Nonabsolute integration on measure spaces:
"This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock–Kurzweil type integrals defined on abstract spaces. It contains both classical and original resu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte Ltd.
c2018
|
Schriftenreihe: | Series in real analysis
vol. 14 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock–Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers. It is widely acknowledged that the biggest difficulty in defining a Henstock–Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of "intervals" in the abstract setting. In this book the author shows a creative and innovative way of defining "intervals" in measure spaces, and prove many interesting and important results including the well-known Radon–Nikodým theorem."--Publisher's website |
Beschreibung: | Description based on online resource; title from PDF title page (viewed November 20, 2017) |
Beschreibung: | 1 Online-Ressource (247 Seiten) Illustrationen |
ISBN: | 9789813221970 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047124529 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210204s2018 |||| o||u| ||||||eng d | ||
020 | |a 9789813221970 |9 978-981-3221-97-0 | ||
024 | 7 | |a 10.1142/10489 |2 doi | |
035 | |a (ZDB-124-WOP)000010489 | ||
035 | |a (OCoLC)1237587720 | ||
035 | |a (DE-599)BVBBV047124529 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515.43 |2 23 | |
100 | 1 | |a Ng, Wee Leng |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonabsolute integration on measure spaces |c Ng Wee Leng |
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte Ltd. |c c2018 | |
300 | |a 1 Online-Ressource (247 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in real analysis |v vol. 14 | |
500 | |a Description based on online resource; title from PDF title page (viewed November 20, 2017) | ||
520 | |a "This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock–Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers. It is widely acknowledged that the biggest difficulty in defining a Henstock–Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of "intervals" in the abstract setting. In this book the author shows a creative and innovative way of defining "intervals" in measure spaces, and prove many interesting and important results including the well-known Radon–Nikodým theorem."--Publisher's website | ||
650 | 4 | |a Numerical integration | |
650 | 4 | |a Integrals | |
650 | 4 | |a Henstock-Kurzweil integral | |
650 | 4 | |a Integrals, Generalized | |
650 | 4 | |a Algebraic spaces | |
650 | 4 | |a Electronic books | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/10489#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032530769 |
Datensatz im Suchindex
_version_ | 1804182171398701056 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ng, Wee Leng |
author_facet | Ng, Wee Leng |
author_role | aut |
author_sort | Ng, Wee Leng |
author_variant | w l n wl wln |
building | Verbundindex |
bvnumber | BV047124529 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)000010489 (OCoLC)1237587720 (DE-599)BVBBV047124529 |
dewey-full | 515.43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.43 |
dewey-search | 515.43 |
dewey-sort | 3515.43 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02203nmm a2200409zcb4500</leader><controlfield tag="001">BV047124529</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210204s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813221970</subfield><subfield code="9">978-981-3221-97-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10489</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)000010489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1237587720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047124529</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.43</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ng, Wee Leng</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonabsolute integration on measure spaces</subfield><subfield code="c">Ng Wee Leng</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte Ltd.</subfield><subfield code="c">c2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (247 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in real analysis</subfield><subfield code="v">vol. 14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (viewed November 20, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock–Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers. It is widely acknowledged that the biggest difficulty in defining a Henstock–Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of "intervals" in the abstract setting. In this book the author shows a creative and innovative way of defining "intervals" in measure spaces, and prove many interesting and important results including the well-known Radon–Nikodým theorem."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Henstock-Kurzweil integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrals, Generalized</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10489#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032530769</subfield></datafield></record></collection> |
id | DE-604.BV047124529 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:30:25Z |
indexdate | 2024-07-10T09:03:18Z |
institution | BVB |
isbn | 9789813221970 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032530769 |
oclc_num | 1237587720 |
open_access_boolean | |
physical | 1 Online-Ressource (247 Seiten) Illustrationen |
psigel | ZDB-124-WOP |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific Publishing Co. Pte Ltd. |
record_format | marc |
series2 | Series in real analysis |
spelling | Ng, Wee Leng Verfasser aut Nonabsolute integration on measure spaces Ng Wee Leng Singapore World Scientific Publishing Co. Pte Ltd. c2018 1 Online-Ressource (247 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Series in real analysis vol. 14 Description based on online resource; title from PDF title page (viewed November 20, 2017) "This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock–Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers. It is widely acknowledged that the biggest difficulty in defining a Henstock–Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of "intervals" in the abstract setting. In this book the author shows a creative and innovative way of defining "intervals" in measure spaces, and prove many interesting and important results including the well-known Radon–Nikodým theorem."--Publisher's website Numerical integration Integrals Henstock-Kurzweil integral Integrals, Generalized Algebraic spaces Electronic books http://www.worldscientific.com/worldscibooks/10.1142/10489#t=toc Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ng, Wee Leng Nonabsolute integration on measure spaces Numerical integration Integrals Henstock-Kurzweil integral Integrals, Generalized Algebraic spaces Electronic books |
title | Nonabsolute integration on measure spaces |
title_auth | Nonabsolute integration on measure spaces |
title_exact_search | Nonabsolute integration on measure spaces |
title_exact_search_txtP | Nonabsolute integration on measure spaces |
title_full | Nonabsolute integration on measure spaces Ng Wee Leng |
title_fullStr | Nonabsolute integration on measure spaces Ng Wee Leng |
title_full_unstemmed | Nonabsolute integration on measure spaces Ng Wee Leng |
title_short | Nonabsolute integration on measure spaces |
title_sort | nonabsolute integration on measure spaces |
topic | Numerical integration Integrals Henstock-Kurzweil integral Integrals, Generalized Algebraic spaces Electronic books |
topic_facet | Numerical integration Integrals Henstock-Kurzweil integral Integrals, Generalized Algebraic spaces Electronic books |
url | http://www.worldscientific.com/worldscibooks/10.1142/10489#t=toc |
work_keys_str_mv | AT ngweeleng nonabsoluteintegrationonmeasurespaces |