Classical and quantum dynamics: from classical paths to path integrals
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2020]
|
Ausgabe: | Sixth edition |
Schlagworte: | |
Beschreibung: | Introduction.- The Action Principles in Mechanics.- The Action Principle in Classical Electrodynamics.- Application of the Action Principles.- Jacobi Fields, Conjugate Points.-Canonical Transformations.- The Hamilton–Jacobi Equation.- Action-Angle Variables.- The Adiabatic Invariance of the Action Variables.- Time-Independent Canonical Perturbation Theory.- Canonical Perturbation Theory with Several Degrees of Freedom.- Canonical Adiabatic Theory.- Removal of Resonances.- Superconvergent Perturbation Theory, KAM Theorem.- Poincaré Surface of Sections, Mappings.- The KAM Theorem.- Fundamental Principles of Quantum Mechanics.- Functional Derivative Approach.- Examples for Calculating Path Integrals.- Direct Evaluation of Path Integrals.- Linear Oscillator with Time-Dependent Frequency.- Propagators for Particles in an External Magnetic Field.- Simple Applications of Propagator Functions.- The WKB Approximation.- Computing the trace.- Partition Function for the Harmonic Oscillator.- Introduction to Homotopy Theory.- Classical Chern–Simons Mechanics.- Semiclassical Quantization.- The "Maslov Anomaly" for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem.- Berry’s Phase.- Classical Geometric Phases: Foucault and Euler.- Berry Phase and Parametric Harmonic Oscillator.- Topological Phases in Planar Electrodynamics.- Path Integral Formulation of Quantum Electrodynamics.- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method.- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics.- Green’s Function of a Spin-1/2 Particle in a Constant External Magnetic Field.- One-Loop Effective Lagrangian in QED.- On Riemann’s Ideas on Space and Schwinger’s Treatment of Low-Energy Pion-Nucleon Physics.- The Non-Abelian Vector Gauge Particle p .- Riemann’s Result and Consequences for Physics and Philosophy |
Beschreibung: | x, 563 Seiten 872 grams |
ISBN: | 9783030367886 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047144291 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | t | ||
008 | 210216s2020 |||| 00||| eng d | ||
020 | |a 9783030367886 |c pbk |9 978-3-030-36788-6 | ||
024 | 3 | |a 9783030367886 | |
035 | |a (OCoLC)1155917594 | ||
035 | |a (DE-599)BVBBV047144291 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Dittrich, Walter |d 1935- |e Verfasser |0 (DE-588)1027191053 |4 aut | |
245 | 1 | 0 | |a Classical and quantum dynamics |b from classical paths to path integrals |c Walter Dittrich, Martin Reuter |
250 | |a Sixth edition | ||
264 | 1 | |a Cham, Switzerland |b Springer |c [2020] | |
300 | |a x, 563 Seiten |c 872 grams | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Introduction.- The Action Principles in Mechanics.- The Action Principle in Classical Electrodynamics.- Application of the Action Principles.- Jacobi Fields, Conjugate Points.-Canonical Transformations.- The Hamilton–Jacobi Equation.- Action-Angle Variables.- The Adiabatic Invariance of the Action Variables.- Time-Independent Canonical Perturbation Theory.- Canonical Perturbation Theory with Several Degrees of Freedom.- Canonical Adiabatic Theory.- Removal of Resonances.- Superconvergent Perturbation Theory, KAM Theorem.- Poincaré Surface of Sections, Mappings.- The KAM Theorem.- Fundamental Principles of Quantum Mechanics.- Functional Derivative Approach.- Examples for Calculating Path Integrals.- Direct Evaluation of Path Integrals.- Linear Oscillator with Time-Dependent Frequency.- Propagators for Particles in an External Magnetic Field.- Simple Applications of Propagator Functions.- The WKB Approximation.- Computing the trace.- Partition Function for the Harmonic Oscillator.- Introduction to Homotopy Theory.- Classical Chern–Simons Mechanics.- Semiclassical Quantization.- The "Maslov Anomaly" for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem.- Berry’s Phase.- Classical Geometric Phases: Foucault and Euler.- Berry Phase and Parametric Harmonic Oscillator.- Topological Phases in Planar Electrodynamics.- Path Integral Formulation of Quantum Electrodynamics.- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method.- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics.- Green’s Function of a Spin-1/2 Particle in a Constant External Magnetic Field.- One-Loop Effective Lagrangian in QED.- On Riemann’s Ideas on Space and Schwinger’s Treatment of Low-Energy Pion-Nucleon Physics.- The Non-Abelian Vector Gauge Particle p .- Riemann’s Result and Consequences for Physics and Philosophy | ||
