM
507
PLASMA
CONTROL
507
CONTROL
OF
FUSION
POWER
508
MHD
CONTROL
509
DISRUPTION
CONTROL
509
DIAGNOSTIC
SYSTEMS
511
PASSIVE
AND
ACTIVE
MEASUREMENTS
511
PROBE
MEASUREMENT
572
ELECTROSTATIC
PROBE
512
MAGNETIC
PROBE,
MAGNETIC
LOOP,
AND
ROGOWSKI
COIL
513
DIAMAGNETIC
COIL
513
ELECTROMAGNETIC
WAVE
MEASUREMENT
574
PASSIVE
ELECTROMAGNETIC
WAVE
MEASUREMENT
574
ACTIVE
ELECTROMAGNETIC
WAVE
MEASUREMENT
518
PARTICLE
MEASUREMENT
522
PASSIVE
PARTICLE
MEASUREMENT
522
ACTIVE
PARTICLE
MEASUREMENT
528
DESIGN
EXAMPLE
529
OPERATION
CONTROL
SYSTEM
529
PLANT
CONTROL
SYSTEM
530
INTERLOCK
LEVEL
530
PLASMA
OPERATION
531
DIAGNOSTIC
SYSTEM
533
FUTURE
CHALLENGES
535
REFERENCES
536
XXII
CONTENTS
19
SAFETY
539
19.1
REQUIREMENTS
FOR
SAFETY
539
19.2
RADIOACTIVE
MATERIALS
540
19.2.1
RADIOACTIVITY
540
19.2.2
EXPOSURE
DOSE
541
19.2.3
ABSORBED
DOSE
541
19.2.4
DOSE
EQUIVALENT/EFFECTIVE
DOSE
EQUIVALENT
541
19.2.5
EQUIVALENT
DOSE/EFFECTIVE
DOSE
542
19.2.6
COMMITTED
EFFECTIVE
DOSE
543
19.2.7
TRITIUM
CONCENTRATION
LIMIT
544
19.2.8
BIOLOGICAL
HAZARD
POTENTIAL
544
19.3
HOW
TO
ENSURE
SAFETY
545
19.3.1
SAFETY
FEATURES
545
19.3.2
GOAL
OF
THE
SAFETY
546
19.3.2.1
IN
NORMAL
TIME
546
19.3.2.2
IN
EMERGENCY
547
19.3.3
BASIC
CONCEPT
OF
ENSURING
THE
SAFETY
547
19.3.3.1
BASIC
CONCEPT
547
19.3.3.2
IMPLEMENTATION
OF
ENSURING
SAFETY
548
19.3.4
BASIC
CONCEPT
OF
THE
SAFETY
DESIGN
548
19.3.5
EVALUATION
OF
THE
SAFETY
DESIGN
550
19.3.6
WASTE
DISPOSAL
550
19.4
DESIGN
EXAMPLE
551
19.4.1
DOSE
LIMIT
551
19.4.2
BASIC
CONCEPT
OF
ENSURING
THE
SAFETY
552
19.4.3
IMPLEMENTATION
OF
ENSURING
THE
SAFETY
552
19.4.3.1
REDUCTION
OF
RADIOACTIVE
MATERIALS
552
19.4.3.2
CONFINEMENT
BARRIER
OF
RADIOACTIVE
MATERIALS
552
19.4.3.3
ENERGY
THAT
DAMAGES
THE
CONFINEMENT
BARRIERS
553
19.4.3.4
ZONING
MANAGEMENT
555
19.4.4
SAFETY
DESIGN
555
19.4.5
EVENT
ANALYSIS
556
19.4.5.1
EVENTS
FOR
ANALYSIS
556
19.4.5.2
SAFETY
ANALYSIS
CODE
558
19.5
FUTURE
CHALLENGES
558
REFERENCES
560
20
ANALYSIS
CODE
563
20.1
HOW
TO
DESIGN
563
20.1.1
DESIGN
FLOW
563
20.1.2
FLOW
OF
REACTOR
DESIGN
563
20.1.2.1
REQUIREMENTS
AS
POWER
REACTOR
564
20.1.2.2
CONSTRUCTION
OF
REACTOR
CONCEPT
564
20.1.2.3
CLARIFICATION
OF
CONSTRAINTS
565
20.1.2.4
PLASMA
DESIGN
565
20.1.2.5
DESIGN
OF
REACTOR
STRUCTURE
566
20.1.2.6.
PLANT
DESIGN,
SAFETY,
AND
ECONOMIC
EVALUATIONS
566
CONTENTS
XXIII
20.2
VARIOUS
TYPES
OF
ANALYSIS
CODES
566
20.2.1
PLASMA
ANALYSIS
CODE
566
20.2.2
EQUIPMENT
ANALYSIS/DESIGN
CODE
567
20.2.3
SAFETY
ANALYSIS
CODE
567
20.2.4
DETAILED
ANALYSIS
CODE
567
20.3
REACTOR
DESIGN
SYSTEM
CODE
567
20.3.1
ROLE
OF
THE
CODE
567
20.3.2
VARIOUS
SYSTEM
CODES
568
20.4
SYSTEM
CODE
FOR
REACTOR
CONCEPTUAL
DESIGN
570
20.4.1
POWER
BALANCE
(ENERGY
BALANCE
PER
UNIT
TIME)
570
20.4.2
RADIAL
BUILD
571
20.4.3
VOLT-SECOND
572
20.4.4
SHAPE
OF
TF
COIL
573
20.4.5
ELECTROMAGNETIC
FORCE
ACTING
ON
THE
TF
COIL
573
20.4.5.1
TENSILE
STRESS
DUE
TO
VERTICAL
FORCE
574
20.4.5.2
BENDING
STRESS
DUE
TO
CENTERING
FORCE
575
20.4.5.3
BENDING
STRESS
DUE
TO
OVERTURNING
FORCE
575
20.4.6
BUCKING
CYLINDER
575
20.4.7
RADIATION
SHIELD
577
20.4.8
VERTICAL
BUILD
577
20.4.9
POWER
SUPPLY
CAPACITY
578
20.4.9.1
TF
COIL
578
20.4.9.2
PF
COIL
578
20.5
SYSTEM
CODES
FOR
ECONOMIC
EVALUATION
579
20.5.1
COST
OF
ELECTRICITY
579
20.5.2
INITIAL
CAPITALIZED
INVESTMENT
580
20.5.3
DIRECT
COST
OF
CONSTRUCTION
580
20.5.4
ANNUAL
COST
OF
COMPONENT
REPLACEMENT
AT
SPECIFIC
INTERVALS
581
20.5.5
ANNUAL
COST
OF
OPERATION
AND
MAINTENANCE
581
20.5.6
ANNUAL
FUEL
COST
AND
ANNUAL
COST
OF
WASTE
DISPOSAL
AND
DECOMMISSIONING
581
20.6
SYSTEM
CODES
FOR
PLASMA
DYNAMICS
EVALUATION
582
20.6.1
PARTICLE
BALANCE
AND
ENERGY
BALANCE
582
20.6.1.1
PARTICLE
BALANCE
EQUATION
582
20.6.1.2
ENERGY
BALANCE
EQUATIONS
583
20.6.2
P
LIMIT
584
20.6.3
DENSITY
LIMIT
584
20.6.4
THERMAL
LOAD
ON
PLASMA-FACING
WALL
585
20.6.5
DISTRIBUTION
OF
NUCLEAR
HEATING
RATE
586
20.6.6
IMPURITY
CONTAMINATION
MODEL
IN
PLASMA
586
20.6.7
HEAT
TRANSFER
MODEL
OF
REACTOR
STRUCTURE
587
20.6.8
ANALYSIS
EXAMPLE
588
20.7
FUTURE
CHALLENGES
590
REFERENCES
590
INDEX
593
|
adam_txt |
CONTENTS
PREFACE
XXV
1
CHARACTERISTICS
OF
THE
FUSION
REACTOR
1
1.1
THE
FUSION
REACTOR
AS
AN
ENERGY
SOURCE
1
1.1.1
TRENDS
IN
WORLD
ENERGY
CONSUMPTION
1
1.1.2
ENERGY
CLASSIFICATION
1
1.1.3
NUCLEAR
FUSION
POWER
GENERATION
2
1.2
NUCLEAR
FUSION
REACTION
3
1.2.1
NUCLEAR
REACTION
USED
IN
THE
FUSION
REACTOR
3
1.2.2
CROSS
SECTION
OF
THE
FUSION
REACTION
4
1.2.3
FUSION
REACTION
RATE
5
1.3
PLASMA
CONFINEMENT
CONCEPT
7
1.3.1
MAGNETIC
CONFINEMENT
7
1.3.1.1
LINEAR
SYSTEM
(OPEN-END
SYSTEM)
7
1.3.1.2
TOROIDAL SYSTEM
9
1.3.2
INERTIAL
CONFINEMENT
