Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31:

These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kirwan, Frances Clare (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, NJ Princeton University Press [2021]
Schriftenreihe:Mathematical Notes 104
Schlagworte:
Online-Zugang:FAB01
FAW01
FCO01
FHA01
FKE01
FLA01
UPA01
Volltext
Zusammenfassung:These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions
Beschreibung:Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021)
Beschreibung:1 online resource (216 pages)
ISBN:9780691214566
DOI:10.1515/9780691214566

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen