Algebraic geometry: 4 Linear algebraic groups
The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has see...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
[1994]
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
volume 55 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 Volltext |
Zusammenfassung: | The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references. |
Beschreibung: | 1 Online-Ressource (x, 268 Seiten) |
ISBN: | 9783662030738 |
DOI: | 10.1007/978-3-662-03073-8 |
Internformat
MARC
LEADER | 00000nmm a2200000 cc4500 | ||
---|---|---|---|
001 | BV047172373 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210302s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783662030738 |c Online |9 978-3-662-03073-8 | ||
024 | 7 | |a 10.1007/978-3-662-03073-8 |2 doi | |
035 | |a (ZDB-2-SMA)978-3-662-03073-8 | ||
035 | |a (OCoLC)1240397528 | ||
035 | |a (DE-599)BVBBV047172373 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
130 | 0 | |a Algebraičeskaja geometrija | |
245 | 1 | 0 | |a Algebraic geometry |n 4 |p Linear algebraic groups |c A. N. Parshin, I. R. Shafarevich (eds.) |
264 | 1 | |a Berlin |b Springer |c [1994] | |
300 | |a 1 Online-Ressource (x, 268 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v volume 55 | |
490 | 0 | |a Encyclopaedia of mathematical sciences | |
520 | 3 | |a The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references. | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Paršin, Aleksej Nikolaevič |d 1942-2022 |0 (DE-588)172519012 |4 edt | |
700 | 1 | |a Šafarevič, Igorʹ R. |d 1923-2017 |0 (DE-588)119280337 |4 edt | |
773 | 0 | 8 | |w (DE-604)BV047172160 |g 4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-642-08119-4 |
830 | 0 | |a Encyclopaedia of mathematical sciences |v volume 55 |w (DE-604)BV035421342 |9 55 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03073-8 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032577809 | ||
249 | |a Invariant theory | ||
966 | e | |u https://doi.org/10.1007/978-3-662-03073-8 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-03073-8 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-03073-8 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-03073-8 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182254848573440 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Paršin, Aleksej Nikolaevič 1942-2022 Šafarevič, Igorʹ R. 1923-2017 |
author2_role | edt edt |
author2_variant | a n p an anp i r š ir irš |
author_GND | (DE-588)172519012 (DE-588)119280337 |
author_facet | Paršin, Aleksej Nikolaevič 1942-2022 Šafarevič, Igorʹ R. 1923-2017 |
building | Verbundindex |
bvnumber | BV047172373 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (ZDB-2-SMA)978-3-662-03073-8 (OCoLC)1240397528 (DE-599)BVBBV047172373 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-3-662-03073-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03698nmm a2200661 cc4500</leader><controlfield tag="001">BV047172373</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210302s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662030738</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03073-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03073-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-662-03073-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1240397528</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047172373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="130" ind1="0" ind2=" "><subfield code="a">Algebraičeskaja geometrija</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic geometry</subfield><subfield code="n">4</subfield><subfield code="p">Linear algebraic groups</subfield><subfield code="c">A. N. Parshin, I. R. Shafarevich (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[1994]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 268 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">volume 55</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paršin, Aleksej Nikolaevič</subfield><subfield code="d">1942-2022</subfield><subfield code="0">(DE-588)172519012</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šafarevič, Igorʹ R.</subfield><subfield code="d">1923-2017</subfield><subfield code="0">(DE-588)119280337</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV047172160</subfield><subfield code="g">4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-08119-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">volume 55</subfield><subfield code="w">(DE-604)BV035421342</subfield><subfield code="9">55</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03073-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032577809</subfield></datafield><datafield tag="249" ind1=" " ind2=" "><subfield code="a">Invariant theory</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03073-8</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03073-8</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03073-8</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03073-8</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047172373 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:43:28Z |
indexdate | 2024-07-10T09:04:38Z |
institution | BVB |
isbn | 9783662030738 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032577809 |
oclc_num | 1240397528 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (x, 268 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences |
spelling | Algebraičeskaja geometrija Algebraic geometry 4 Linear algebraic groups A. N. Parshin, I. R. Shafarevich (eds.) Berlin Springer [1994] 1 Online-Ressource (x, 268 Seiten) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of mathematical sciences volume 55 Encyclopaedia of mathematical sciences The problems being solved by invariant theory are far-reaching generalizations and extensions of problems on the "reduction to canonical form" of various is almost the same thing, projective geometry. objects of linear algebra or, what Invariant theory has a ISO-year history, which has seen alternating periods of growth and stagnation, and changes in the formulation of problems, methods of solution, and fields of application. In the last two decades invariant theory has experienced a period of growth, stimulated by a previous development of the theory of algebraic groups and commutative algebra. It is now viewed as a branch of the theory of algebraic transformation groups (and under a broader interpretation can be identified with this theory). We will freely use the theory of algebraic groups, an exposition of which can be found, for example, in the first article of the present volume. We will also assume the reader is familiar with the basic concepts and simplest theorems of commutative algebra and algebraic geometry; when deeper results are needed, we will cite them in the text or provide suitable references. Mathematics Geometry, algebraic Topological Groups Algebraic Geometry Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Mathematik Paršin, Aleksej Nikolaevič 1942-2022 (DE-588)172519012 edt Šafarevič, Igorʹ R. 1923-2017 (DE-588)119280337 edt (DE-604)BV047172160 4 Erscheint auch als Druck-Ausgabe 978-3-642-08119-4 Encyclopaedia of mathematical sciences volume 55 (DE-604)BV035421342 55 https://doi.org/10.1007/978-3-662-03073-8 Verlag URL des Erstveröffentlichers Volltext Invariant theory |
spellingShingle | Algebraic geometry Encyclopaedia of mathematical sciences Mathematics Geometry, algebraic Topological Groups Algebraic Geometry Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Mathematik |
title | Algebraic geometry |
title_alt | Algebraičeskaja geometrija |
title_auth | Algebraic geometry |
title_exact_search | Algebraic geometry |
title_exact_search_txtP | Algebraic geometry |
title_full | Algebraic geometry 4 Linear algebraic groups A. N. Parshin, I. R. Shafarevich (eds.) |
title_fullStr | Algebraic geometry 4 Linear algebraic groups A. N. Parshin, I. R. Shafarevich (eds.) |
title_full_unstemmed | Algebraic geometry 4 Linear algebraic groups A. N. Parshin, I. R. Shafarevich (eds.) |
title_short | Algebraic geometry |
title_sort | algebraic geometry linear algebraic groups |
topic | Mathematics Geometry, algebraic Topological Groups Algebraic Geometry Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Geometry, algebraic Topological Groups Algebraic Geometry Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-662-03073-8 |
volume_link | (DE-604)BV047172160 (DE-604)BV035421342 |
work_keys_str_mv | UT algebraiceskajageometrija AT parsinaleksejnikolaevic algebraicgeometry4 AT safarevicigorʹr algebraicgeometry4 |