13
REFERENCES
15
2
BASIS
OF
THE
FUSION
REACTOR
17
2.1
POWER
FLOW
17
2.2
FUSION
REACTOR
STRUCTURE
19
2.3
POWER
GENERATION
CONDITIONS
OF
THE
FUSION
REACTOR
20
2.3.1
POWER
FLOW
OF
THE
POWER
PLANT
20
2.3.2
PLANT
EFFICIENCY
21
2.3.3
FUEL
SUPPLY
SCENARIO
22
2.4
CORE
PLASMA
CONDITIONS
22
2.4.1
BREAK-EVEN
CONDITION
AND
SELF-IGNITION
CONDITION
22
2.4.2
LAWSON
CRITERION
22
2.4.3
TYPICAL
REACTOR
CONCEPTS
24
2.5
REQUIREMENTS
OF
PLASMA
IN
THE
FUSION
REACTOR
24
2.5.1
FUSION
TRIPLE
PRODUCT
25
2.5.2
P
VALUE
25
2.5.3
CURRENT
DRIVE
EFFICIENCY
25
VI
CONTENTS
2.6
2.6.1
2.6.2
2.6.3
2.7
2.7.1
2.7.2
2.7.3
OPERATION
SCENARIO
26
PULSE
OPERATION
26
QUASI-STEADY-STATE
OPERATION
27
STEADY-STATE
OPERATION
28
STEPWISE
DEVELOPMENT
RESEARCH
OF
THE
FUSION
REACTOR
28
EXPERIMENTAL
REACTOR
29
PROTOTYPE
REACTOR
29
DEMONSTRATION
REACTOR/COMMERCIAL
REACTOR
29
REFERENCES
29
3
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.2
3.3.3
3.3.4
3.4
3.5
3.6
3.7
3.8
3.8.1
3.8.1.1
3.8.1.2
3.8.1.3
3.8.1.4
3.8.2
3.9
3.9.1
3.9.2
BASICS
OF
PLASMA
ANALYSIS
31
BOLTZMANN
EQUATION
31
PLASMA
ANALYSIS
32
VELOCITY
INFORMATION
33
NONLINEAR
EFFECTS
33
EXTERNAL
ELECTROMAGNETIC
FIELD
33
NUMERICAL
SIMULATION
33
MAIN
PLASMA
THEORIES
33
MAGNETOHYDRODYNAMIC
EQUATION
35
MACROSCOPIC
PHYSICAL
QUANTITY
35
MOMENTUM
FLOW
TENSOR
P(R,
T)
36
PRESSURE
TENSOR
P(R,
T)
36
ENERGY
DENSITY
E(R,
T)
36
INTERNAL
ENERGY
DENSITY
I7(R,
T)
36
ENERGY
FLUX
VECTOR
Q(R,
T)
36
PARTICLE
NUMBER
CONSERVATION
LAW
(EQUATION
OF
CONTINUITY)
37
MOMENTUM
CONSERVATION
LAW
38
ENERGY
CONSERVATION
LAW
39
KINETIC
EQUATION
39
LINEARIZED
KINETIC
ANALYSIS
(ONE
DIMENSION)
41
LINEARIZED
KINETIC
ANALYSIS
(THREE
DIMENSIONS)
43
QUASI-LINEAR
THEORY
46
TURBULENCE
THEORY
49
WEAK
TURBULENCE
THEORY
49
WAVE-PARTICLE
INTERACTION
51
WAVE-WAVE
(3
WAVES)
INTERACTION
52
NONLINEAR
WAVE-PARTICLE
INTERACTION
52
WAVE-WAVE
(4
WAVES)
INTERACTION
52
STRONG
TURBULENCE
THEORY
53
NEUTRON
TRANSPORT
ANALYSIS
53
TRANSPORT
EQUATION
53
INTERACTION
BETWEEN
NEUTRONS
AND
MATERIALS
54
REFERENCES
55
CONTENTS
VII
4
PLASMA
EQUILIBRIUM
AND
STABILITY
57
4.1
PLASMA
EQUILIBRIUM
57
4.1.1
PLASMA
PRESSURE
57
4.1.2
EQUILIBRIUM
EQUATION
59
4.1.3
TOKAMAK
EQUILIBRIUM
61
4.1.4
PLASMA
CROSS
SECTION
63
4.2
MHD
STABILITY
64
4.2.1
ENERGY
PRINCIPLE
64
4.2.1.1
MHD
EQUATION
64
4.2.1.2
LINEARIZED
IDEAL
MHD
EQUATION
66
4.2.1.3
ENERGY
PRINCIPLE
67
4.2.2
ENERGY
INTEGRAL
68
4.2.3
MHD
INSTABILITY
69
4.2.4
MHD
MODE
AND
RESONANT
SURFACE
69
4.3
PLASMA
POSITIONAL
INSTABILITY
71
4.4
KINK
INSTABILITY
74
4.4.1
CHARACTERISTICS
74
4.4.2
DISPERSION
RELATION
74
4.4.3
STABILIZATION
METHOD
76
4.5
INTERCHANGE
INSTABILITY
77
4.6
BALLOONING
INSTABILITY
78
4.6.1
CHARACTERISTICS
78
4.6.2
ENERGY
INTEGRAL
79
4.6.3
STABILIZATION
METHOD
81
4.7
RESISTIVE
INSTABILITY
82
4.7.1
TEARING
MODE
83
4.7.1.1
CHARACTERISTICS
83
4.7.1.2
BASIC
EQUATIONS
84
4.7.1.3
MAGNETIC
ISLAND
WIDTH
85
4.7.1.4
MAGNETIC
ISLAND
EVOLUTION
EQUATION
86
4.7.1.5
STABILIZATION
METHOD
88
4.7.2
NEOCLASSICAL
TEARING
MODE
88
4.7.2.1
CHARACTERISTICS
88
4.7.2.2
DIFFERENCE
IN
THE
LOGARITHMIC
DERIVATIVE
DUE
TO
BOOTSTRAP
CURRENT
89
4.7.2.3
MAGNETIC
ISLAND
EVOLUTION
EQUATION
89
4.7.2.4
STABILIZATION
METHOD
89
4.8
DRIFT
INSTABILITY
90
4.8.1
DENSITY
GRADIENT
90
4.8.2
DENSITY
GRADIENT
AND
TEMPERATURE
GRADIENT
90
4.8.3
RESISTIVE
DRIFT
MODE
92
4.8.4
INFLUENCE
OF
DRIFT
WAVE
ON
PLASMA
TRANSPORT
95
4.9
RESISTIVE
WALL
INSTABILITY
96
4.9.1
CHARACTERISTICS
96
4.9.2
STABILIZATION
METHOD
97
VIII
CONTENTS
4.10
4.10.1
4.10.1.1
4.10.1.2
4.10.1.3
4.10.2
4.11
4.12
4.13
4.14
INSTABILITY
DUE
TO
HIGH
ENERGY
PARTICLES
98
ALFVEN
EIGENMODE
98
CHARACTERISTICS
98
DISPERSION
RELATION
99
INSTABILITY
CONDITION
AND
STABILIZATION
METHOD
100
FISHBONE
OSCILLATION
102
SAWTOOTH
OSCILLATION
102
EDGE
LOCALIZED MODE
102
LOCKED
MODE
103
FUTURE
CHALLENGES
103
APPENDIX
4A
103
APPENDIX
4B
107
REFERENCES
111
5
5.1
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
5.7
5.8
5.8.1
5.8.1.1
5.8.1.2
5.8.2
5.8.2.1
5.8.2.2
PLASMA
TRANSPORT
AND
CONFINEMENT
113
CONFINEMENT
TIME
113
PLASMA
TRANSPORT
114
DIFFUSION
BY
COLLISION
114
DIFFUSION
BY
TURBULENCE
116
BOHM
DIFFUSION
116
GYRO-BOHM
DIFFUSION
118
ENERGY
CONFINEMENT
119
SCALING
LAW
OF
ENERGY
CONFINEMENT
119
PARAMETER
DEPENDENCE
OF
ENERGY
CONFINEMENT
TIME
119
SCALING
LAW
120
L-H
TRANSITION
THRESHOLD
POWER
122
IMPROVED
CONFINEMENT
MODE
122
EDGE
LOCALIZED
MODE
124
TYPES
OF
EDGE
LOCALIZED
MODE
124
ENERGY
RELEASED
BY
ELM
125
MEASURES
AGAINST
ELM
127
P
LIMIT
127
PLASMA
CURRENT
PROFILE
128
PLASMA
PRESSURE
PROFILE
128
SHAPE
OF
PLASMA
CROSS
SECTION
129
NEOCLASSICAL
TEARING
