Graph representation learning:
Intro -- Preface -- Acknowledgments -- Introduction -- What is a Graph? -- Multi-Relational Graphs -- Feature Information -- Machine Learning on Graphs -- Node Classification -- Relation Prediction -- Clustering and Community Detection -- Graph Classification, Regression, and Clustering -- Backgroun...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[San Rafael]
Morgan & Claypool
[2020]
|
Schriftenreihe: | Synthesis lectures on artificial intelligence and machine learning
46 |
Zusammenfassung: | Intro -- Preface -- Acknowledgments -- Introduction -- What is a Graph? -- Multi-Relational Graphs -- Feature Information -- Machine Learning on Graphs -- Node Classification -- Relation Prediction -- Clustering and Community Detection -- Graph Classification, Regression, and Clustering -- Background and Traditional Approaches -- Graph Statistics and Kernel Methods -- Node-Level Statistics and Features -- Graph-Level Features and Graph Kernels -- Neighborhood Overlap Detection -- Local Overlap Measures -- Global Overlap Measures -- Graph Laplacians and Spectral Methods -- Graph Laplacians -- Graph Cuts and Clustering -- Generalized Spectral Clustering -- Toward Learned Representations -- Node Embeddings -- Neighborhood Reconstruction Methods -- An Encoder-Decoder Perspective -- The Encoder -- The Decoder -- Optimizing an Encoder-Decoder Model -- Overview of the Encoder-Decoder Approach -- Factorization-Based Approaches -- Random Walk Embeddings -- Random Walk Methods and Matrix Factorization -- Limitations of Shallow Embeddings -- Multi-Relational Data and Knowledge Graphs -- Reconstructing Multi-Relational Data -- Loss Functions -- Multi-Relational Decoders -- Representational Abilities -- Graph Neural Networks -- The Graph Neural Network Model -- Neural Message Passing -- Overview of the Message Passing Framework -- Motivations and Intuitions -- The Basic GNN -- Message Passing with Self-Loops -- Generalized Neighborhood Aggregation -- Neighborhood Normalization -- Set Aggregators -- Neighborhood Attention -- Generalized Update Methods -- Concatenation and Skip-Connections -- Gated Updates -- Jumping Knowledge Connections -- Edge Features and Multi-Relational GNNs -- Relational Graph Neural Networks -- Attention and Feature Concatenation -- Graph Pooling -- Generalized Message Passing -- Graph Neural Networks in Practice |
Beschreibung: | XVII, 141 Seiten |
ISBN: | 9781681739656 9781681739632 |
Internformat
MARC
LEADER | 00000nam a22000001cb4500 | ||
---|---|---|---|
001 | BV047169495 | ||
003 | DE-604 | ||
005 | 20210326 | ||
007 | t | ||
008 | 210301s2020 |||| 00||| eng d | ||
020 | |a 9781681739656 |c Hardcover |9 9781681739656 | ||
020 | |a 9781681739632 |c Paperback |9 9781681739632 | ||
035 | |a (OCoLC)1245331570 | ||
035 | |a (DE-599)BVBBV047169495 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-N2 |a DE-20 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Hamilton, William L. |e Verfasser |0 (DE-588)1226714064 |4 aut | |
245 | 1 | 0 | |a Graph representation learning |c William L. Hamilton, McGill University and Mila-Quebec Artificial Intelligence Institute |
264 | 1 | |a [San Rafael] |b Morgan & Claypool |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a XVII, 141 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Synthesis lectures on artificial intelligence and machine learning |v 46 | |
520 | 3 | |a Intro -- Preface -- Acknowledgments -- Introduction -- What is a Graph? -- Multi-Relational Graphs -- Feature Information -- Machine Learning on Graphs -- Node Classification -- Relation Prediction -- Clustering and Community Detection -- Graph Classification, Regression, and Clustering -- Background and Traditional Approaches -- Graph Statistics and Kernel Methods -- Node-Level Statistics and Features -- Graph-Level Features and Graph Kernels -- Neighborhood Overlap Detection -- Local Overlap Measures -- Global Overlap Measures -- Graph Laplacians and Spectral Methods -- Graph Laplacians -- Graph Cuts and Clustering -- Generalized Spectral Clustering -- Toward Learned Representations -- Node Embeddings -- Neighborhood Reconstruction Methods -- An Encoder-Decoder Perspective -- The Encoder -- The Decoder -- Optimizing an Encoder-Decoder Model -- Overview of the Encoder-Decoder Approach -- Factorization-Based Approaches -- Random Walk Embeddings -- Random Walk Methods and Matrix Factorization -- Limitations of Shallow Embeddings -- Multi-Relational Data and Knowledge Graphs -- Reconstructing Multi-Relational