Machine learning: a journey to deep learning : with exercises and answers
This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives - the statistical perspective, the artificial neural network perspective and the deep learning methodology. The useful reference text represents a solid found...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore
World Scientific
[2021]
|
Schlagworte: | |
Online-Zugang: | FHI01 TUM01 Volltext |
Zusammenfassung: | This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives - the statistical perspective, the artificial neural network perspective and the deep learning methodology. The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students. |
Beschreibung: | 1 Online-Ressource (xvi, 624 Seiten) |
ISBN: | 9789811234064 9789811234071 |
DOI: | 10.1142/12201 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047192327 | ||
003 | DE-604 | ||
005 | 20230531 | ||
007 | cr|uuu---uuuuu | ||
008 | 210311s2021 |||| o||u| ||||||eng d | ||
020 | |a 9789811234064 |9 978-981-123-406-4 | ||
020 | |a 9789811234071 |9 978-981-123-407-1 | ||
035 | |a (ZDB-124-WOP)00012201 | ||
035 | |a (OCoLC)1241670779 | ||
035 | |a (DE-599)BVBBV047192327 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 |a DE-573 | ||
082 | 0 | |a 006.31 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a DAT 708 |2 stub | ||
100 | 1 | |a Wichert, Andreas |e Verfasser |0 (DE-588)1081491957 |4 aut | |
245 | 1 | 0 | |a Machine learning |b a journey to deep learning : with exercises and answers |c Andreas Wichert, Luis Sa-Couto |
264 | 1 | |a New Jersey ; London ; Singapore |b World Scientific |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xvi, 624 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives - the statistical perspective, the artificial neural network perspective and the deep learning methodology. The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students. | ||
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sa-Couto, Luis |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-981-123-405-7 |
856 | 4 | 0 | |u https://doi.org/10.1142/12201 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032597496 | ||
966 | e | |u https://doi.org/10.1142/12201 |l FHI01 |p ZDB-124-WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/12201 |l TUM01 |p ZDB-124-WOP |q TUM_PDA_WOP_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182291854917632 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wichert, Andreas Sa-Couto, Luis |
author_GND | (DE-588)1081491957 |
author_facet | Wichert, Andreas Sa-Couto, Luis |
author_role | aut aut |
author_sort | Wichert, Andreas |
author_variant | a w aw l s c lsc |
building | Verbundindex |
bvnumber | BV047192327 |
classification_rvk | ST 300 |
classification_tum | DAT 708 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00012201 (OCoLC)1241670779 (DE-599)BVBBV047192327 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1142/12201 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02451nmm a2200493zc 4500</leader><controlfield tag="001">BV047192327</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230531 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210311s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811234064</subfield><subfield code="9">978-981-123-406-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811234071</subfield><subfield code="9">978-981-123-407-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00012201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1241670779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047192327</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wichert, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1081491957</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning</subfield><subfield code="b">a journey to deep learning : with exercises and answers</subfield><subfield code="c">Andreas Wichert, Luis Sa-Couto</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 624 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives - the statistical perspective, the artificial neural network perspective and the deep learning methodology. The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sa-Couto, Luis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-981-123-405-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/12201</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032597496</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/12201</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/12201</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047192327 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:48:20Z |
indexdate | 2024-07-10T09:05:13Z |
institution | BVB |
isbn | 9789811234064 9789811234071 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032597496 |
oclc_num | 1241670779 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 DE-573 |
owner_facet | DE-91 DE-BY-TUM DE-83 DE-573 |
physical | 1 Online-Ressource (xvi, 624 Seiten) |
psigel | ZDB-124-WOP ZDB-124-WOP TUM_PDA_WOP_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
spelling | Wichert, Andreas Verfasser (DE-588)1081491957 aut Machine learning a journey to deep learning : with exercises and answers Andreas Wichert, Luis Sa-Couto New Jersey ; London ; Singapore World Scientific [2021] © 2021 1 Online-Ressource (xvi, 624 Seiten) txt rdacontent c rdamedia cr rdacarrier This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives - the statistical perspective, the artificial neural network perspective and the deep learning methodology. The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students. Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Electronic books Maschinelles Lernen (DE-588)4193754-5 s Deep learning (DE-588)1135597375 s DE-604 Sa-Couto, Luis Verfasser aut Erscheint auch als Druck-Ausgabe, Hardcover 978-981-123-405-7 https://doi.org/10.1142/12201 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wichert, Andreas Sa-Couto, Luis Machine learning a journey to deep learning : with exercises and answers Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)1135597375 |
title | Machine learning a journey to deep learning : with exercises and answers |
title_auth | Machine learning a journey to deep learning : with exercises and answers |
title_exact_search | Machine learning a journey to deep learning : with exercises and answers |
title_exact_search_txtP | Machine learning a journey to deep learning : with exercises and answers |
title_full | Machine learning a journey to deep learning : with exercises and answers Andreas Wichert, Luis Sa-Couto |
title_fullStr | Machine learning a journey to deep learning : with exercises and answers Andreas Wichert, Luis Sa-Couto |
title_full_unstemmed | Machine learning a journey to deep learning : with exercises and answers Andreas Wichert, Luis Sa-Couto |
title_short | Machine learning |
title_sort | machine learning a journey to deep learning with exercises and answers |
title_sub | a journey to deep learning : with exercises and answers |
topic | Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Machine learning Maschinelles Lernen Deep learning |
url | https://doi.org/10.1142/12201 |
work_keys_str_mv | AT wichertandreas machinelearningajourneytodeeplearningwithexercisesandanswers AT sacoutoluis machinelearningajourneytodeeplearningwithexercisesandanswers |