MODE
129
DENSITY
LIMIT
129
CONFINEMENT
OF
HIGH-ENERGY
PARTICLES
129
DISRUPTION
130
PLASMA
BEHAVIOR
IN
DISRUPTION
AND
CAUSE
OF
THE
OCCURRENCE
131
PLASMA
BEHAVIOR
131
CAUSES
OF
DISRUPTION
133
EFFECT
ON
EQUIPMENT
133
THERMAL
LOAD
133
ELECTROMAGNETIC
FORCE
134
CONTENTS
IX
5.8.3
COUNTERMEASURES
AGAINST
DISRUPTION
135
5.9
FUTURE
CHALLENGES
137
REFERENCES
137
6
PLASMA
DESIGN
141
6.1
PARTICLE
AND
ENERGY
BALANCES
OF
PLASMA
(ONE
DIMENSION)
141
6.1.1
THERMAL
CONDUCTION
LOSS
POWER
143
6.1.2
CONVECTION
LOSS
POWER
143
6.1.3
A
HEATING
POWER
143
6.1.4
ADDITIONAL
HEATING
POWER
144
6.1.5
JOULE
(OHMIC)
HEATING
POWER
144
6.1.6
ELECTRON-ION
ENERGY
TRANSFER
144
6.1.7
RADIATION
LOSS
POWER
145
6.2
PARTICLE
AND
ENERGY
BALANCES
OF
PLASMA
(ZERO
DIMENSION)
145
6.2.1
ZERO-DIMENSIONAL
PARTICLE
AND
ENERGY
BALANCES
145
6.2.2
PLASMA
TEMPERATURE
AND
DENSITY
IN
STEADY-STATE
OPERATION
146
6.3
BURN-UP
FRACTION
148
6.4
PLASMA
CIRCUIT
150
6.5
REACTOR
STRUCTURE
152
6.5.1
RADIAL
BUILD
152
6.5.2
MAGNETIC
FLUX
REQUIRED
FOR
OPERATION
153
6.5.3
MAGNETIC
FLUX
TO
BE
SUPPLIED
154
6.6
FUTURE
CHALLENGES
155
REFERENCES
156
7
BLANKET
157
7.1
FUNCTIONS
REQUIRED
FOR
THE
BLANKET
157
7.2
TRITIUM
PRODUCTION
157
7.2.1
NECESSITY
OF
TRITIUM
PRODUCTION
157
7.2.2
TRITIUM
BREEDING
RATIO
159
7.2.3
TRITIUM
DOUBLING
TIME
159
7.2.4
IMPROVEMENT
OF
TRITIUM
BREEDING
RATIO
160
7.2.4.1
6
LI(N,
T)A
REACTION
CROSS
SECTION
161
7.2.4.2
7
LI(N,
N'
T)A
REACTION
CROSS
SECTION
161
7.2.4.3
TRITIUM
BREEDING
MATERIAL
161
7.2.4.4
NEUTRON
FLUX
163
7.2.4.5
BLANKET
COVERAGE
164
7.2.5
RECOVERY
OF
TRITIUM
165
7.3
TAKING
OUT
OF
THERMAL
ENERGY
165
7.3.1
ENERGY
MULTIPLICATION
FACTOR
OF
THE
BLANKET
165
7.3.2
POWER
GENERATION
EFFICIENCY
AND
COOLANT
TEMPERATURE
166
7.3.2.1
TEMPERATURE
OF
BREEDER
AND
MULTIPLIER
MATERIALS
166
7.3.2.2
TEMPERATURE
OF
THE
BLANKET
STRUCTURAL
MATERIAL
167
7.3.23
COOLANT
167
7.3.3
TEMPERATURE
PROFILE
168
X
CONTENTS
7.3.4
POWER
GENERATION
METHOD
170
7.3.4.1
POWER
GENERATION
METHODS
OF
FISSION
REACTOR
AND
THERMAL
POWER
PLANT
171
7.3
.4.2
CHARACTERISTICS
OF
FUSION
POWER
GENERATION
172
7.3.4.3
COMBINATION
OF
COOLANTS
173
7.3.4.4
FUSION
POWER
GENERATION
175
7.4
RADIATION
SHIELDING
FUNCTION
175
7.4.1
BLANKET
THICKNESS
175
7.4.2
LOW
RADIOACTIVATION
176
7.5
MAINTENANCE
176
7.5.1
EXTENSION
OF
LIFE
176
7.5.1.1
WEAR
AMOUNT
OF
LITHIUM
BY
BURNING
OF
TRITIUM
BREEDING
MATERIAL
177
7.5.1.2
WEAR
AMOUNT
OF
BERYLLIUM
BY
BURNING
OF
NEUTRON
MULTIPLIER
MATERIAL
178
7.5.1.3
WEAR
AMOUNT
OF
FIRST
WALL
179
7.5.1.4
NUCLEAR
DAMAGE
DUE
TO
DISPLACEMENT
DAMAGE,
HYDROGEN
AND
HELIUM
PRODUCTIONS,
SWELLING,
ETC.
179
7.5.1.5
CHANGE
IN
THERMAL
LIFE
OF
STRUCTURAL
MATERIALS
DUE
TO
CYCLE
THERMAL
FATIGUE
179
7.5.2
MAINTENANCE
METHOD
179
7.5.2.1
WEAR
AMOUNT
AND
REPLACEMENT
FREQUENCY
179
7.5.2.2
REMOTE
MAINTENANCE
METHOD
180
7.6
BLANKET
DESIGN
181
7.6.1
BLANKET
CLASSIFICATION
181
7.6.2
DESIGN
CONDITIONS
181
7.6.3
BLANKET
CONCEPT
181
7.6.3.1
BLANKET
CONFIGURATION
181
7.6.3.2
SIZE
OF
A
BLANKET
183
7.6.4
DESIGN
EXAMPLE
185
7.7
FUTURE
CHALLENGES
187
REFERENCES
189
8
PLASMA-FACING
COMPONENTS
191
8.1
FUNCTIONS
REQUIRED
FOR
PLASMA-FACING
COMPONENTS
191
8.1.1
REQUIRED
FUNCTIONS
191
8.1.1.1
IMPURITY
CONTROL
191
8.1.1.2
PLASMA
PARTICLE
CONTROL
191
8.1.1.3
THERMAL
TREATMENT
OF
PLASMA
THERMAL
ENERGY
192
8.1.2
LIMITER
AND
DIVERTOR
192
8.2
DIVERTOR
CHARACTERISTICS
(IN
STEADY
STATE)
193
8.2.1
BASIC
CHARACTERISTICS
OF
DIVERTOR
PLASMA
193
8.2.2
TWO-POINT
MODEL
194
8.2.3
ATTACHED
STATE
AND
DETACHED
STATE
196
8.2.4
TWO-DIMENSIONAL
DIVERTOR
ANALYSIS
MODEL
197
8.2.5
MEASURES
FOR
REDUCING
PARTICLE
AND
THERMAL
LOADS
200
CONTENTS
XI
8.2.5.1
8.2.5.2
8.2.5.3
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3
8.4.1.4
8.4.2
8.4.3
8.5
8.5.1
8.5.2
8.5.3
8.5.3.1
8.5.3.2
8.5.3.3
8.5.3.4
8.5.4
8.6
8.6.1
8.6.2
8.6.2.1
8.6.2.2
8.6.2.3
8.6.2.4
8.6.3
8.7
IMPURITY
CONTROL
200
PARTICLE
CONTROL
200
AVERAGE
HEAT
FLUX
TO
THE
DIVERTOR
PLATE
200
DIVERTOR
CHARACTERISTICS
(IN
NON-STEADY
STATE)
201
ELM
201
DISRUPTION
202
THERMAL
LOAD
202
ELECTROMAGNETIC
FORCE
203
STRUCTURES
OF
LIMITER
AND
DIVERTOR
203
SHAPE
AND
"TYPE
OF
LIMITER
AND
DIVERTOR
203
TRENDS
IN
IMPURITY
CONTROL
RESEARCH
203
LIMITER
AND
PUMPED
LIMITER
204
DIVERTOR
204
COMPARISON
OF
PUMPED
LIMITER
AND
DIVERTOR
205
COMPARISON
OF
SINGLE
NULL
DIVERTOR
AND
DOUBLE
NULL
DIVERTOR
206
SHAPE
OF
DIVERTOR
206
DIVERTOR
DESIGN
208
DESIGN
CONDITIONS
AND
DESIGN
ITEMS
208
MATERIAL
SELECTION
210
STRUCTURAL
CONCEPT
212
HEAT
RECEIVING
PLATE
STRUCTURE
212
EDDY
CURRENT
SUPPRESSION
STRUCTURE
213
REDUCTION
OF
STRESS
AND
STRAIN
213
COOLING
TUBE