650 | 4 | |a Quantum physics | |
650 | 4 | |a Continuum physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Nuclear physics | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Physics | |
653 | |a Hardcover, Softcover / Physik, Astronomie/Theoretische Physik | ||
700 | 1 | |a Reuter, Martin |d 1958- |e Verfasser |0 (DE-588)134272102 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-36786-2 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032550147 |
Datensatz im Suchindex
_version_ | 1804182206271193088 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dittrich, Walter 1935- Reuter, Martin 1958- |
author_GND | (DE-588)1027191053 (DE-588)134272102 |
author_facet | Dittrich, Walter 1935- Reuter, Martin 1958- |
author_role | aut aut |
author_sort | Dittrich, Walter 1935- |
author_variant | w d wd m r mr |
building | Verbundindex |
bvnumber | BV047144291 |
ctrlnum | (OCoLC)1155917594 (DE-599)BVBBV047144291 |
edition | Sixth edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03204nam a2200397 c 4500</leader><controlfield tag="001">BV047144291</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210216s2020 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030367886</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-030-36788-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783030367886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1155917594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047144291</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dittrich, Walter</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027191053</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical and quantum dynamics</subfield><subfield code="b">from classical paths to path integrals</subfield><subfield code="c">Walter Dittrich, Martin Reuter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Sixth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 563 Seiten</subfield><subfield code="c">872 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction.- The Action Principles in Mechanics.- The Action Principle in Classical Electrodynamics.- Application of the Action Principles.- Jacobi Fields, Conjugate Points.-Canonical Transformations.- The Hamilton–Jacobi Equation.- Action-Angle Variables.- The Adiabatic Invariance of the Action Variables.- Time-Independent Canonical Perturbation Theory.- Canonical Perturbation Theory with Several Degrees of Freedom.- Canonical Adiabatic Theory.- Removal of Resonances.- Superconvergent Perturbation Theory, KAM Theorem.- Poincaré Surface of Sections, Mappings.- The KAM Theorem.- Fundamental Principles of Quantum Mechanics.- Functional Derivative Approach.- Examples for Calculating Path Integrals.- Direct Evaluation of Path Integrals.- Linear Oscillator with Time-Dependent Frequency.- Propagators for Particles in an External Magnetic Field.- Simple Applications of Propagator Functions.- The WKB Approximation.- Computing the trace.- Partition Function for the Harmonic Oscillator.- Introduction to Homotopy Theory.- Classical Chern–Simons Mechanics.- Semiclassical Quantization.- The "Maslov Anomaly" for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem.- Berry’s Phase.- Classical Geometric Phases: Foucault and Euler.- Berry Phase and Parametric Harmonic Oscillator.- Topological Phases in Planar Electrodynamics.- Path Integral Formulation of Quantum Electrodynamics.- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method.- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics.- Green’s Function of a Spin-1/2 Particle in a Constant External Magnetic Field.- One-Loop Effective Lagrangian in QED.- On Riemann’s Ideas on Space and Schwinger’s Treatment of Low-Energy Pion-Nucleon Physics.- The Non-Abelian Vector Gauge Particle p .- Riemann’s Result and Consequences for Physics and Philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Physik, Astronomie/Theoretische Physik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reuter, Martin</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134272102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-36786-2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032550147</subfield></datafield></record></collection> |
