Stochastic processes: harmonizable theory
"The book presents, for the first time, a detailed analysis of harmonizable processes and fields (in the weak sense) that contain the corresponding stationary theory as a subclass. It also gives the structural and some key applications in detail. These include Levy's Brownian motion, a pro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
2020
|
Schriftenreihe: | Series on multivariate analysis
v. 12 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "The book presents, for the first time, a detailed analysis of harmonizable processes and fields (in the weak sense) that contain the corresponding stationary theory as a subclass. It also gives the structural and some key applications in detail. These include Levy's Brownian motion, a probabilistic proof of the longstanding Riemann's hypothesis, random fields indexed by LCA and hypergroups, extensions to bistochastic operators, Cramér-Karhunen classes, as well as bistochastic operators with some statistical applications. The material is accessible to graduate students in probability and statistics as well as to engineers in theoretical applications. There are numerous extensions and applications pointed out in the book that will inspire readers to delve deeper"--Publisher's website |
Beschreibung: | 1 Online-Ressource (xii, 328 Seiten) |
ISBN: | 9789811213663 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047124283 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210204s2020 |||| o||u| ||||||eng d | ||
020 | |a 9789811213663 |9 978-981-121-366-3 | ||
024 | 7 | |a 10.1142/11648 |2 doi | |
035 | |a (ZDB-124-WOP)00011648 | ||
035 | |a (OCoLC)1237584210 | ||
035 | |a (DE-599)BVBBV047124283 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.23 |2 23 | |
100 | 1 | |a Rao, M. M. |d 1929- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic processes |b harmonizable theory |c by M.M. Rao |
264 | 1 | |a Singapore |b World Scientific |c 2020 | |
300 | |a 1 Online-Ressource (xii, 328 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on multivariate analysis |v v. 12 | |
520 | |a "The book presents, for the first time, a detailed analysis of harmonizable processes and fields (in the weak sense) that contain the corresponding stationary theory as a subclass. It also gives the structural and some key applications in detail. These include Levy's Brownian motion, a probabilistic proof of the longstanding Riemann's hypothesis, random fields indexed by LCA and hypergroups, extensions to bistochastic operators, Cramér-Karhunen classes, as well as bistochastic operators with some statistical applications. The material is accessible to graduate students in probability and statistics as well as to engineers in theoretical applications. There are numerous extensions and applications pointed out in the book that will inspire readers to delve deeper"--Publisher's website | ||
650 | 4 | |a Stochastic processes | |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/11648#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032530523 |
Datensatz im Suchindex
_version_ | 1804182170961444864 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Rao, M. M. 1929- |
author_facet | Rao, M. M. 1929- |
author_role | aut |
author_sort | Rao, M. M. 1929- |
author_variant | m m r mm mmr |
building | Verbundindex |
bvnumber | BV047124283 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00011648 (OCoLC)1237584210 (DE-599)BVBBV047124283 |
dewey-full | 519.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.23 |
dewey-search | 519.23 |
dewey-sort | 3519.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01884nmm a2200337zcb4500</leader><controlfield tag="001">BV047124283</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210204s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811213663</subfield><subfield code="9">978-981-121-366-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11648</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00011648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1237584210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047124283</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rao, M. M.</subfield><subfield code="d">1929-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic processes</subfield><subfield code="b">harmonizable theory</subfield><subfield code="c">by M.M. Rao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 328 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on multivariate analysis</subfield><subfield code="v">v. 12</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The book presents, for the first time, a detailed analysis of harmonizable processes and fields (in the weak sense) that contain the corresponding stationary theory as a subclass. It also gives the structural and some key applications in detail. These include Levy's Brownian motion, a probabilistic proof of the longstanding Riemann's hypothesis, random fields indexed by LCA and hypergroups, extensions to bistochastic operators, Cramér-Karhunen classes, as well as bistochastic operators with some statistical applications. The material is accessible to graduate students in probability and statistics as well as to engineers in theoretical applications. There are numerous extensions and applications pointed out in the book that will inspire readers to delve deeper"--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11648#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032530523</subfield></datafield></record></collection> |
id | DE-604.BV047124283 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:30:25Z |
indexdate | 2024-07-10T09:03:18Z |
institution | BVB |
isbn | 9789811213663 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032530523 |
oclc_num | 1237584210 |
open_access_boolean | |
physical | 1 Online-Ressource (xii, 328 Seiten) |
psigel | ZDB-124-WOP |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | World Scientific |
record_format | marc |
series2 | Series on multivariate analysis |
spelling | Rao, M. M. 1929- Verfasser aut Stochastic processes harmonizable theory by M.M. Rao Singapore World Scientific 2020 1 Online-Ressource (xii, 328 Seiten) txt rdacontent c rdamedia cr rdacarrier Series on multivariate analysis v. 12 "The book presents, for the first time, a detailed analysis of harmonizable processes and fields (in the weak sense) that contain the corresponding stationary theory as a subclass. It also gives the structural and some key applications in detail. These include Levy's Brownian motion, a probabilistic proof of the longstanding Riemann's hypothesis, random fields indexed by LCA and hypergroups, extensions to bistochastic operators, Cramér-Karhunen classes, as well as bistochastic operators with some statistical applications. The material is accessible to graduate students in probability and statistics as well as to engineers in theoretical applications. There are numerous extensions and applications pointed out in the book that will inspire readers to delve deeper"--Publisher's website Stochastic processes https://www.worldscientific.com/worldscibooks/10.1142/11648#t=toc Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rao, M. M. 1929- Stochastic processes harmonizable theory Stochastic processes |
title | Stochastic processes harmonizable theory |
title_auth | Stochastic processes harmonizable theory |
title_exact_search | Stochastic processes harmonizable theory |
title_exact_search_txtP | Stochastic processes harmonizable theory |
title_full | Stochastic processes harmonizable theory by M.M. Rao |
title_fullStr | Stochastic processes harmonizable theory by M.M. Rao |
title_full_unstemmed | Stochastic processes harmonizable theory by M.M. Rao |
title_short | Stochastic processes |
title_sort | stochastic processes harmonizable theory |
title_sub | harmonizable theory |
topic | Stochastic processes |
topic_facet | Stochastic processes |
url | https://www.worldscientific.com/worldscibooks/10.1142/11648#t=toc |
work_keys_str_mv | AT raomm stochasticprocessesharmonizabletheory |