213
DESIGN
EXAMPLE
214
FIRST
WALL
217
PARTICLE
LOAD
AND
THERMAL
LOAD
217
FIRST-WALL
STRUCTURE
218
OVERALL
STRUCTURE
218
PROTECTION
STRUCTURE
218
FLOW
PATH
CROSS
SECTION
218
AMOUNT
OF
WEAR
220
DESIGN
EXAMPLE
220
FUTURE
CHALLENGES
222
REFERENCES
222
9
9.1
9.1.1
9.1.2
9.2
9.2.1
9.2.2
9.2.3
9.2.3.1
COIL
SYSTEM
227
FUSION
REACTOR
COILS
227
TYPES
OF
COILS
227
NECESSITY
OF
SUPERCONDUCTING
COIL
227
BASICS
OF
SUPERCONDUCTING
COILS
228
CHARACTERISTICS
OF
SUPERCONDUCTIVITY
228
SUPERCONDUCTING
MATERIALS
228
MANUFACTURING
METHODS
FOR
SUPERCONDUCTING
WIRES
229
NBTI
229
XII
CONTENTS
9.23.2
NB
3
SN
230
9.2.33
NB
3
AL
230
9.23.4
MGB
2
231
9.23.5
BISMUTH-BASED
OXIDE
231
9.23.6
YTTRIUM-BASED
OXIDE
231
9.2.4
SUPERCONDUCTING
WIRES
231
9.2.4.1
HYSTERESIS
LOSS
231
9.2.4.2
STABILIZING
MATERIALS
(STABILIZERS)
232
9.2.43
TWIST
232
9.2.4.4
COOLING
PERFORMANCE
232
9.2.5
THERMAL
LOAD
AND
COOLING
METHODS
232
9.2.5.1
THERMAL
LOAD
232
9.2.5.2
COOLING
METHODS
233
9.2.6
CONDUCTOR
STRUCTURE
234
9.2.6.1
CRITICAL
CURRENT
235
9.2.6.2
LIMITED
CURRENT
236
9.2.63
STABILITY
MARGIN
236
9.2.6.4
COIL
AVERAGE
CURRENT
DENSITY
237
9.2.6.5
CONDUCTOR
DESIGN
237
9.2.7
COIL
STRUCTURE
237
9.2.7.1
STRUCTURE
237
9.2.7.2
STRUCTURAL
MATERIAL
238
93
BASICS
OF
TOROIDAL
MAGNETIC
FIELD
COIL
238
93.1
FUNCTIONS
FOR
TOROIDAL
MAGNETIC
FIELD
COIL
239
93.2
COIL
CURRENT
AND
NUMBER
OF
COILS
239
93.2.1
COIL
CURRENT
239
93.2.2
NUMBER
OF
COILS
239
93.2.3
STORED
ENERGY
241
9.33
ELECTROMAGNETIC
FORCE
GENERATED
IN
COIL
241
9.33.1
EXTENSIONAL
FORCE
241
9.33.2
CENTERING
FORCE
242
9.3.33
OVERTURNING
FORCE
242
9.3.4
COIL
SHAPE
242
93.4.1
SHAPE
242
93.4.2
THREE-ARC
APPROXIMATION
243
9.3.5
MAXIMUM
MAGNETIC
FIELD
245
9.4
DESIGN
OF
TOROIDAL
MAGNETIC
FIELD
COIL
245
9.4.1
CONDUCTOR
DESIGN
246
9.4.1.1
SELECTION
OF
SUPERCONDUCTING
MATERIAL
246
9.4.1.2
COOLING
METHOD
246
9.4.2
DESIGN
OF
COIL
STRUCTURE
246
9.4.2.1
COIL
STRUCTURE
246
9A.2.2
SELECTION
OF
STRUCTURAL
MATERIALS
246
9.4.3
SUPPORT
STRUCTURE
247
9.43.1
SUPPORT
STRUCTURE
FOR
THE
CENTERING
FORCE
247
CONTENTS
XIII
9.4.3.2
SUPPORT
STRUCTURE
FOR
THE
OVERTURNING
FORCE
249
9.4.3.3
SUPPORT
STRUCTURE
OF
OWN
WEIGHT
249
9.4.4
DESIGN
EXAMPLE
249
9.5
BASICS
OF
POLOIDAL
MAGNETIC
FIELD
COIL
254
9.5.1
FUNCTIONS
OF
POLOIDAL
MAGNETIC
FIELD
COIL
254
9.5.2
WAVEFORM
PATTERN
OF
COIL
CURRENT
FOR
CONTROL
OF
PLASMA
POSITION
AND
SHAPE
255
9.5.3
POSITION
OF
POLOIDAL
MAGNETIC
FIELD
COIL
256
9.6
CURRENT
CONTROL
OF
POLOIDAL
MAGNETIC
FIELD
COIL
256
9.6.1
MAGNETIC
FIELD
CONFIGURATION
TO
DETERMINE
THE
PLASMA
SHAPE
256
9.6.2
CONTROL
OF
PLASMA
POSITION
AND
SHAPE
257
9.6.3
GENERATION
TYPES
OF
POLOIDAL
MAGNETIC
FIELD
258
9.6.4
FUNCTION-SPECIFIC
COIL
SYSTEM
259
9.6.5
HYBRID
COIL
SYSTEM
260
9.6.5.1
N
UMBER
OFPFCOILS
260
9.6.5.2
DETERMINING
THE
PF
COIL
POSITION
260
9.6.5.3
DETERMINING
THE
PF
COIL
CURRENT
260
9.7
DESIGN
OF
POLOIDAL
MAGNETIC
FIELD
COIL
263
9.7.1
CONDUCTOR
DESIGN
263
9.7.1.1
SELECTION
OF
SUPERCONDUCTING
MATERIAL
263
9.7.1.2
COOLING
METHOD
263
9.7.2
DESIGN
OF
COIL
STRUCTURE
263
9.7.2.1
COIL
STRUCTURE
263
9.7.2.2
SELECTION
OF
STRUCTURAL
MATERIALS
263
9.7.23
SUPPORT
STRUCTURE
264
9.7.3
DESIGN
EXAMPLE
264
9.8
BASICS
OF
CENTRAL
SOLENOID
COIL
265
9.8.1
FUNCTIONS
OF
CENTRAL
SOLENOID
COIL
265
9.8.2
MAGNETIC
FIELD
OF
CENTRAL
SOLENOID
COIL
266
9.8.3
SUPPLIED
MAGNETIC
FLUX
266
9.9
DESIGN
OF
CENTRAL
SOLENOID
COIL
267
9.9.1
CONDUCTOR
DESIGN
267
9.9.1.1
SELECTION
OF
SUPERCONDUCTING
MATERIAL
267
9.9.1.2
COOLING
METHOD
268
9.9.2
DESIGN
OF
COIL
STRUCTURE
268
9.9.2.1
COIL
STRUCTURE
268
9.9.2.2
SELECTION
OF
STRUCTURAL
MATERIALS
268
9.9.23
SUPPORT
STRUCTURE
268
9.9.3
DESIGN
EXAMPLE
268
9.10
FUTURE
CHALLENGES
270
REFERENCES
271
10
PLASMA
HEATING
AND
CURRENT
DRIVE
273
10.1
NECESSITY
OF
PLASMA
HEATING
AND
CURRENT
DRIVE
273
10.1.1
PLASMA
HEATING
273
XIV
CONTENTS
10.1.2
CURRENT
DRIVE
274
10.2
BASICS
OF
NBI
HEATING
275
10.2.1
IONIZATION
OF
NEUTRAL
PARTICLE
BEAM
275
10.2.2
TRAJECTORY
OF
ION
BEAM
276
10.2.2.1
DIRECTION
OF
INJECTION
276
10.2.2.2
TRAPPED
CONDITION
277
10.2.2.3
TRAJECTORY
OF
BEAM
ION
278
10.2.3
PLASMA
HEATING
BY
ENERGY
RELAXATION
279
10.3
BASICS
OF
NBI
CURRENT
DRIVE
281
10.3.1
DRIVEN
CURRENT
281
10.3.2
CURRENT
DRIVE
EFFICIENCY
282
10.3.3
SHINE
THROUGH
RATE
284
10.3.4
CURRENT
DRIVE
EFFICIENCY
OBTAINED
BY
EXPERIMENTS
284
10.4
BOOTSTRAP
CURRENT
285
10.4.1
TRAPPED
ELECTRON
ORBIT
AND
BOOTSTRAP
CURRENT
285
10.4.2
RATIO
OF
THE
BOOTSTRAP
CURRENT
286
10.5
BASICS
OF
RADIO
FREQUENCY
HEATING
287
10.5.1
DISPERSION
RELATION
287
10.5.2
DISPERSION
RELATION
OF
COLD
PLASMA
288
10.5.3
DISPERSION
RELATION
OF
HOT
PLASMA
