Topological phases of matter:
"Topological concepts are essential to understand many of the most important recent discoveries in the basic physics of solids. Topology can be loosely defined as the branch of mathematics studying the properties of an object that are invariant under smooth distortions. Topological phases, as a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Schlagworte: | |
Zusammenfassung: | "Topological concepts are essential to understand many of the most important recent discoveries in the basic physics of solids. Topology can be loosely defined as the branch of mathematics studying the properties of an object that are invariant under smooth distortions. Topological phases, as a result, show a kind of robustness and universality that is similar in spirit to the famous universality observed at continuous phase transitions, but with a very different microscopic origin. This chapter introduces some of the key examples of topological phases of matter and places them in the broader context of many-body physics. Einstein famously commented that statistical mechanics was one kind of physics whose basic principles would last forever, because they were based only on the assumption that our knowledge of a complex system is incomplete. Topological phases show how a kind of macroscopic simplicity and perfection can nevertheless emerge in many-particle systems, even in the presence of disorder and fluctuations that make a complete microscopic description impossible"-- |
Beschreibung: | Auf dem Cover: "new particles, phenomena and ordering principles" |
Beschreibung: | xiv, 378 Seiten Illustrationen, Diagramme |
ISBN: | 9781107105539 1107105536 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047192947 | ||
003 | DE-604 | ||
005 | 20240607 | ||
007 | t | ||
008 | 210312s2021 a||| |||| 00||| eng d | ||
020 | |a 9781107105539 |9 978-1-107-10553-9 | ||
020 | |a 1107105536 |9 1107105536 | ||
035 | |a (OCoLC)1250465782 | ||
035 | |a (DE-599)BVBBV047192947 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 |a DE-29T |a DE-703 |a DE-83 |a DE-384 |a DE-20 | ||
084 | |a UP 1300 |0 (DE-625)146346: |2 rvk | ||
084 | |a UP 5110 |0 (DE-625)146414: |2 rvk | ||
100 | 1 | |a Moessner, Roderich |e Verfasser |0 (DE-588)1154526275 |4 aut | |
245 | 1 | 0 | |a Topological phases of matter |c Roderich Moessner (Max-Planck-Institut für Physik komplexer Systeme, Dresden), Joel E. Moore (University of California, Berkeley, and Lawrence Berkely National Laboratory) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a xiv, 378 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Auf dem Cover: "new particles, phenomena and ordering principles" | ||
505 | 8 | |a Basic concepts of topology and condensed matter -- Integer topological phases -- Geometry and topology of wavefunctions in crystals -- Hydrogen atoms for fractionalisation -- Gauge and topological field theories -- Topology in gapless matter -- Disorder and defects in topological phases -- Topological quantum computation via non-Abelian statistics -- Topology out of equilibrium -- Symmetry, topology, and information | |
520 | 3 | |a "Topological concepts are essential to understand many of the most important recent discoveries in the basic physics of solids. Topology can be loosely defined as the branch of mathematics studying the properties of an object that are invariant under smooth distortions. Topological phases, as a result, show a kind of robustness and universality that is similar in spirit to the famous universality observed at continuous phase transitions, but with a very different microscopic origin. This chapter introduces some of the key examples of topological phases of matter and places them in the broader context of many-body physics. Einstein famously commented that statistical mechanics was one kind of physics whose basic principles would last forever, because they were based only on the assumption that our knowledge of a complex system is incomplete. Topological phases show how a kind of macroscopic simplicity and perfection can nevertheless emerge in many-particle systems, even in the presence of disorder and fluctuations that make a complete microscopic description impossible"-- | |
650 | 0 | 7 | |a Topologischer Isolator |0 (DE-588)1035519526 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Phase |0 (DE-588)113303408X |2 gnd |9 rswk-swf |
653 | 0 | |a Condensed matter | |
653 | 0 | |a Topology | |
653 | 0 | |a Topological defects (Physics) | |
653 | 0 | |a Geometric quantum phases | |
653 | 0 | |a Condensed matter | |
653 | 0 | |a Geometric quantum phases | |
653 | 0 | |a Topological defects (Physics) | |
653 | 0 | |a Topology | |
689 | 0 | 0 | |a Topologische Phase |0 (DE-588)113303408X |D s |
689 | 0 | 1 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Topologischer Isolator |0 (DE-588)1035519526 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Moore, Joel E. |d 1973- |e Sonstige |0 (DE-588)1235885585 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-316-22630-8 |
