Algebra: 5 Homological algebra
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of h...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer-Verlag Berlin Heidelberg GmbH
[1994]
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
volume 38 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 Volltext |
Zusammenfassung: | This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology. |
Beschreibung: | 1 Online-Ressource (v, 222 Seiten) |
ISBN: | 9783642579110 |
DOI: | 10.1007/978-3-642-57911-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcc4500 | ||
---|---|---|---|
001 | BV047178487 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210305s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783642579110 |c Online |9 978-3-642-57911-0 | ||
024 | 7 | |a 10.1007/978-3-642-57911-0 |2 doi | |
035 | |a (ZDB-2-SMA)978-3-642-57911-0 | ||
035 | |a (OCoLC)1241681408 | ||
035 | |a (DE-599)BVBBV047178487 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.66 |2 23 | |
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kostrikin, Aleksej I. |d 1929-2000 |0 (DE-588)1028287658 |4 edt | |
240 | 1 | 0 | |a Algebra |
245 | 1 | 0 | |a Algebra |n 5 |p Homological algebra |c A.I. Kostrikin, l.R. Shafarevich (eds.) |
264 | 1 | |a Berlin |b Springer-Verlag Berlin Heidelberg GmbH |c [1994] | |
300 | |a 1 Online-Ressource (v, 222 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v volume 38 | |
490 | 0 | |a Encyclopaedia of mathematical sciences | |
520 | 3 | |a This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology. | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a K-theory | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Homologische Algebra |0 (DE-588)4160598-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homologische Algebra |0 (DE-588)4160598-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Šafarevič, Igorʹ R. |d 1923-2017 |0 (DE-588)119280337 |4 edt | |
773 | 0 | 8 | |w (DE-604)BV047175815 |g 5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-540-65378-3 |
830 | 0 | |a Encyclopaedia of mathematical sciences |v volume 38 |w (DE-604)BV035421342 |9 38 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-57911-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032583823 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-57911-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-57911-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-57911-0 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-57911-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182266186825728 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Kostrikin, Aleksej I. 1929-2000 Šafarevič, Igorʹ R. 1923-2017 |
author2_role | edt edt |
author2_variant | a i k ai aik i r š ir irš |
author_GND | (DE-588)1028287658 (DE-588)119280337 |
author_facet | Kostrikin, Aleksej I. 1929-2000 Šafarevič, Igorʹ R. 1923-2017 |
building | Verbundindex |
bvnumber | BV047178487 |
classification_rvk | SK 320 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (ZDB-2-SMA)978-3-642-57911-0 (OCoLC)1241681408 (DE-599)BVBBV047178487 |
dewey-full | 512.66 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.66 |
dewey-search | 512.66 |
dewey-sort | 3512.66 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-642-57911-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03304nmm a2200625zcc4500</leader><controlfield tag="001">BV047178487</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210305s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642579110</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-57911-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-57911-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-642-57911-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1241681408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047178487</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.66</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kostrikin, Aleksej I.</subfield><subfield code="d">1929-2000</subfield><subfield code="0">(DE-588)1028287658</subfield><subfield code="4">edt</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Algebra</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebra</subfield><subfield code="n">5</subfield><subfield code="p">Homological algebra</subfield><subfield code="c">A.I. Kostrikin, l.R. Shafarevich (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer-Verlag Berlin Heidelberg GmbH</subfield><subfield code="c">[1994]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (v, 222 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">volume 38</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šafarevič, Igorʹ R.</subfield><subfield code="d">1923-2017</subfield><subfield code="0">(DE-588)119280337</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV047175815</subfield><subfield code="g">5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-540-65378-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">volume 38</subfield><subfield code="w">(DE-604)BV035421342</subfield><subfield code="9">38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-57911-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032583823</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-57911-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-57911-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-57911-0</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-57911-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047178487 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:45:14Z |
indexdate | 2024-07-10T09:04:49Z |
institution | BVB |
isbn | 9783642579110 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032583823 |
oclc_num | 1241681408 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (v, 222 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer-Verlag Berlin Heidelberg GmbH |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences |
spelling | Kostrikin, Aleksej I. 1929-2000 (DE-588)1028287658 edt Algebra Algebra 5 Homological algebra A.I. Kostrikin, l.R. Shafarevich (eds.) Berlin Springer-Verlag Berlin Heidelberg GmbH [1994] 1 Online-Ressource (v, 222 Seiten) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of mathematical sciences volume 38 Encyclopaedia of mathematical sciences This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology. Mathematics Geometry, algebraic K-theory Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Homologische Algebra (DE-588)4160598-6 gnd rswk-swf Homologische Algebra (DE-588)4160598-6 s DE-604 Šafarevič, Igorʹ R. 1923-2017 (DE-588)119280337 edt (DE-604)BV047175815 5 Erscheint auch als Druck-Ausgabe 978-3-540-65378-3 Encyclopaedia of mathematical sciences volume 38 (DE-604)BV035421342 38 https://doi.org/10.1007/978-3-642-57911-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Algebra Encyclopaedia of mathematical sciences Mathematics Geometry, algebraic K-theory Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Homologische Algebra (DE-588)4160598-6 gnd |
subject_GND | (DE-588)4160598-6 |
title | Algebra |
title_alt | Algebra |
title_auth | Algebra |
title_exact_search | Algebra |
title_exact_search_txtP | Algebra |
title_full | Algebra 5 Homological algebra A.I. Kostrikin, l.R. Shafarevich (eds.) |
title_fullStr | Algebra 5 Homological algebra A.I. Kostrikin, l.R. Shafarevich (eds.) |
title_full_unstemmed | Algebra 5 Homological algebra A.I. Kostrikin, l.R. Shafarevich (eds.) |
title_short | Algebra |
title_sort | algebra homological algebra |
topic | Mathematics Geometry, algebraic K-theory Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Homologische Algebra (DE-588)4160598-6 gnd |
topic_facet | Mathematics Geometry, algebraic K-theory Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Homologische Algebra |
url | https://doi.org/10.1007/978-3-642-57911-0 |
volume_link | (DE-604)BV047175815 (DE-604)BV035421342 |
work_keys_str_mv | AT kostrikinalekseji algebra AT safarevicigorʹr algebra AT kostrikinalekseji algebra5 AT safarevicigorʹr algebra5 |