Algebra: 9 Finite groups of Lie Type
The finite groups of Lie type are of central mathematical importance and the problem of understanding their irreducible representations is of great interest. The representation theory of these groups over an algebraically closed field of characteristic zero was developed by P.Deligne and G.Lusztig i...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer-Verlag Berlin Heidelberg GmbH
[1996]
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
volume 77 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 Volltext |
Zusammenfassung: | The finite groups of Lie type are of central mathematical importance and the problem of understanding their irreducible representations is of great interest. The representation theory of these groups over an algebraically closed field of characteristic zero was developed by P.Deligne and G.Lusztig in 1976 and subsequently in a series of papers by Lusztig culminating in his book in 1984. The purpose of the first part of this book is to give an overview of the subject, without including detailed proofs. The second part is a survey of the structure of finite-dimensional division algebras with many outline proofs, giving the basic theory and methods of construction and then goes on to a deeper analysis of division algebras over valuated fields. An account of the multiplicative structure and reduced K-theory presents recent work on the subject, including that of the authors. Thus it forms a convenient and very readable introduction to a field which in the last two decades has seen much progress. |
Beschreibung: | 1 Online-Ressource (viii, 240 Seiten) |
ISBN: | 9783662032350 |
DOI: | 10.1007/978-3-662-03235-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcc4500 | ||
---|---|---|---|
001 | BV047178544 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210305s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783662032350 |c Online |9 978-3-662-03235-0 | ||
024 | 7 | |a 10.1007/978-3-662-03235-0 |2 doi | |
035 | |a (ZDB-2-SMA)978-3-662-03235-0 | ||
035 | |a (OCoLC)1241676196 | ||
035 | |a (DE-599)BVBBV047178544 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kostrikin, Aleksej I. |d 1929-2000 |0 (DE-588)1028287658 |4 edt | |
240 | 1 | 0 | |a Algebra |
245 | 1 | 0 | |a Algebra |n 9 |p Finite groups of Lie Type |c A.I. Kostrikin, l.R. Shafarevich (eds.) |
264 | 1 | |a Berlin |b Springer-Verlag Berlin Heidelberg GmbH |c [1996] | |
300 | |a 1 Online-Ressource (viii, 240 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v volume 77 | |
490 | 0 | |a Encyclopaedia of mathematical sciences | |
520 | 3 | |a The finite groups of Lie type are of central mathematical importance and the problem of understanding their irreducible representations is of great interest. The representation theory of these groups over an algebraically closed field of characteristic zero was developed by P.Deligne and G.Lusztig in 1976 and subsequently in a series of papers by Lusztig culminating in his book in 1984. The purpose of the first part of this book is to give an overview of the subject, without including detailed proofs. The second part is a survey of the structure of finite-dimensional division algebras with many outline proofs, giving the basic theory and methods of construction and then goes on to a deeper analysis of division algebras over valuated fields. An account of the multiplicative structure and reduced K-theory presents recent work on the subject, including that of the authors. Thus it forms a convenient and very readable introduction to a field which in the last two decades has seen much progress. | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Group theory | |
650 | 4 | |a K-theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Number theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Šafarevič, Igorʹ R. |d 1923-2017 |0 (DE-588)119280337 |4 edt | |
773 | 0 | 8 | |w (DE-604)BV047175815 |g 9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-642-08167-5 |
830 | 0 | |a Encyclopaedia of mathematical sciences |v volume 77 |w (DE-604)BV035421342 |9 77 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03235-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032583877 | ||
249 | |a Finite-dimensional division algebras | ||
966 | e | |u https://doi.org/10.1007/978-3-662-03235-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-03235-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-03235-0 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-03235-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182266290634752 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Kostrikin, Aleksej I. 1929-2000 Šafarevič, Igorʹ R. 1923-2017 |
author2_role | edt edt |
author2_variant | a i k ai aik i r š ir irš |
author_GND | (DE-588)1028287658 (DE-588)119280337 |
author_facet | Kostrikin, Aleksej I. 1929-2000 Šafarevič, Igorʹ R. 1923-2017 |
building | Verbundindex |
bvnumber | BV047178544 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (ZDB-2-SMA)978-3-662-03235-0 (OCoLC)1241676196 (DE-599)BVBBV047178544 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-662-03235-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03324nmm a2200601zcc4500</leader><controlfield tag="001">BV047178544</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210305s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662032350</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03235-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03235-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-662-03235-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1241676196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047178544</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kostrikin, Aleksej I.