id | DE-604.BV047144291 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:36:26Z |
indexdate | 2024-07-10T09:03:52Z |
institution | BVB |
isbn | 9783030367886 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032550147 |
oclc_num | 1155917594 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | x, 563 Seiten 872 grams |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
spelling | Dittrich, Walter 1935- Verfasser (DE-588)1027191053 aut Classical and quantum dynamics from classical paths to path integrals Walter Dittrich, Martin Reuter Sixth edition Cham, Switzerland Springer [2020] x, 563 Seiten 872 grams txt rdacontent n rdamedia nc rdacarrier Introduction.- The Action Principles in Mechanics.- The Action Principle in Classical Electrodynamics.- Application of the Action Principles.- Jacobi Fields, Conjugate Points.-Canonical Transformations.- The Hamilton–Jacobi Equation.- Action-Angle Variables.- The Adiabatic Invariance of the Action Variables.- Time-Independent Canonical Perturbation Theory.- Canonical Perturbation Theory with Several Degrees of Freedom.- Canonical Adiabatic Theory.- Removal of Resonances.- Superconvergent Perturbation Theory, KAM Theorem.- Poincaré Surface of Sections, Mappings.- The KAM Theorem.- Fundamental Principles of Quantum Mechanics.- Functional Derivative Approach.- Examples for Calculating Path Integrals.- Direct Evaluation of Path Integrals.- Linear Oscillator with Time-Dependent Frequency.- Propagators for Particles in an External Magnetic Field.- Simple Applications of Propagator Functions.- The WKB Approximation.- Computing the trace.- Partition Function for the Harmonic Oscillator.- Introduction to Homotopy Theory.- Classical Chern–Simons Mechanics.- Semiclassical Quantization.- The "Maslov Anomaly" for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem.- Berry’s Phase.- Classical Geometric Phases: Foucault and Euler.- Berry Phase and Parametric Harmonic Oscillator.- Topological Phases in Planar Electrodynamics.- Path Integral Formulation of Quantum Electrodynamics.- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method.- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics.- Green’s Function of a Spin-1/2 Particle in a Constant External Magnetic Field.- One-Loop Effective Lagrangian in QED.- On Riemann’s Ideas on Space and Schwinger’s Treatment of Low-Energy Pion-Nucleon Physics.- The Non-Abelian Vector Gauge Particle p .- Riemann’s Result and Consequences for Physics and Philosophy Quantum physics Continuum physics Mathematical physics Nuclear physics Statistical physics Physics Hardcover, Softcover / Physik, Astronomie/Theoretische Physik Reuter, Martin 1958- Verfasser (DE-588)134272102 aut Erscheint auch als Online-Ausgabe 978-3-030-36786-2 |
spellingShingle | Dittrich, Walter 1935- Reuter, Martin 1958- Classical and quantum dynamics from classical paths to path integrals Quantum physics Continuum physics Mathematical physics Nuclear physics Statistical physics Physics |
title | Classical and quantum dynamics from classical paths to path integrals |
title_auth | Classical and quantum dynamics from classical paths to path integrals |
title_exact_search | Classical and quantum dynamics from classical paths to path integrals |
title_exact_search_txtP | Classical and quantum dynamics from classical paths to path integrals |
title_full | Classical and quantum dynamics from classical paths to path integrals Walter Dittrich, Martin Reuter |
title_fullStr | Classical and quantum dynamics from classical paths to path integrals Walter Dittrich, Martin Reuter |
title_full_unstemmed | Classical and quantum dynamics from classical paths to path integrals Walter Dittrich, Martin Reuter |
title_short | Classical and quantum dynamics |
title_sort | classical and quantum dynamics from classical paths to path integrals |
title_sub | from classical paths to path integrals |
topic | Quantum physics Continuum physics Mathematical physics Nuclear physics Statistical physics Physics |
topic_facet | Quantum physics Continuum physics Mathematical physics Nuclear physics Statistical physics Physics |
work_keys_str_mv | AT dittrichwalter classicalandquantumdynamicsfromclassicalpathstopathintegrals AT reutermartin classicalandquantumdynamicsfromclassicalpathstopathintegrals |