Data -- Loss Functions -- Multi-Relational Decoders -- Representational Abilities -- Graph Neural Networks -- The Graph Neural Network Model -- Neural Message Passing -- Overview of the Message Passing Framework -- Motivations and Intuitions -- The Basic GNN -- Message Passing with Self-Loops -- Generalized Neighborhood Aggregation -- Neighborhood Normalization -- Set Aggregators -- Neighborhood Attention -- Generalized Update Methods -- Concatenation and Skip-Connections -- Gated Updates -- Jumping Knowledge Connections -- Edge Features and Multi-Relational GNNs -- Relational Graph Neural Networks -- Attention and Feature Concatenation -- Graph Pooling -- Generalized Message Passing -- Graph Neural Networks in Practice | |
776 | 0 | |z 9781681739656 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9781681739649 |
830 | 0 | |a Synthesis lectures on artificial intelligence and machine learning |v 46 |w (DE-604)BV035750800 |9 46 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032575012 |
Datensatz im Suchindex
_version_ | 1804182249898246144 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hamilton, William L. |
author_GND | (DE-588)1226714064 |
author_facet | Hamilton, William L. |
author_role | aut |
author_sort | Hamilton, William L. |
author_variant | w l h wl wlh |
building | Verbundindex |
bvnumber | BV047169495 |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1245331570 (DE-599)BVBBV047169495 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03110nam a22003491cb4500</leader><controlfield tag="001">BV047169495</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210326 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210301s2020 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781681739656</subfield><subfield code="c">Hardcover</subfield><subfield code="9">9781681739656</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781681739632</subfield><subfield code="c">Paperback</subfield><subfield code="9">9781681739632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1245331570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047169495</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-N2</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hamilton, William L.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1226714064</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph representation learning</subfield><subfield code="c">William L. Hamilton, McGill University and Mila-Quebec Artificial Intelligence Institute</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[San Rafael]</subfield><subfield code="b">Morgan & Claypool</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 141 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on artificial intelligence and machine learning</subfield><subfield code="v">46</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgments -- Introduction -- What is a Graph? -- Multi-Relational Graphs -- Feature Information -- Machine Learning on Graphs -- Node Classification -- Relation Prediction -- Clustering and Community Detection -- Graph Classification, Regression, and Clustering -- Background and Traditional Approaches -- Graph Statistics and Kernel Methods -- Node-Level Statistics and Features -- Graph-Level Features and Graph Kernels -- Neighborhood Overlap Detection -- Local Overlap Measures -- Global Overlap Measures -- Graph Laplacians and Spectral Methods -- Graph Laplacians -- Graph Cuts and Clustering -- Generalized Spectral Clustering -- Toward Learned Representations -- Node Embeddings -- Neighborhood Reconstruction Methods -- An Encoder-Decoder Perspective -- The Encoder -- The Decoder -- Optimizing an Encoder-Decoder Model -- Overview of the Encoder-Decoder Approach -- Factorization-Based Approaches -- Random Walk Embeddings -- Random Walk Methods and Matrix Factorization -- Limitations of Shallow Embeddings -- Multi-Relational Data and Knowledge Graphs -- Reconstructing Multi-Relational Data -- Loss Functions -- Multi-Relational Decoders -- Representational Abilities -- Graph Neural Networks -- The Graph Neural Network Model -- Neural Message Passing -- Overview of the Message Passing Framework -- Motivations and Intuitions -- The Basic GNN -- Message Passing with Self-Loops -- Generalized Neighborhood Aggregation -- Neighborhood Normalization -- Set Aggregators -- Neighborhood Attention -- Generalized Update Methods -- Concatenation and Skip-Connections -- Gated Updates -- Jumping Knowledge Connections -- Edge Features and Multi-Relational GNNs -- Relational Graph Neural Networks -- Attention and Feature Concatenation -- Graph Pooling -- Generalized Message Passing -- Graph Neural Networks in Practice</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9781681739656</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9781681739649</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on artificial intelligence and machine learning</subfield><subfield code="v">46</subfield><subfield code="w">(DE-604)BV035750800</subfield><subfield code="9">46</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032575012</subfield></datafield></record></collection> |