Datensatz im Suchindex
_version_ | 1805076190572052480 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Moessner, Roderich |
author_GND | (DE-588)1154526275 (DE-588)1235885585 |
author_facet | Moessner, Roderich |
author_role | aut |
author_sort | Moessner, Roderich |
author_variant | r m rm |
building | Verbundindex |
bvnumber | BV047192947 |
classification_rvk | UP 1300 UP 5110 |
contents | Basic concepts of topology and condensed matter -- Integer topological phases -- Geometry and topology of wavefunctions in crystals -- Hydrogen atoms for fractionalisation -- Gauge and topological field theories -- Topology in gapless matter -- Disorder and defects in topological phases -- Topological quantum computation via non-Abelian statistics -- Topology out of equilibrium -- Symmetry, topology, and information |
ctrlnum | (OCoLC)1250465782 (DE-599)BVBBV047192947 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV047192947</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240607</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210312s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107105539</subfield><subfield code="9">978-1-107-10553-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107105536</subfield><subfield code="9">1107105536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1250465782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047192947</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1300</subfield><subfield code="0">(DE-625)146346:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 5110</subfield><subfield code="0">(DE-625)146414:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moessner, Roderich</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1154526275</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological phases of matter</subfield><subfield code="c">Roderich Moessner (Max-Planck-Institut für Physik komplexer Systeme, Dresden), Joel E. Moore (University of California, Berkeley, and Lawrence Berkely National Laboratory)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 378 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf dem Cover: "new particles, phenomena and ordering principles"</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Basic concepts of topology and condensed matter -- Integer topological phases -- Geometry and topology of wavefunctions in crystals -- Hydrogen atoms for fractionalisation -- Gauge and topological field theories -- Topology in gapless matter -- Disorder and defects in topological phases -- Topological quantum computation via non-Abelian statistics -- Topology out of equilibrium -- Symmetry, topology, and information</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Topological concepts are essential to understand many of the most important recent discoveries in the basic physics of solids. Topology can be loosely defined as the branch of mathematics studying the properties of an object that are invariant under smooth distortions. Topological phases, as a result, show a kind of robustness and universality that is similar in spirit to the famous universality observed at continuous phase transitions, but with a very different microscopic origin. This chapter introduces some of the key examples of topological phases of matter and places them in the broader context of many-body physics. Einstein famously commented that statistical mechanics was one kind of physics whose basic principles would last forever, because they were based only on the assumption that our knowledge of a complex system is incomplete. Topological phases show how a kind of macroscopic simplicity and perfection can nevertheless emerge in many-particle systems, even in the presence of disorder and fluctuations that make a complete microscopic description impossible"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Isolator</subfield><subfield code="0">(DE-588)1035519526</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Phase</subfield><subfield code="0">(DE-588)113303408X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Condensed matter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Topology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Topological defects (Physics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometric quantum phases</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Condensed matter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geometric quantum phases</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Topological defects (Physics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Topology</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Phase</subfield><subfield code="0">(DE-588)113303408X</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologischer Isolator</subfield><subfield code="0">(DE-588)1035519526</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, Joel E.</subfield><subfield code="d">1973-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1235885585</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-316-22630-8</subfield></datafield></record></collection> |
