A course on surgery theory:
An advanced treatment of surgery theory for graduate students and researchersSurgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton ; NJ
Princeton University Press
[2021]
|
Schriftenreihe: | Annals of mathematics studies
Number 211 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 UBW01 UPA01 Volltext |
Zusammenfassung: | An advanced treatment of surgery theory for graduate students and researchersSurgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community |
Beschreibung: | 1 Online-Ressource (xii, 430 Seiten) Illustrationen |
ISBN: | 9780691200354 |
DOI: | 10.1515/9780691200354 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV047145830 | ||
003 | DE-604 | ||
005 | 20230524 | ||
007 | cr|uuu---uuuuu | ||
008 | 210217s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780691200354 |9 978-0-691-20035-4 | ||
024 | 7 | |a 10.1515/9780691200354 |2 doi | |
035 | |a (ZDB-23-DGG)9780691200354 | ||
035 | |a (OCoLC)1238067328 | ||
035 | |a (DE-599)BVBBV047145830 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-20 |a DE-83 |a DE-11 | ||
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 57R65 |2 msc | ||
084 | |a 57R67 |2 msc | ||
100 | 1 | |a Chang, Stanley |0 (DE-588)116993482X |4 aut | |
245 | 1 | 0 | |a A course on surgery theory |c Stanley Chang, Shmuel Weinberger |
264 | 1 | |a Princeton ; NJ |b Princeton University Press |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xii, 430 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v Number 211 | |
520 | |a An advanced treatment of surgery theory for graduate students and researchersSurgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community | ||
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 0 | 7 | |a Chirurgie |g Mathematik |0 (DE-588)4200269-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Chirurgie |g Mathematik |0 (DE-588)4200269-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Weinberger, Shmuel |d 1963- |0 (DE-588)1078286957 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-691-16048-1 |w (DE-604)BV047268035 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-691-16049-8 |
830 | 0 | |a Annals of mathematics studies |v Number 211 |w (DE-604)BV040389493 |9 211 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9780691200354 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-PST |a ZDB-23-DGG |a ZDB-23-DMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032551659 | ||
966 | e | |u https://doi.org/10.1515/9780691200354 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200354 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200354 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200354 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200354 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200354 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200354 |l UBW01 |p ZDB-23-DMA |q ZDB-23-DMA21 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9780691200354 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182208862224384 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Chang, Stanley Weinberger, Shmuel 1963- |
author_GND | (DE-588)116993482X (DE-588)1078286957 |
author_facet | Chang, Stanley Weinberger, Shmuel 1963- |
author_role | aut aut |
author_sort | Chang, Stanley |
author_variant | s c sc s w sw |
building | Verbundindex |
bvnumber | BV047145830 |
classification_rvk | SI 830 SK 260 |
collection | ZDB-23-PST ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9780691200354 (OCoLC)1238067328 (DE-599)BVBBV047145830 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9780691200354 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03960nmm a2200613 cb4500</leader><controlfield tag="001">BV047145830</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230524 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210217s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691200354</subfield><subfield code="9">978-0-691-20035-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9780691200354</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9780691200354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1238067328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047145830</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57R65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57R67</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Stanley</subfield><subfield code="0">(DE-588)116993482X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A course on surgery theory</subfield><subfield code="c">Stanley Chang, Shmuel Weinberger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton ; NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 430 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 211</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An advanced treatment of surgery theory for graduate students and researchersSurgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chirurgie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200269-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chirurgie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200269-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weinberger, Shmuel</subfield><subfield code="d">1963-</subfield><subfield code="0">(DE-588)1078286957</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-691-16048-1</subfield><subfield code="w">(DE-604)BV047268035</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-691-16049-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">Number 211</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">211</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032551659</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA21</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9780691200354</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV047145830 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:36:57Z |
indexdate | 2024-07-10T09:03:54Z |
institution | BVB |
isbn | 9780691200354 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032551659 |
oclc_num | 1238067328 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-20 DE-83 DE-11 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-20 DE-83 DE-11 |
physical | 1 Online-Ressource (xii, 430 Seiten) Illustrationen |
psigel | ZDB-23-PST ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA ZDB-23-DMA21 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Chang, Stanley (DE-588)116993482X aut A course on surgery theory Stanley Chang, Shmuel Weinberger Princeton ; NJ Princeton University Press [2021] © 2021 1 Online-Ressource (xii, 430 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Annals of mathematics studies Number 211 An advanced treatment of surgery theory for graduate students and researchersSurgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community MATHEMATICS / Topology bisacsh Chirurgie Mathematik (DE-588)4200269-2 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Gruppentheorie (DE-588)4072157-7 s Chirurgie Mathematik (DE-588)4200269-2 s DE-604 Weinberger, Shmuel 1963- (DE-588)1078286957 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-0-691-16048-1 (DE-604)BV047268035 Erscheint auch als Druck-Ausgabe, Paperback 978-0-691-16049-8 Annals of mathematics studies Number 211 (DE-604)BV040389493 211 https://doi.org/10.1515/9780691200354 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chang, Stanley Weinberger, Shmuel 1963- A course on surgery theory Annals of mathematics studies MATHEMATICS / Topology bisacsh Chirurgie Mathematik (DE-588)4200269-2 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4200269-2 (DE-588)4072157-7 (DE-588)4123623-3 |
title | A course on surgery theory |
title_auth | A course on surgery theory |
title_exact_search | A course on surgery theory |
title_exact_search_txtP | A course on surgery theory |
title_full | A course on surgery theory Stanley Chang, Shmuel Weinberger |
title_fullStr | A course on surgery theory Stanley Chang, Shmuel Weinberger |
title_full_unstemmed | A course on surgery theory Stanley Chang, Shmuel Weinberger |
title_short | A course on surgery theory |
title_sort | a course on surgery theory |
topic | MATHEMATICS / Topology bisacsh Chirurgie Mathematik (DE-588)4200269-2 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | MATHEMATICS / Topology Chirurgie Mathematik Gruppentheorie Lehrbuch |
url | https://doi.org/10.1515/9780691200354 |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT changstanley acourseonsurgerytheory AT weinbergershmuel acourseonsurgerytheory |