id | DE-604.BV047169495 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:42:31Z |
indexdate | 2024-07-10T09:04:33Z |
institution | BVB |
isbn | 9781681739656 9781681739632 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032575012 |
oclc_num | 1245331570 |
open_access_boolean | |
owner | DE-N2 DE-20 |
owner_facet | DE-N2 DE-20 |
physical | XVII, 141 Seiten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Morgan & Claypool |
record_format | marc |
series | Synthesis lectures on artificial intelligence and machine learning |
series2 | Synthesis lectures on artificial intelligence and machine learning |
spelling | Hamilton, William L. Verfasser (DE-588)1226714064 aut Graph representation learning William L. Hamilton, McGill University and Mila-Quebec Artificial Intelligence Institute [San Rafael] Morgan & Claypool [2020] © 2020 XVII, 141 Seiten txt rdacontent n rdamedia nc rdacarrier Synthesis lectures on artificial intelligence and machine learning 46 Intro -- Preface -- Acknowledgments -- Introduction -- What is a Graph? -- Multi-Relational Graphs -- Feature Information -- Machine Learning on Graphs -- Node Classification -- Relation Prediction -- Clustering and Community Detection -- Graph Classification, Regression, and Clustering -- Background and Traditional Approaches -- Graph Statistics and Kernel Methods -- Node-Level Statistics and Features -- Graph-Level Features and Graph Kernels -- Neighborhood Overlap Detection -- Local Overlap Measures -- Global Overlap Measures -- Graph Laplacians and Spectral Methods -- Graph Laplacians -- Graph Cuts and Clustering -- Generalized Spectral Clustering -- Toward Learned Representations -- Node Embeddings -- Neighborhood Reconstruction Methods -- An Encoder-Decoder Perspective -- The Encoder -- The Decoder -- Optimizing an Encoder-Decoder Model -- Overview of the Encoder-Decoder Approach -- Factorization-Based Approaches -- Random Walk Embeddings -- Random Walk Methods and Matrix Factorization -- Limitations of Shallow Embeddings -- Multi-Relational Data and Knowledge Graphs -- Reconstructing Multi-Relational Data -- Loss Functions -- Multi-Relational Decoders -- Representational Abilities -- Graph Neural Networks -- The Graph Neural Network Model -- Neural Message Passing -- Overview of the Message Passing Framework -- Motivations and Intuitions -- The Basic GNN -- Message Passing with Self-Loops -- Generalized Neighborhood Aggregation -- Neighborhood Normalization -- Set Aggregators -- Neighborhood Attention -- Generalized Update Methods -- Concatenation and Skip-Connections -- Gated Updates -- Jumping Knowledge Connections -- Edge Features and Multi-Relational GNNs -- Relational Graph Neural Networks -- Attention and Feature Concatenation -- Graph Pooling -- Generalized Message Passing -- Graph Neural Networks in Practice 9781681739656 Erscheint auch als Online-Ausgabe 9781681739649 Synthesis lectures on artificial intelligence and machine learning 46 (DE-604)BV035750800 46 |
spellingShingle | Hamilton, William L. Graph representation learning Synthesis lectures on artificial intelligence and machine learning |
title | Graph representation learning |
title_auth | Graph representation learning |
title_exact_search | Graph representation learning |
title_exact_search_txtP | Graph representation learning |
title_full | Graph representation learning William L. Hamilton, McGill University and Mila-Quebec Artificial Intelligence Institute |
title_fullStr | Graph representation learning William L. Hamilton, McGill University and Mila-Quebec Artificial Intelligence Institute |
title_full_unstemmed | Graph representation learning William L. Hamilton, McGill University and Mila-Quebec Artificial Intelligence Institute |
title_short | Graph representation learning |
title_sort | graph representation learning |
volume_link | (DE-604)BV035750800 |
work_keys_str_mv | AT hamiltonwilliaml graphrepresentationlearning |