</subfield><subfield code="d">1929-2000</subfield><subfield code="0">(DE-588)1028287658</subfield><subfield code="4">edt</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Algebra</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebra</subfield><subfield code="n">9</subfield><subfield code="p">Finite groups of Lie Type</subfield><subfield code="c">A.I. Kostrikin, l.R. Shafarevich (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer-Verlag Berlin Heidelberg GmbH</subfield><subfield code="c">[1996]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 240 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">volume 77</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The finite groups of Lie type are of central mathematical importance and the problem of understanding their irreducible representations is of great interest. The representation theory of these groups over an algebraically closed field of characteristic zero was developed by P.Deligne and G.Lusztig in 1976 and subsequently in a series of papers by Lusztig culminating in his book in 1984. The purpose of the first part of this book is to give an overview of the subject, without including detailed proofs. The second part is a survey of the structure of finite-dimensional division algebras with many outline proofs, giving the basic theory and methods of construction and then goes on to a deeper analysis of division algebras over valuated fields. An account of the multiplicative structure and reduced K-theory presents recent work on the subject, including that of the authors. Thus it forms a convenient and very readable introduction to a field which in the last two decades has seen much progress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šafarevič, Igorʹ R.</subfield><subfield code="d">1923-2017</subfield><subfield code="0">(DE-588)119280337</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV047175815</subfield><subfield code="g">9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-08167-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">volume 77</subfield><subfield code="w">(DE-604)BV035421342</subfield><subfield code="9">77</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03235-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032583877</subfield></datafield><datafield tag="249" ind1=" " ind2=" "><subfield code="a">Finite-dimensional division algebras</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03235-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03235-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03235-0</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03235-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047178544 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:45:16Z |
indexdate | 2024-07-10T09:04:49Z |
institution | BVB |
isbn | 9783662032350 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032583877 |
oclc_num | 1241676196 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (viii, 240 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer-Verlag Berlin Heidelberg GmbH |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences |
spelling | Kostrikin, Aleksej I. 1929-2000 (DE-588)1028287658 edt Algebra Algebra 9 Finite groups of Lie Type A.I. Kostrikin, l.R. Shafarevich (eds.) Berlin Springer-Verlag Berlin Heidelberg GmbH [1996] 1 Online-Ressource (viii, 240 Seiten) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of mathematical sciences volume 77 Encyclopaedia of mathematical sciences The finite groups of Lie type are of central mathematical importance and the problem of understanding their irreducible representations is of great interest. The representation theory of these groups over an algebraically closed field of characteristic zero was developed by P.Deligne and G.Lusztig in 1976 and subsequently in a series of papers by Lusztig culminating in his book in 1984. The purpose of the first part of this book is to give an overview of the subject, without including detailed proofs. The second part is a survey of the structure of finite-dimensional division algebras with many outline proofs, giving the basic theory and methods of construction and then goes on to a deeper analysis of division algebras over valuated fields. An account of the multiplicative structure and reduced K-theory presents recent work on the subject, including that of the authors. Thus it forms a convenient and very readable introduction to a field which in the last two decades has seen much progress. Mathematics Geometry, algebraic Group theory K-theory Group Theory and Generalizations K-Theory Number theory Algebraic Geometry Mathematik Šafarevič, Igorʹ R. 1923-2017 (DE-588)119280337 edt (DE-604)BV047175815 9 Erscheint auch als Druck-Ausgabe 978-3-642-08167-5 Encyclopaedia of mathematical sciences volume 77 (DE-604)BV035421342 77 https://doi.org/10.1007/978-3-662-03235-0 Verlag URL des Erstveröffentlichers Volltext Finite-dimensional division algebras |
spellingShingle | Algebra Encyclopaedia of mathematical sciences Mathematics Geometry, algebraic Group theory K-theory Group Theory and Generalizations K-Theory Number theory Algebraic Geometry Mathematik |
title | Algebra |
title_alt | Algebra |
title_auth | Algebra |
title_exact_search | Algebra |
title_exact_search_txtP | Algebra |
title_full | Algebra 9 Finite groups of Lie Type A.I. Kostrikin, l.R. Shafarevich (eds.) |
title_fullStr | Algebra 9 Finite groups of Lie Type A.I. Kostrikin, l.R. Shafarevich (eds.) |
title_full_unstemmed | Algebra 9 Finite groups of Lie Type A.I. Kostrikin, l.R. Shafarevich (eds.) |
title_short | Algebra |
title_sort | algebra finite groups of lie type |
topic | Mathematics Geometry, algebraic Group theory K-theory Group Theory and Generalizations K-Theory Number theory Algebraic Geometry Mathematik |
topic_facet | Mathematics Geometry, algebraic Group theory K-theory Group Theory and Generalizations K-Theory Number theory Algebraic Geometry Mathematik |
url | https://doi.org/10.1007/978-3-662-03235-0 |
volume_link | (DE-604)BV047175815 (DE-604)BV035421342 |
work_keys_str_mv | AT kostrikinalekseji algebra AT safarevicigorʹr algebra AT kostrikinalekseji algebra9 AT safarevicigorʹr algebra9 |