289
10.5.4
DISPERSION
RELATION
OF
PLASMA
WITH
MAXWELL
DISTRIBUTION
290
10.5.5
CHARACTERISTICS
OF
RF
WAVES
291
10.5.5.1
PHASE
VELOCITY
AND
GROUP
VELOCITY
291
10.5.5.2
CUTOFF
AND
RESONANCE
292
10.5.5.3
POLARIZATION
292
10.5.6
PROPAGATION
CHARACTERISTICS
OF
RF
WAVES
293
10.5.6.1
WHEN
THE
WAVE
NUMBER
VECTOR
IS
PARALLEL
TO
THE
MAGNETIC
FIELD
294
10.5.6.2
WHEN
THE
WAVE
NUMBER
VECTOR
IS
PERPENDICULAR
TO
THE
MAGNETIC
FIELD
296
10.5.7
PRINCIPLES
OF
PLASMA
HEATING
297
10.5.7.1
LANDAU
DAMPING
298
10.5.7.2
TRANSIT
TIME
DAMPING
298
10.5.7.3
CYCLOTRON
DAMPING
299
10.5.7.4
ABSORPTION
POWER
299
10.5.8
PROPAGATION
IN
NONUNIFORM
PLASMA
300
10.6
VARIOUS
RF
WAVES
301
10.6.1
ALFV6N
WAVE
301
10.6.2
ION
CYCLOTRON
WAVE
303
10.6.2.1
RIGHT-HANDED
CUT
OFF
AND
LEFT-HANDED
CUT
OFF
304
10.6.2.2
DENSITY
AT
WHICH
THE
WAVE
CAN
PROPAGATE
305
10.6.2.3
CHARACTERISTICS
OF
THE
SLOW
WAVE
305
10.6.2.4
CHARACTERISTICS
OF
THE
FAST
WAVE
305
10.6.3
LOWER
HYBRID
WAVE
307
10.6.3.1
RESONANCE
AND
CUT
OFF
307
10.6.3.2
ACCESSIBILITY
CONDITION
309
CONTENTS
XV
10.6.4
ELECTRON
CYCLOTRON
WAVE
310
10.6.4.1
ABSORPTION
POWER
311
10.6.4.2
RESONANCE
AND
CUT
OFF
311
10.6.4.3
PROPAGATION
PATH
311
10.7
BASICS
OF
RF
CURRENT
DRIVE
313
10.7.1
GENERAL
THEORY
OF
RF
CURRENT
DRIVE
313
10.7.1.1
VARIOUS
NONINDUCTIVE
CURRENT
DRIVE
METHODS
313
10.7.1.2
NORMALIZED
CURRENT
DRIVE
EFFICIENCY
314
10.7.1.3
CURRENT
DRIVE
USING
MOMENTUM
OF
THE
WAVE
315
10.7.1.4
CURRENT
DRIVE
USING
ANISOTROPY
OF
THE
VELOCITY
SPACE
316
10.7.1.5
CURRENT
DRIVE
EFFICIENCY
316
10.7.2
CURRENT
DRIVE
USING
MOMENTUM
OF
THE
WAVE
316
10.7.2.1
FOKKER-PLANCK
EQUATION
IN
ONE
AND
TWO
DIMENSIONS
316
10.7.2.2
DRIVEN
CURRENT
DENSITY
AND
CURRENT
DRIVE
POWER
DENSITY
318
10.7.2.3
LHCD
(ONE-DIMENSIONAL
ANALYSIS)
318
10.7.2.4
DC
ELECTRIC
FIELD
318
10.7.2.5
LHCD
(TWO-DIMENSIONAL
ANALYSIS)
320
10.7.3
CURRENT
DRIVE
WITH
ANISOTROPY
OF
THE
VELOCITY
SPACE
321
10.7.3.1
TWO-DIMENSIONAL
FOKKER-PLANCK
EQUATION
321
10.7.3.2
RELATIVISTIC
EFFECT
323
10.7.3.3
TRAPPED
EFFECT
324
10.7.4
CURRENT
DRIVE
EFFICIENCY
OBTAINED
BY
EXPERIMENTS
327
10.7.4.1
FAST
WAVE
CURRENT
DRIVE
(FWCD)
327
10.7.4.2
LHCD
328
10.7.4.3
ECCD
329
10.8
NBI
SYSTEM
DESIGN
330
10.8.1
DESIGN
REQUIREMENTS
330
10.8.1.1
REQUIRED
FUNCTIONS
330
10.8.1.2
DESIGN
REQUIREMENTS
330
10.8.1.3
SYSTEM
EFFICIENCY
330
10.8.2
SYSTEM
CONFIGURATION
331
10.8.2.1
POSITIVE-ION
NBI
331
10.8.2.2
NEGATIVE-ION
NBI
332
10.8.3
NEGATIVE-ION SOURCE
332
10.8.3.1
NEGATIVE-ION
GENERATOR
332
10.8.3.2
ACCELERATOR
334
10.8.4
BEAM
TRANSPORT
SYSTEM
334
10.8.4.1
BEAM
PROFILE
CONTROL
UNIT
334
10.8.4.2
NEUTRALIZATION
CELL
(NEUTRALIZER)
334
10.8.4.3
RESIDUAL
ION
BENDING
MAGNET
AND
RESIDUAL
ION
DUMP
335
10.8.4.4
VACUUM
EXHAUST
SYSTEM
335
10.8.5
DESIGN
EXAMPLE
335
10.8.6
FUTURE
CHALLENGES
336
10.9
SYSTEM
DESIGN
OF
THE
ION
CYCLOTRON
WAVE
337
10.9.1
DESIGN
REQUIREMENTS
337
XVI
CONTENTS
10.9.1.1
REQUIRED
FUNCTIONS
337
10.9.1.2
ICRF
EXCITATION
METHOD
338
10.9.1.3
SYSTEM
EFFICIENCY
338
10.9.2
SYSTEM
CONFIGURATION
339
10.9.2.1
RF
SOURCE
339
10.9.2.2
TRANSMISSION
SYSTEM
339
10.9.2.3
INJECTION
SYSTEM
340
10.9.3
DESIGN
EXAMPLE
340
10.9.4
FUTURE
CHALLENGES
342
10.10
SYSTEM
DESIGN
OF
THE
LOWER
HYBRID
WAVE
342
10.10.1
DESIGN
REQUIREMENTS
342
10.10.1.1
REQUIRED
FUNCTIONS
342
10.10.1.2
LHW
EXCITATION
METHOD
343
10.10.1.3
PLASMA
DENSITY
IN
FRONT
OF
THE
LAUNCHER
344
10.10.1.4
SYSTEM
EFFICIENCY
344
10.10.2
SYSTEM
CONFIGURATION
344
10.10.2.1
RF
SOURCE
345
10.10.2.2
TRANSMISSION
SYSTEM
345
10.10.2.3
INJECTION
SYSTEM
(LAUNCHER)
346
10.10.2.4
PHASE
SHIFTER
347
10.10.3
DESIGN
EXAMPLE
348
10.10.4
FUTURE
CHALLENGES
350
10.11
SYSTEM
DESIGN
OF
THE
ELECTRON
CYCLOTRON
WAVE
350
10.11.1
DESIGN
REQUIREMENTS
350
10.11.1.1
REQUIRED
FUNCTIONS
350
10.11.1.2
ECW
EXCITATION
METHOD
351
10.11.1.3
SYSTEM EFFICIENCY
352
10.11.2
SYSTEM
CONFIGURATION
353
10.11.2.1
VARIOUS
SYSTEM
CONFIGURATIONS
353
10.11.2.2
RF
SOURCE
354
10.11.2.3
TRANSMISSION
SYSTEM
355
10.11.2.4
INJECTION
SYSTEM
(LAUNCHER)
355
10.11.3
DESIGN
EXAMPLE
356
10.11.4
FUTURE
CHALLENGES
357
APPENDIX
10A
358
APPENDIX
10B
363
APPENDIX
10C
369
APPENDIX
10D
373
APPENDIX
10E
377
REFERENCES
380
11
VACUUM
VESSEL
385
11.1
FUNCTIONS
REQUIRED
FOR
VACUUM
VESSEL
385
11.2
HOLDING
ULTRA-HIGH
VACUUM
AND
HIGH-TEMPERATURE
BAKING
385
11.2.1
DEGREE
OF
VACUUM
IN
THE
VACUUM
VESSEL
385
CONTENTS
XVII
11.2.2
11.2.3
11.3
HOLDING
THE
ULTRA-HIGH
VACUUM
386
HIGH-TEMPERATURE
BAKING
387
ENSURING
ELECTRICAL
RESISTANCE,
PLASMA
POSITION
CONTROL,
AND
TOROIDAL
FIELD
RIPPLE
387
11.3.1
11.3.2
11.3.3
11.3.4
11.4
11.4.1
11.4.2
11.5
ELECTRICAL
RESISTANCE
OF
THE
VACUUM
