Statistics for Astrophysics: Bayesian Methodology
This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology. The interest of this statistical approach in astrophysics probably comes from its ne...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Les Ulis
EDP Sciences
[2021]
|
Schriftenreihe: | EDP Sciences Proceedings
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology. The interest of this statistical approach in astrophysics probably comes from its necessity and its success in determining the cosmological parameters from observations, especially from the cosmic background luctuations. The cosmological community has thus been very active in this field for many years. But the Bayesian methodology, complementary to the more classical frequentist one, has many applications in physics in general due to its ability to incorporate a priori knowledge into inference, such as uncertainty brought by the observational processes. The Bayesian approach becomes more and more widespread in the astrophysical literature. This book contains statistics courses on basic to advanced methods with practical exercises using the R environment, by leading experts in their field. This covers the foundations of Bayesian inference, Markov chain Monte Carlo technique, model building, Approximate Bayesian Computation (ABC) and Bayesian nonparametric inference and clustering |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021) |
Beschreibung: | 1 online resource (140 pages) |
ISBN: | 9782759822751 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047197902 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 210316s2021 xx o|||| 00||| eng d | ||
020 | |a 9782759822751 |9 978-2-7598-2275-1 | ||
024 | 7 | |a 10.1051/978-2-7598-2275-1 |2 doi | |
035 | |a (ZDB-23-DGG)9782759822751 | ||
035 | |a (OCoLC)1242727199 | ||
035 | |a (DE-599)BVBBV047197902 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 | ||
100 | 1 | |a Marquette, Jean-Baptiste |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistics for Astrophysics |b Bayesian Methodology |c Jean-Baptiste Marquette |
264 | 1 | |a Les Ulis |b EDP Sciences |c [2021] | |
264 | 4 | |c © 2018 | |
300 | |a 1 online resource (140 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a EDP Sciences Proceedings | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021) | ||
520 | |a This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology. The interest of this statistical approach in astrophysics probably comes from its necessity and its success in determining the cosmological parameters from observations, especially from the cosmic background luctuations. The cosmological community has thus been very active in this field for many years. But the Bayesian methodology, complementary to the more classical frequentist one, has many applications in physics in general due to its ability to incorporate a priori knowledge into inference, such as uncertainty brought by the observational processes. The Bayesian approach becomes more and more widespread in the astrophysical literature. This book contains statistics courses on basic to advanced methods with practical exercises using the R environment, by leading experts in their field. This covers the foundations of Bayesian inference, Markov chain Monte Carlo technique, model building, Approximate Bayesian Computation (ABC) and Bayesian nonparametric inference and clustering | ||
546 | |a In English | ||
650 | 4 | |a Astrophysics | |
650 | 7 | |a SCIENCE / Physics / Astrophysics |2 bisacsh | |
700 | 1 | |a Arbel, Julyan |4 ctb | |
700 | 1 | |a Dyk, David A. van |4 ctb | |
700 | 1 | |a Robert, Christian P. |4 ctb | |
700 | 1 | |a Stenning, David C. |4 ctb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9782759817290 |
856 | 4 | 0 | |u https://www.degruyter.com/isbn/9782759822751 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032602997 | |
966 | e | |u https://www.degruyter.com/isbn/9782759822751 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9782759822751 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9782759822751 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9782759822751 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9782759822751 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/isbn/9782759822751 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824423473705910272 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Marquette, Jean-Baptiste |
author2 | Arbel, Julyan Dyk, David A. van Robert, Christian P. Stenning, David C. |
author2_role | ctb ctb ctb ctb |
author2_variant | j a ja d a v d dav davd c p r cp cpr d c s dc dcs |
author_facet | Marquette, Jean-Baptiste Arbel, Julyan Dyk, David A. van Robert, Christian P. Stenning, David C. |
author_role | aut |
author_sort | Marquette, Jean-Baptiste |
author_variant | j b m jbm |
building | Verbundindex |
bvnumber | BV047197902 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9782759822751 (OCoLC)1242727199 (DE-599)BVBBV047197902 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047197902</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210316s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782759822751</subfield><subfield code="9">978-2-7598-2275-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/978-2-7598-2275-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9782759822751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1242727199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047197902</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marquette, Jean-Baptiste</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistics for Astrophysics</subfield><subfield code="b">Bayesian Methodology</subfield><subfield code="c">Jean-Baptiste Marquette</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Les