Global nonlinear stability of Schwarzschild spacetime under polarized perturbations:
Essential mathematical insights into one of the most important and challenging open problems in general relativity-the stability of black holesOne of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this que...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; NJ
Princeton University Press
[2020]
|
Schriftenreihe: | Annals of mathematics studies
Number 210 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FHR01 FKE01 FLA01 UBW01 UBY01 UPA01 Volltext |
Zusammenfassung: | Essential mathematical insights into one of the most important and challenging open problems in general relativity-the stability of black holesOne of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and Jérémie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes-or Schwarzschild spacetimes-under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture |
Beschreibung: | Bandzählung laut Website: 395 |
Beschreibung: | 1 Online-Ressource (xi, 840 Seiten) Illustrationen |
ISBN: | 9780691218526 |
DOI: | 10.1515/9780691218526 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV047145840 | ||
003 | DE-604 | ||
005 | 20230126 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 210217s2020 |||| o||u| ||||||eng d | ||
020 | |a 9780691218526 |9 978-0-691-21852-6 | ||
024 | 7 | |a 10.1515/9780691218526 |2 doi | |
035 | |a (ZDB-23-DGG)9780691218526 | ||
035 | |a (OCoLC)1238061939 | ||
035 | |a (DE-599)BVBBV047145840 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-20 |a DE-898 |a DE-706 |a DE-83 | ||
082 | 0 | |a 523.8875 |2 23 | |
084 | |a 83C05 |2 msc | ||
084 | |a 53Z05 |2 msc | ||
084 | |a 83C25 |2 msc | ||
100 | 1 | |a Klainerman, Sergiu |d 1950- |0 (DE-588)172678056 |4 aut | |
245 | 1 | 0 | |a Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |c Sergiu Klainerman ; Jérémie Szeftel |
264 | 1 | |a Princeton ; NJ |b Princeton University Press |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (xi, 840 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 210 | |
500 | |a Bandzählung laut Website: 395 | ||
520 | |a Essential mathematical insights into one of the most important and challenging open problems in general relativity-the stability of black holesOne of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and Jérémie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes-or Schwarzschild spacetimes-under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture | ||
650 | 7 | |a MATHEMATICS / Geometry / Non-Euclidean |2 bisacsh | |
650 | 4 | |a Perturbation (Mathematics) | |
650 | 4 | |a Schwarzschild black holes | |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
700 | 1 | |a Szeftel, Jérémie |d 1977- |0 (DE-588)1167946383 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-691-21243-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-691-21242-5 |
830 | 0 | |a Annals of mathematics studies |v Number 210 |w (DE-604)BV040389493 |9 210 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691218526 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032551669 | ||
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA21 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l UBW01 |p ZDB-23-DMA |q ZDB-23-DMA21 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691218526?locatt=mode:legacy |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182208876904448 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Klainerman, Sergiu 1950- Szeftel, Jérémie 1977- |
author_GND | (DE-588)172678056 (DE-588)1167946383 |
author_facet | Klainerman, Sergiu 1950- Szeftel, Jérémie 1977- |
author_role | aut aut |
author_sort | Klainerman, Sergiu 1950- |
author_variant | s k sk j s js |
building | Verbundindex |
bvnumber | BV047145840 |
collection | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9780691218526 (OCoLC)1238061939 (DE-599)BVBBV047145840 |
dewey-full | 523.8875 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.8875 |
dewey-search | 523.8875 |
dewey-sort | 3523.8875 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
discipline_str_mv | Physik |
doi_str_mv | 10.1515/9780691218526 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04600nmm a2200625 cb4500</leader><controlfield tag="001">BV047145840</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230126 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210217s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691218526</subfield><subfield code="9">978-0-691-21852-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691218526</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691218526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1238061939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047145840</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">523.8875</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83C05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53Z05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83C25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klainerman, Sergiu</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)172678056</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global nonlinear stability of Schwarzschild spacetime under polarized perturbations</subfield><subfield code="c">Sergiu Klainerman ; Jérémie Szeftel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 840 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 210</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Bandzählung laut Website: 395</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Essential mathematical insights into one of the most important and challenging open problems in general relativity-the stability of black holesOne of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and Jérémie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes-or Schwarzschild spacetimes-under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Non-Euclidean</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwarzschild black holes</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Szeftel, Jérémie</subfield><subfield code="d">1977-</subfield><subfield code="0">(DE-588)1167946383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-691-21243-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-691-21242-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 210</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">210</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691218526</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032551669</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA21</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA21</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691218526?locatt=mode:legacy</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047145840 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:36:57Z |
indexdate | 2024-07-10T09:03:54Z |
institution | BVB |
isbn | 9780691218526 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032551669 |
oclc_num | 1238061939 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-20 DE-898 DE-BY-UBR DE-706 DE-83 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-20 DE-898 DE-BY-UBR DE-706 DE-83 |
physical | 1 Online-Ressource (xi, 840 Seiten) Illustrationen |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-PST ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA21 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Klainerman, Sergiu 1950- (DE-588)172678056 aut Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman ; Jérémie Szeftel Princeton ; NJ Princeton University Press [2020] © 2020 1 Online-Ressource (xi, 840 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 210 Bandzählung laut Website: 395 Essential mathematical insights into one of the most important and challenging open problems in general relativity-the stability of black holesOne of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. In this book, Sergiu Klainerman and Jérémie Szeftel take a first important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes-or Schwarzschild spacetimes-under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, Klainerman and Szeftel introduce a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, this book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture MATHEMATICS / Geometry / Non-Euclidean bisacsh Perturbation (Mathematics) Schwarzschild black holes (DE-588)4113937-9 Hochschulschrift gnd-content Szeftel, Jérémie 1977- (DE-588)1167946383 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-0-691-21243-2 Erscheint auch als Druck-Ausgabe, Paperback 978-0-691-21242-5 Annals of mathematics studies Number 210 (DE-604)BV040389493 210 https://doi.org/10.1515/9780691218526 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Klainerman, Sergiu 1950- Szeftel, Jérémie 1977- Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Annals of mathematics studies MATHEMATICS / Geometry / Non-Euclidean bisacsh Perturbation (Mathematics) Schwarzschild black holes |
subject_GND | (DE-588)4113937-9 |
title | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_auth | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_exact_search | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_exact_search_txtP | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_full | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman ; Jérémie Szeftel |
title_fullStr | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman ; Jérémie Szeftel |
title_full_unstemmed | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations Sergiu Klainerman ; Jérémie Szeftel |
title_short | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations |
title_sort | global nonlinear stability of schwarzschild spacetime under polarized perturbations |
topic | MATHEMATICS / Geometry / Non-Euclidean bisacsh Perturbation (Mathematics) Schwarzschild black holes |
topic_facet | MATHEMATICS / Geometry / Non-Euclidean Perturbation (Mathematics) Schwarzschild black holes Hochschulschrift |
url | https://doi.org/10.1515/9780691218526 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT klainermansergiu globalnonlinearstabilityofschwarzschildspacetimeunderpolarizedperturbations AT szefteljeremie globalnonlinearstabilityofschwarzschildspacetimeunderpolarizedperturbations |