VESSEL
387
ENSURING
ELECTRICAL
RESISTANCE
390
PLASMA
POSITION
CONTROL
391
TOROIDAL
FIELD
RIPPLE
391
SUPPORTING
THE
ELECTROMAGNETIC
FORCE
AND
IN-VESSEL
EQUIPMENT
392
SUPPORTING
THE
ELECTROMAGNETIC
FORCE
392
SUPPORTING
THE
VACUUM
VESSEL
392
COOLING
PERFORMANCE,
RADIATION
SHIELDING,
CONFINEMENT,
ASSEMBLY,
AND
MAINTENANCE
394
11.5.1
11.5.2
11.5.3
11.5.4
11.5.4.1
11.5.4.2
11.6
11.6.1
11.6.2
11.6.3
11.6.3.1
11.6.3.2
11.6.3.3
COOLING
PERFORMANCE
394
RADIATION
SHIELDING
394
CONFINEMENT
OF
RADIOACTIVE
MATERIAL
394
ASSEMBLY
AND
MAINTENANCE
395
ASSEMBLY
395
MAINTENANCE
395
DESIGN
OF
VACUUM
VESSEL
396
STRUCTURAL
STANDARD
396
DESIGN
ITEMS
396
DESIGN
EXAMPLE
398
HOLDING
ULTRA-HIGH
VACUUM
398
SURFACE
CLEANING
SYSTEM
399
ENSURING
ELECTRICAL
RESISTANCE,
PLASMA
POSITION
CONTROL,
AND
TOROIDAL
FIELD
RIPPLE
400
11.6.3.4
11.6.3.5
11.6.3.6
11.6.3.7
11.7
SUPPORTING
ELECTROMAGNETIC
FORCE
AND
IN-VESSEL
EQUIPMENT
400
COOLING
OF
VACUUM
VESSEL,
RADIATION
SHIELDING,
AND
CONFINEMENT
400
ASSEMBLY
401
MAINTENANCE
401
FUTURE
CHALLENGES
402
REFERENCES
402
12
12.1
12.2
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.2.1
12.4.2.2
FUEL
CYCLE
SYSTEM
405
FUNCTIONS
REQUIRED
FOR
THE
FUEL
CYCLE
SYSTEM
405
CONFIGURATION
OF
THE
FUEL
CYCLE
SYSTEM
405
FUELING
SYSTEM
407
FUELING
METHOD
407
FUELING
AMOUNT
407
GAS
EXHAUST
SYSTEM
408
EXHAUST
GASES
BY
SOURCE
408
PLASMA
VACUUM
EXHAUST
SYSTEM
408
TYPES
OF
VACUUM
EXHAUST
PUMP
408
CONFIGURATION
409
XVIII
CONTENTS
12.4.2.3
INITIAL
ULTIMATE
PRESSURE
409
12.4.2.4
HELIUM
PUMPING
SPEED
411
12.4.2.5
CRYOPANEL
AREA
412
12.4.2.6
HELIUM
ACCUMULATION
ON
THE
CRYOPANEL
412
12.4.2.7
EXHAUST
TIME
413
12.5
FUEL
CLEAN-UP
SYSTEM
414
12.5.1
KINDS
OF
RECOVERED
GAS
AND
AMOUNT
OF
EXHAUST
GAS
414
12.5.2
CONFIGURATION
OF
THE
FUEL
CLEAN-UP
SYSTEM
414
12.6
HYDROGEN
ISOTOPE
SEPARATION
SYSTEM
416
12.7
ATMOSPHERE
DETRITIATION
SYSTEM
418
12.8
WATER
DETRITIATION
SYSTEM
418
12.9
FUEL
STORAGE
SYSTEM
419
12.10
MATERIAL
ACCOUNTANCY
OF
TRITIUM
420
12.11
DESIGN
EXAMPLE
420
12.11.1
FUEL
CYCLE
SYSTEM
420
12.11.2
FUELING
SYSTEM
421
12.11.3
TOKAMAK
EXHAUST
PROCESSING
SYSTEM
422
12.11.4
HYDROGEN
ISOTOPE
SEPARATION
SYSTEM
422
12.11.5
ATMOSPHERE
DETRITIATION
SYSTEM
422
12.11.6
WATER
DETRITIATION
SYSTEM
423
12.11.7
FUEL
STORAGE
SYSTEM
423
12.12
FUTURE
CHALLENGES
423
REFERENCES
424
13
CRYOSTAT
425
13.1
FUNCTIONS
OF
CRYOSTAT
425
13.2
CRYOSTAT
STRUCTURE
425
13.3
THERMAL
SHIELD
425
13.3.1
DESIGN
REQUIREMENTS
427
13.3.2
STRUCTURE
428
13.4
DESIGN
EXAMPLE
429
13.5
FUTURE
CHALLENGES
432
REFERENCES
433
14
NUCLEAR
DESIGN
435
14.1
ITEMS
REQUIRED
FOR
NUCLEAR
DESIGN
435
14.2
RADIATION
SHIELDING
437
14.2.1
MAIN
SHIELD
437
14.2.1.1
EQUIPMENT
SHIELDING
AND
BIOLOGICAL
SHIELDING
437
14.2.1.2
INSTALLATION
POSITION
OF
SHIELDS
438
14.2.1.3
ACTIVATION
OF
AIR
AND
COOLING
WATER
439
14.2.2
EVALUATION
METHOD
OF
RADIATION
SHIELDING
440
14.2.2.1
INTENSITY
OF
NEUTRON
SOURCE
440
14.2.2.2
NUCLEAR
DATA
440
CONTENTS
XIX
14.2.2.3
14.2.2.4
14.3
14.4
14.5
14.5.1
14.5.1.1
14.5.1.2
14.5.2
14.5.2.1
14.5.2.2
14.6
14.7
14.7.1
14.7.2
14.7.3
14.7.4
14.7.5
14.7.6
14.8
ANALYSIS
CODE
440
ANALYSIS
PROCEDURE
440
DOSE
RATE
441
NUCLEAR
HEATING
441
RADIATION
DAMAGE
442
SURFACE
DAMAGE
442
SPUTTERING
442
BLISTERING
444
BULK
DAMAGE
444
DISPLACEMENT
DAMAGE
444
DAMAGE
DUE
TO
NUCLEAR
TRANSMUTATION
445
RADIOACTIVE
WASTE
447
DESIGN
EXAMPLE
448
NEUTRON
FLUX
449
DPA
DISTRIBUTION
449
HELIUM
PRODUCTION
450
DOSE
RATE
450
DOSE
RATE
BY
SKYSHINE
452
NUCLEAR
HEATING
AND
SO
ON
452
FUTURE
CHALLENGES
453
REFERENCES
453
15
15.1
15.1.1
15.1.2
15.1.3
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.8.1
15.8.2
15.8.2.1
15.8.2.2
15.8.3
15.8.4
15.8.5
15.8.6
15.9
OPERATION
AND
MAINTENANCE
457
FUNCTIONS
REQUIRED
FOR
OPERATION
AND
MAINTENANCE
457
HIGH
PLANT
AVAILABILITY
457
MAINTENANCE
METHOD
CONSISTENT
WITH
THE
REACTOR
STRUCTURE
457
REMOTE
MAINTENANCE
WITH
HIGH
EFFICIENCY
AND
HIGH
RELIABILITY
458
OPERATION
PERIOD
458
EQUIPMENT
TO
BE
INSPECTED
AND
MAINTAINED
459
FREQUENCY
OF
MAINTENANCE
461
REMOTE
MAINTENANCE
METHODS
461
PROCESS
OF
REMOTE
MAINTENANCE
463
IN-VESSEL
TRANSPORT
SYSTEM
465
DESIGN
EXAMPLE
466
FREQUENCY
OF
MAINTENANCE
AND
MAINTENANCE
PERIOD
466
IN-VESSEL
TRANSPORT
SYSTEM
466
MAINTENANCE
OF
BLANKET
MODULE
466
MAINTENANCE
OF
DIVERTOR
467
EX-VESSEL
TRANSPORT
SYSTEM
468
PIPING
CUTTING/WELDING
TOOL
469
FAILURE
OF
MAINTENANCE
DEVICE
469
HOT
CELL
BUILDING
469
FUTURE
CHALLENGES
470
REFERENCES
471
XX
CONTENTS
16
16.1
16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.4.1
16.4.1.1
16.4.1.2
16.4.1.3
16.4.1.4
16.4.2
16.4.2.1
16.4.2.2
16.5