Ulis</subfield><subfield code="b">EDP Sciences</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (140 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EDP Sciences Proceedings</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology. The interest of this statistical approach in astrophysics probably comes from its necessity and its success in determining the cosmological parameters from observations, especially from the cosmic background luctuations. The cosmological community has thus been very active in this field for many years. But the Bayesian methodology, complementary to the more classical frequentist one, has many applications in physics in general due to its ability to incorporate a priori knowledge into inference, such as uncertainty brought by the observational processes. The Bayesian approach becomes more and more widespread in the astrophysical literature. This book contains statistics courses on basic to advanced methods with practical exercises using the R environment, by leading experts in their field. This covers the foundations of Bayesian inference, Markov chain Monte Carlo technique, model building, Approximate Bayesian Computation (ABC) and Bayesian nonparametric inference and clustering</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Astrophysics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arbel, Julyan</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dyk, David A. van</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robert, Christian P.</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stenning, David C.</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9782759817290</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.degruyter.com/isbn/9782759822751</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032602997</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9782759822751</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9782759822751</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9782759822751</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9782759822751</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9782759822751</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/isbn/9782759822751</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047197902 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:50:12Z |
indexdate | 2025-02-18T19:10:09Z |
institution | BVB |
isbn | 9782759822751 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032602997 |
oclc_num | 1242727199 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
physical | 1 online resource (140 pages) |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | EDP Sciences |
record_format | marc |
series2 | EDP Sciences Proceedings |
spelling | Marquette, Jean-Baptiste Verfasser aut Statistics for Astrophysics Bayesian Methodology Jean-Baptiste Marquette Les Ulis EDP Sciences [2021] © 2018 1 online resource (140 pages) txt rdacontent c rdamedia cr rdacarrier EDP Sciences Proceedings Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021) This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology. The interest of this statistical approach in astrophysics probably comes from its necessity and its success in determining the cosmological parameters from observations, especially from the cosmic background luctuations. The cosmological community has thus been very active in this field for many years. But the Bayesian methodology, complementary to the more classical frequentist one, has many applications in physics in general due to its ability to incorporate a priori knowledge into inference, such as uncertainty brought by the observational processes. The Bayesian approach becomes more and more widespread in the astrophysical literature. This book contains statistics courses on basic to advanced methods with practical exercises using the R environment, by leading experts in their field. This covers the foundations of Bayesian inference, Markov chain Monte Carlo technique, model building, Approximate Bayesian Computation (ABC) and Bayesian nonparametric inference and clustering In English Astrophysics SCIENCE / Physics / Astrophysics bisacsh Arbel, Julyan ctb Dyk, David A. van ctb Robert, Christian P. ctb Stenning, David C. ctb Erscheint auch als Druck-Ausgabe 9782759817290 https://www.degruyter.com/isbn/9782759822751 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Marquette, Jean-Baptiste Statistics for Astrophysics Bayesian Methodology Astrophysics SCIENCE / Physics / Astrophysics bisacsh |
title | Statistics for Astrophysics Bayesian Methodology |
title_auth | Statistics for Astrophysics Bayesian Methodology |
title_exact_search | Statistics for Astrophysics Bayesian Methodology |
title_exact_search_txtP | Statistics for Astrophysics Bayesian Methodology |
title_full | Statistics for Astrophysics Bayesian Methodology Jean-Baptiste Marquette |
title_fullStr | Statistics for Astrophysics Bayesian Methodology Jean-Baptiste Marquette |
title_full_unstemmed | Statistics for Astrophysics Bayesian Methodology Jean-Baptiste Marquette |
title_short | Statistics for Astrophysics |
title_sort | statistics for astrophysics bayesian methodology |
title_sub | Bayesian Methodology |
topic | Astrophysics SCIENCE / Physics / Astrophysics bisacsh |
topic_facet | Astrophysics SCIENCE / Physics / Astrophysics |
url | https://www.degruyter.com/isbn/9782759822751 |
work_keys_str_mv | AT marquettejeanbaptiste statisticsforastrophysicsbayesianmethodology AT arbeljulyan statisticsforastrophysicsbayesianmethodology AT dykdavidavan statisticsforastrophysicsbayesianmethodology AT robertchristianp statisticsforastrophysicsbayesianmethodology AT stenningdavidc statisticsforastrophysicsbayesianmethodology |