Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31:
These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
[2021]
|
Schriftenreihe: | Mathematical Notes
104 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 UPA01 Volltext |
Zusammenfassung: | These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021) |
Beschreibung: | 1 online resource (216 pages) |
ISBN: | 9780691214566 |
DOI: | 10.1515/9780691214566 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047197166 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210316s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780691214566 |9 978-0-691-21456-6 | ||
024 | 7 | |a 10.1515/9780691214566 |2 doi | |
035 | |a (ZDB-23-DGG)9780691214566 | ||
035 | |a (OCoLC)1242725619 | ||
035 | |a (DE-599)BVBBV047197166 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 | ||
082 | 0 | |a 512/.33 |2 23 | |
100 | 1 | |a Kirwan, Frances Clare |e Verfasser |4 aut | |
245 | 1 | 0 | |a Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 |c Frances Clare Kirwan |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c [2021] | |
264 | 4 | |c © 1985 | |
300 | |a 1 online resource (216 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Notes |v 104 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021) | ||
520 | |a These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions | ||
546 | |a In English | ||
650 | 7 | |a MATHEMATICS / Geometry / Algebraic |2 bisacsh | |
650 | 4 | |a Algebraic varieties | |
650 | 4 | |a Group schemes (Mathematics) | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Symplectic manifolds | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691214566 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032602260 | ||
966 | e | |u https://doi.org/10.1515/9780691214566?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691214566?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691214566?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691214566?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691214566?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691214566?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691214566?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182300140765184 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kirwan, Frances Clare |
author_facet | Kirwan, Frances Clare |
author_role | aut |
author_sort | Kirwan, Frances Clare |
author_variant | f c k fc fck |
building | Verbundindex |
bvnumber | BV047197166 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9780691214566 (OCoLC)1242725619 (DE-599)BVBBV047197166 |
dewey-full | 512/.33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.33 |
dewey-search | 512/.33 |
dewey-sort | 3512 233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9780691214566 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02984nmm a2200517zcb4500</leader><controlfield tag="001">BV047197166</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210316s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691214566</subfield><subfield code="9">978-0-691-21456-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691214566</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691214566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1242725619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047197166</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.33</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirwan, Frances Clare</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31</subfield><subfield code="c">Frances Clare Kirwan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (216 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Notes</subfield><subfield code="v">104</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group schemes (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic manifolds</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691214566</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032602260</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691214566?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691214566?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691214566?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691214566?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691214566?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691214566?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691214566?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047197166 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:50:10Z |
indexdate | 2024-07-10T09:05:21Z |
institution | BVB |
isbn | 9780691214566 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032602260 |
oclc_num | 1242725619 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
physical | 1 online resource (216 pages) |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Princeton University Press |
record_format | marc |
series2 | Mathematical Notes |
spelling | Kirwan, Frances Clare Verfasser aut Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 Frances Clare Kirwan Princeton, NJ Princeton University Press [2021] © 1985 1 online resource (216 pages) txt rdacontent c rdamedia cr rdacarrier Mathematical Notes 104 Description based on online resource; title from PDF title page (publisher's Web site, viewed 25. Feb 2021) These notes describe a general procedure for calculating the Betti numbers of the projective "ient varieties that geometric invariant theory associates to reductive group actions on nonsingular complex projective varieties. These "ient varieties are interesting in particular because of their relevance to moduli problems in algebraic geometry. The author describes two different approaches to the problem. One is purely algebraic, while the other uses the methods of symplectic geometry and Morse theory, and involves extending classical Morse theory to certain degenerate functions In English MATHEMATICS / Geometry / Algebraic bisacsh Algebraic varieties Group schemes (Mathematics) Homology theory Symplectic manifolds https://doi.org/10.1515/9780691214566 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kirwan, Frances Clare Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 MATHEMATICS / Geometry / Algebraic bisacsh Algebraic varieties Group schemes (Mathematics) Homology theory Symplectic manifolds |
title | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 |
title_auth | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 |
title_exact_search | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 |
title_exact_search_txtP | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 |
title_full | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 Frances Clare Kirwan |
title_fullStr | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 Frances Clare Kirwan |
title_full_unstemmed | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 Frances Clare Kirwan |
title_short | Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 |
title_sort | cohomology of quotients in symplectic and algebraic geometry mn 31 volume 31 |
topic | MATHEMATICS / Geometry / Algebraic bisacsh Algebraic varieties Group schemes (Mathematics) Homology theory Symplectic manifolds |
topic_facet | MATHEMATICS / Geometry / Algebraic Algebraic varieties Group schemes (Mathematics) Homology theory Symplectic manifolds |
url | https://doi.org/10.1515/9780691214566 |
work_keys_str_mv | AT kirwanfrancesclare cohomologyofquotientsinsymplecticandalgebraicgeometrymn31volume31 |