COOLING
SYSTEM
473
FUNCTIONS
OF
COOLING
SYSTEM
473
CONFIGURATION
OF
COOLING
SYSTEM
473
OPERATION
MODE
473
COOLING
METHOD
474
HEAT
RESERVOIR
474
COOLING
PERFORMANCE
476
DESIGN
EXAMPLE
478
CONFIGURATION
OF
COOLING
SYSTEM
478
TOKAMAK
COOLING
WATER
SYSTEM
478
COMPONENT
COOLING
WATER
SYSTEM
479
CHILLED
WATER
SYSTEM
480
HEAT
REJECTION
SYSTEM
480
DECAY
HEAT
REMOVAL
IN
EMERGENCY
480
EMERGENCY
POWER
SUPPLY
480
NATURAL
CIRCULATION
MODE
480
FUTURE
CHALLENGES
480
REFERENCES
481
17
17.1
17.2
17.2.1
17.2.2
17.2.3
17.2.3.1
17.2.3.2
17.2.3.3
17.2.4
17.3
17.3.1
17.3.2
17.3.3
17.3.4
17.4
17.4.1
17.4.1.1
17.4.1.2
17.4.1.3
17.4.2
17.4.3
17.4.4
17.4.5
17.4.5.1
POWER
SUPPLY
SYSTEM
483
FUNCTIONS
REQUIRED
FOR
THE
POWER
SUPPLY
SYSTEM
483
CHARACTERISTICS
OF
THE
POWER
SUPPLY
SYSTEM
483
POWER
SUPPLY
CAPACITY
483
EQUIPMENT
AND
FACILITIES
TO
WHICH
POWER
IS
SUPPLIED
484
TECHNOLOGIES
TO
REDUCE
COIL
POWER
SUPPLY
CAPACITY
485
HYBRID
COIL
SYSTEM
485
SUPERCONDUCTIVITY
485
STEADY-STATE
OPERATION
486
CONFIGURATION
OF
POWER
SUPPLY
488
POWER
SUPPLY
FOR
TOROIDAL
MAGNETIC
FIELD
COIL
489
SELF-INDUCTANCE
489
POWER
SUPPLY
VOLTAGE
490
STORED
ENERGY
AND
COIL
PROTECTION
491
PROTECTION
RESISTOR
491
POWER
SUPPLY
FOR
POLOIDAL
MAGNETIC
FIELD
COIL
492
INDUCTANCE
492
MUTUAL
INDUCTANCE
492
SELF-INDUCTANCE
OF
PF
COIL
492
SELF-INDUCTANCE
OF
CS
COIL
493
POWER
SUPPLY
VOLTAGE
494
POWER
SUPPLY
CAPACITY
494
STORED
ENERGY
495
COIL
PROTECTION
495
AT
THE
TIME
OF
QUENCH
495
CONTENTS
XXI
17.4.5.2
17.5
17.5.1
17.5.2
AT
THE
TIME
OF
PLASMA
DISRUPTION
495
DESIGN
EXAMPLE
495
COIL
POWER
SUPPLY
496
POWER
SUPPLY
OF
PLASMA
HEATING
AND
CURRENT
DRIVE
SYSTEM
(H&CD)
497
17.6
FUTURE
CHALLENGES
498
REFERENCES
498
18
18.1
18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.5.1
18.2.5.2
18.3
18.3.1
18.3.2
18.3.2.1
18.3.2.2
18.3.2.3
18.4
18.4.1
18.4.2
18.4.2.1
18.4.2.2
18.4.2.3
18.4.3
18.4.3.1
18.4.3.2
18.4.4
18.4.4.1
18.4.4.2
18.5
18.5.1
18.5.1.1
18.5.1.2
18.5.1.3
18.5.2
18.6
OPERATION
CONTROL
AND
DIAGNOSTIC
SYSTEMS
501
FUNCTIONS
OF
OPERATION
CONTROL
AND
DIAGNOSTIC
SYSTEMS
501
BASICS
OF
CONTROL
502
CONTROL
METHOD
502
TRANSFER
FUNCTION
503
TRANSIENT
RESPONSE
OF
A
SYSTEM
504
FEEDBACK
CONTROL
504
PID
CONTROLLER
505
IDEAL
PID
CONTROLLER
505
PRACTICAL
NONINTERFERENCE-TYPE
PID
CONTROLLER
505
OPERATION
CONTROL
SYSTEM
507
CENTRAL
CONTROL
SYSTEM
507
PLASMA
CONTROL
507
CONTROL
OF
FUSION
POWER
508
MHD
CONTROL
509
DISRUPTION
CONTROL
509
DIAGNOSTIC
SYSTEMS
511
PASSIVE
AND
ACTIVE
MEASUREMENTS
511
PROBE
MEASUREMENT
572
ELECTROSTATIC
PROBE
512
MAGNETIC
PROBE,
MAGNETIC
LOOP,
AND
ROGOWSKI
COIL
513
DIAMAGNETIC
COIL
513
ELECTROMAGNETIC
WAVE
MEASUREMENT
574
PASSIVE
ELECTROMAGNETIC
WAVE
MEASUREMENT
574
ACTIVE
ELECTROMAGNETIC
WAVE
MEASUREMENT
518
PARTICLE
MEASUREMENT
522
PASSIVE
PARTICLE
MEASUREMENT
522
ACTIVE
PARTICLE
MEASUREMENT
528
DESIGN
EXAMPLE
529
OPERATION
CONTROL
SYSTEM
529
PLANT
CONTROL
SYSTEM
530
INTERLOCK
LEVEL
530
PLASMA
OPERATION
531
DIAGNOSTIC
SYSTEM
533
FUTURE
CHALLENGES
535
REFERENCES
536
XXII
CONTENTS
19
SAFETY
539
19.1
REQUIREMENTS
FOR
SAFETY
539
19.2
RADIOACTIVE
MATERIALS
540
19.2.1
RADIOACTIVITY
540
19.2.2
EXPOSURE
DOSE
541
19.2.3
ABSORBED
DOSE
541
19.2.4
DOSE
EQUIVALENT/EFFECTIVE
DOSE
EQUIVALENT
541
19.2.5
EQUIVALENT
DOSE/EFFECTIVE
DOSE
542
19.2.6
COMMITTED
EFFECTIVE
DOSE
543
19.2.7
TRITIUM
CONCENTRATION
LIMIT
544
19.2.8
BIOLOGICAL
HAZARD
POTENTIAL
544
19.3
HOW
TO
ENSURE
SAFETY
545
19.3.1
SAFETY
FEATURES
545
19.3.2
GOAL
OF
THE
SAFETY
546
19.3.2.1
IN
NORMAL
TIME
546
19.3.2.2
IN
EMERGENCY
547
19.3.3
BASIC
CONCEPT
OF
ENSURING
THE
SAFETY
547
19.3.3.1
BASIC
CONCEPT
547
19.3.3.2
IMPLEMENTATION
OF
ENSURING
SAFETY
548
19.3.4
BASIC
CONCEPT
OF
THE
SAFETY
DESIGN
548
19.3.5
EVALUATION
OF
THE
SAFETY
DESIGN
550
19.3.6
WASTE
DISPOSAL
550
19.4
DESIGN
EXAMPLE
551
19.4.1
DOSE
LIMIT
551
19.4.2
BASIC
CONCEPT
OF
ENSURING
THE
SAFETY
552
19.4.3
IMPLEMENTATION
OF
ENSURING
THE
SAFETY
552
19.4.3.1
REDUCTION
OF
RADIOACTIVE
MATERIALS
552
19.4.3.2
CONFINEMENT
BARRIER
OF
RADIOACTIVE
MATERIALS
552
19.4.3.3
ENERGY
THAT
DAMAGES
THE
CONFINEMENT
BARRIERS
553
19.4.3.4
ZONING
MANAGEMENT
555
19.4.4
SAFETY
DESIGN
555
19.4.5
EVENT
ANALYSIS
556
19.4.5.1
EVENTS
FOR
ANALYSIS
556
19.4.5.2
SAFETY
ANALYSIS
CODE
558
19.5
FUTURE
CHALLENGES
558
REFERENCES
560
20
ANALYSIS
CODE
563
20.1
HOW
TO
DESIGN
563
20.1.1
DESIGN
FLOW
563
20.1.2
FLOW
OF
REACTOR
DESIGN
563
20.1.2.1
REQUIREMENTS
AS
POWER
REACTOR
564
20.1.2.2
CONSTRUCTION
OF
REACTOR
CONCEPT
564
20.1.2.3
CLARIFICATION
OF
CONSTRAINTS
565
20.1.2.4
PLASMA
DESIGN
565
20.1.2.5
DESIGN
OF
REACTOR
STRUCTURE
566
20.1.2.6.