id | DE-604.BV047192947 |
illustrated | Illustrated |
index_date | 2024-07-03T16:48:37Z |
indexdate | 2024-07-20T05:53:21Z |
institution | BVB |
isbn | 9781107105539 1107105536 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032598127 |
oclc_num | 1250465782 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-703 DE-83 DE-384 DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-29T DE-703 DE-83 DE-384 DE-20 |
physical | xiv, 378 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Moessner, Roderich Verfasser (DE-588)1154526275 aut Topological phases of matter Roderich Moessner (Max-Planck-Institut für Physik komplexer Systeme, Dresden), Joel E. Moore (University of California, Berkeley, and Lawrence Berkely National Laboratory) Cambridge Cambridge University Press 2021 xiv, 378 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Auf dem Cover: "new particles, phenomena and ordering principles" Basic concepts of topology and condensed matter -- Integer topological phases -- Geometry and topology of wavefunctions in crystals -- Hydrogen atoms for fractionalisation -- Gauge and topological field theories -- Topology in gapless matter -- Disorder and defects in topological phases -- Topological quantum computation via non-Abelian statistics -- Topology out of equilibrium -- Symmetry, topology, and information "Topological concepts are essential to understand many of the most important recent discoveries in the basic physics of solids. Topology can be loosely defined as the branch of mathematics studying the properties of an object that are invariant under smooth distortions. Topological phases, as a result, show a kind of robustness and universality that is similar in spirit to the famous universality observed at continuous phase transitions, but with a very different microscopic origin. This chapter introduces some of the key examples of topological phases of matter and places them in the broader context of many-body physics. Einstein famously commented that statistical mechanics was one kind of physics whose basic principles would last forever, because they were based only on the assumption that our knowledge of a complex system is incomplete. Topological phases show how a kind of macroscopic simplicity and perfection can nevertheless emerge in many-particle systems, even in the presence of disorder and fluctuations that make a complete microscopic description impossible"-- Topologischer Isolator (DE-588)1035519526 gnd rswk-swf Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd rswk-swf Topologische Phase (DE-588)113303408X gnd rswk-swf Condensed matter Topology Topological defects (Physics) Geometric quantum phases Topologische Phase (DE-588)113303408X s Topologische Quantenfeldtheorie (DE-588)4426450-1 s DE-604 Topologischer Isolator (DE-588)1035519526 s Moore, Joel E. 1973- Sonstige (DE-588)1235885585 oth Erscheint auch als Online-Ausgabe 978-1-316-22630-8 |
spellingShingle | Moessner, Roderich Topological phases of matter Basic concepts of topology and condensed matter -- Integer topological phases -- Geometry and topology of wavefunctions in crystals -- Hydrogen atoms for fractionalisation -- Gauge and topological field theories -- Topology in gapless matter -- Disorder and defects in topological phases -- Topological quantum computation via non-Abelian statistics -- Topology out of equilibrium -- Symmetry, topology, and information Topologischer Isolator (DE-588)1035519526 gnd Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd Topologische Phase (DE-588)113303408X gnd |
subject_GND | (DE-588)1035519526 (DE-588)4426450-1 (DE-588)113303408X |
title | Topological phases of matter |
title_auth | Topological phases of matter |
title_exact_search | Topological phases of matter |
title_exact_search_txtP | Topological phases of matter |
title_full | Topological phases of matter Roderich Moessner (Max-Planck-Institut für Physik komplexer Systeme, Dresden), Joel E. Moore (University of California, Berkeley, and Lawrence Berkely National Laboratory) |
title_fullStr | Topological phases of matter Roderich Moessner (Max-Planck-Institut für Physik komplexer Systeme, Dresden), Joel E. Moore (University of California, Berkeley, and Lawrence Berkely National Laboratory) |
title_full_unstemmed | Topological phases of matter Roderich Moessner (Max-Planck-Institut für Physik komplexer Systeme, Dresden), Joel E. Moore (University of California, Berkeley, and Lawrence Berkely National Laboratory) |
title_short | Topological phases of matter |
title_sort | topological phases of matter |
topic | Topologischer Isolator (DE-588)1035519526 gnd Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd Topologische Phase (DE-588)113303408X gnd |
topic_facet | Topologischer Isolator Topologische Quantenfeldtheorie Topologische Phase |
work_keys_str_mv | AT moessnerroderich topologicalphasesofmatter AT moorejoele topologicalphasesofmatter |