PLANT
DESIGN,
SAFETY,
AND
ECONOMIC
EVALUATIONS
566
CONTENTS
XXIII
20.2
VARIOUS
TYPES
OF
ANALYSIS
CODES
566
20.2.1
PLASMA
ANALYSIS
CODE
566
20.2.2
EQUIPMENT
ANALYSIS/DESIGN
CODE
567
20.2.3
SAFETY
ANALYSIS
CODE
567
20.2.4
DETAILED
ANALYSIS
CODE
567
20.3
REACTOR
DESIGN
SYSTEM
CODE
567
20.3.1
ROLE
OF
THE
CODE
567
20.3.2
VARIOUS
SYSTEM
CODES
568
20.4
SYSTEM
CODE
FOR
REACTOR
CONCEPTUAL
DESIGN
570
20.4.1
POWER
BALANCE
(ENERGY
BALANCE
PER
UNIT
TIME)
570
20.4.2
RADIAL
BUILD
571
20.4.3
VOLT-SECOND
572
20.4.4
SHAPE
OF
TF
COIL
573
20.4.5
ELECTROMAGNETIC
FORCE
ACTING
ON
THE
TF
COIL
573
20.4.5.1
TENSILE
STRESS
DUE
TO
VERTICAL
FORCE
574
20.4.5.2
BENDING
STRESS
DUE
TO
CENTERING
FORCE
575
20.4.5.3
BENDING
STRESS
DUE
TO
OVERTURNING
FORCE
575
20.4.6
BUCKING
CYLINDER
575
20.4.7
RADIATION
SHIELD
577
20.4.8
VERTICAL
BUILD
577
20.4.9
POWER
SUPPLY
CAPACITY
578
20.4.9.1
TF
COIL
578
20.4.9.2
PF
COIL
578
20.5
SYSTEM
CODES
FOR
ECONOMIC
EVALUATION
579
20.5.1
COST
OF
ELECTRICITY
579
20.5.2
INITIAL
CAPITALIZED
INVESTMENT
580
20.5.3
DIRECT
COST
OF
CONSTRUCTION
580
20.5.4
ANNUAL
COST
OF
COMPONENT
REPLACEMENT
AT
SPECIFIC
INTERVALS
581
20.5.5
ANNUAL
COST
OF
OPERATION
AND
MAINTENANCE
581
20.5.6
ANNUAL
FUEL
COST
AND
ANNUAL
COST
OF
WASTE
DISPOSAL
AND
DECOMMISSIONING
581
20.6
SYSTEM
CODES
FOR
PLASMA
DYNAMICS
EVALUATION
582
20.6.1
PARTICLE
BALANCE
AND
ENERGY
BALANCE
582
20.6.1.1
PARTICLE
BALANCE
EQUATION
582
20.6.1.2
ENERGY
BALANCE
EQUATIONS
583
20.6.2
P
LIMIT
584
20.6.3
DENSITY
LIMIT
584
20.6.4
THERMAL
LOAD
ON
PLASMA-FACING
WALL
585
20.6.5
DISTRIBUTION
OF
NUCLEAR
HEATING
RATE
586
20.6.6
IMPURITY
CONTAMINATION
MODEL
IN
PLASMA
586
20.6.7
HEAT
TRANSFER
MODEL
OF
REACTOR
STRUCTURE
587
20.6.8
ANALYSIS
EXAMPLE
588
20.7
FUTURE
CHALLENGES
590
REFERENCES
590
INDEX
593 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Okazaki, Takashi |
author_GND | (DE-588)1249879531 |
author_facet | Okazaki, Takashi |
author_role | aut |
author_sort | Okazaki, Takashi |
author_variant | t o to |
building | Verbundindex |
bvnumber | BV047216499 |
classification_rvk | UR 9000 |
ctrlnum | (OCoLC)1289760971 (DE-599)DNB1222299372 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02515nam a2200661 c 4500</leader><controlfield tag="001">BV047216499</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220324 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210329s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">20,N49</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1222299372</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527414031</subfield><subfield code="c">: circa EUR 249.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-41403-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527414037</subfield><subfield code="9">3-527-41403-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527414031</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1141403 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289760971</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1222299372</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UR 9000</subfield><subfield code="0">(DE-625)146646:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">530</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okazaki, Takashi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1249879531</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fusion reactor design</subfield><subfield code="b">plasma physics, fuel cycle system, operation and maintenance</subfield><subfield code="c">Takashi Okazaki</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvi, 613 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fusionsreaktor</subfield><subfield code="0">(DE-588)4155733-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kern- u. Hochenergiephysik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kernenergie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nuclear & High Energy Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nuclear Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Process Safety</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Prozesssicherheit</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CG14: Prozesssicherheit</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EG20: Kernenergie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PH20: Kern- u. Hochenergiephysik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fusionsreaktor</subfield><subfield code="0">(DE-588)4155733-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-83292-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-83294-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-83293-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41403-1/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032621209&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032621209</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20201127</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV047216499 |
illustrated | Illustrated |
index_date | 2024-07-03T16:55:59Z |
indexdate | 2024-07-10T09:05:54Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527414031 3527414037 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032621209 |
oclc_num | 1289760971 |
open_access_boolean | |
owner | DE-11 DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-11 DE-703 DE-19 DE-BY-UBM |
physical | xxvi, 613 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Okazaki, Takashi Verfasser (DE-588)1249879531 aut Fusion reactor design plasma physics, fuel cycle system, operation and maintenance Takashi Okazaki Weinheim Wiley-VCH [2022] © 2022 xxvi, 613 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Fusionsreaktor (DE-588)4155733-5 gnd rswk-swf Chemical Engineering Chemische Verfahrenstechnik Energie Energy Kern- u. Hochenergiephysik Kernenergie Nuclear & High Energy Physics Nuclear Energy Physics Physik Process Safety Prozesssicherheit CG14: Prozesssicherheit EG20: Kernenergie PH20: Kern- u. Hochenergiephysik Fusionsreaktor (DE-588)4155733-5 s DE-604 Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-83292-7 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-83294-1 Erscheint auch als Online-Ausgabe 978-3-527-83293-4 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41403-1/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032621209&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20201127 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Okazaki, Takashi Fusion reactor design plasma physics, fuel cycle system, operation and maintenance Fusionsreaktor (DE-588)4155733-5 gnd |
subject_GND | (DE-588)4155733-5 |
title | Fusion reactor design plasma physics, fuel cycle system, operation and maintenance |
title_auth | Fusion reactor design plasma physics, fuel cycle system, operation and maintenance |
title_exact_search | Fusion reactor design plasma physics, fuel cycle system, operation and maintenance |
title_exact_search_txtP | Fusion reactor design plasma physics, fuel cycle system, operation and maintenance |
title_full | Fusion reactor design plasma physics, fuel cycle system, operation and maintenance Takashi Okazaki |
title_fullStr | Fusion reactor design plasma physics, fuel cycle system, operation and maintenance Takashi Okazaki |
title_full_unstemmed | Fusion reactor design plasma physics, fuel cycle system, operation and maintenance Takashi Okazaki |
title_short | Fusion reactor design |
title_sort | fusion reactor design plasma physics fuel cycle system operation and maintenance |
title_sub | plasma physics, fuel cycle system, operation and maintenance |
topic | Fusionsreaktor (DE-588)4155733-5 gnd |
topic_facet | Fusionsreaktor |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41403-1/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032621209&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT okazakitakashi fusionreactordesignplasmaphysicsfuelcyclesystemoperationandmaintenance AT wileyvch fusionreactordesignplasmaphysicsfuelcyclesystemoperationandmaintenance |