Orthonormal series estimators:
"The approximation and the estimation of nonparametric functions by projections on an orthonormal basis of functions are useful in data analysis. This book presents series estimators defined by projections on bases of functions, they extend the estimators of densities to mixture models, deconvo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
[2020]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "The approximation and the estimation of nonparametric functions by projections on an orthonormal basis of functions are useful in data analysis. This book presents series estimators defined by projections on bases of functions, they extend the estimators of densities to mixture models, deconvolution and inverse problems, to semi-parametric and nonparametric models for regressions, hazard functions and diffusions. They are estimated in the Hilbert spaces with respect to the distribution function of the regressors and their optimal rates of convergence are proved. Their mean square errors depend on the size of the basis which is consistently estimated by cross-validation. Wavelets estimators are defined and studied in the same models. The choice of the basis, with suitable parametrizations, and their estimation improve the existing methods and leads to applications to a wide class of models. The rates of convergence of the series estimators are the best among all nonparametric estimators with a great improvement in multidimensional models. Original methods are developed for the estimation in deconvolution and inverse problems. The asymptotic properties of test statistics based on the estimators are also established"--Publisher's website |
Beschreibung: | 1 Online-Ressource (ix, 293 Seiten) |
ISBN: | 9789811210693 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047124242 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210204s2020 |||| o||u| ||||||eng d | ||
020 | |a 9789811210693 |9 978-981-121-069-3 | ||
024 | 7 | |a 10.1142/11563 |2 doi | |
035 | |a (ZDB-124-WOP)00011563 | ||
035 | |a (OCoLC)1237585520 | ||
035 | |a (DE-599)BVBBV047124242 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 515/.243 |2 23 | |
100 | 1 | |a Pons, Odile |e Verfasser |4 aut | |
245 | 1 | 0 | |a Orthonormal series estimators |c Odile Pons |
264 | 1 | |a Singapore |b World Scientific |c [2020] | |
300 | |a 1 Online-Ressource (ix, 293 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "The approximation and the estimation of nonparametric functions by projections on an orthonormal basis of functions are useful in data analysis. This book presents series estimators defined by projections on bases of functions, they extend the estimators of densities to mixture models, deconvolution and inverse problems, to semi-parametric and nonparametric models for regressions, hazard functions and diffusions. They are estimated in the Hilbert spaces with respect to the distribution function of the regressors and their optimal rates of convergence are proved. Their mean square errors depend on the size of the basis which is consistently estimated by cross-validation. Wavelets estimators are defined and studied in the same models. The choice of the basis, with suitable parametrizations, and their estimation improve the existing methods and leads to applications to a wide class of models. The rates of convergence of the series estimators are the best among all nonparametric estimators with a great improvement in multidimensional models. Original methods are developed for the estimation in deconvolution and inverse problems. The asymptotic properties of test statistics based on the estimators are also established"--Publisher's website | ||
650 | 4 | |a Series, Orthogonal | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Nonparametric statistics | |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/11563#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032530482 |
Datensatz im Suchindex
_version_ | 1804182170876510208 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Pons, Odile |
author_facet | Pons, Odile |
author_role | aut |
author_sort | Pons, Odile |
author_variant | o p op |
building | Verbundindex |
bvnumber | BV047124242 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00011563 (OCoLC)1237585520 (DE-599)BVBBV047124242 |
dewey-full | 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.243 |
dewey-search | 515/.243 |
dewey-sort | 3515 3243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02350nmm a2200349zc 4500</leader><controlfield tag="001">BV047124242</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210204s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811210693</subfield><subfield code="9">978-981-121-069-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11563</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00011563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1237585520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047124242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pons, Odile</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthonormal series estimators</subfield><subfield code="c">Odile Pons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 293 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The approximation and the estimation of nonparametric functions by projections on an orthonormal basis of functions are useful in data analysis. This book presents series estimators defined by projections on bases of functions, they extend the estimators of densities to mixture models, deconvolution and inverse problems, to semi-parametric and nonparametric models for regressions, hazard functions and diffusions. They are estimated in the Hilbert spaces with respect to the distribution function of the regressors and their optimal rates of convergence are proved. Their mean square errors depend on the size of the basis which is consistently estimated by cross-validation. Wavelets estimators are defined and studied in the same models. The choice of the basis, with suitable parametrizations, and their estimation improve the existing methods and leads to applications to a wide class of models. The rates of convergence of the series estimators are the best among all nonparametric estimators with a great improvement in multidimensional models. Original methods are developed for the estimation in deconvolution and inverse problems. The asymptotic properties of test statistics based on the estimators are also established"--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series, Orthogonal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonparametric statistics</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/11563#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032530482</subfield></datafield></record></collection> |
id | DE-604.BV047124242 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:30:24Z |
indexdate | 2024-07-10T09:03:18Z |
institution | BVB |
isbn | 9789811210693 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032530482 |
oclc_num | 1237585520 |
open_access_boolean | |
physical | 1 Online-Ressource (ix, 293 Seiten) |
psigel | ZDB-124-WOP |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | World Scientific |
record_format | marc |
spelling | Pons, Odile Verfasser aut Orthonormal series estimators Odile Pons Singapore World Scientific [2020] 1 Online-Ressource (ix, 293 Seiten) txt rdacontent c rdamedia cr rdacarrier "The approximation and the estimation of nonparametric functions by projections on an orthonormal basis of functions are useful in data analysis. This book presents series estimators defined by projections on bases of functions, they extend the estimators of densities to mixture models, deconvolution and inverse problems, to semi-parametric and nonparametric models for regressions, hazard functions and diffusions. They are estimated in the Hilbert spaces with respect to the distribution function of the regressors and their optimal rates of convergence are proved. Their mean square errors depend on the size of the basis which is consistently estimated by cross-validation. Wavelets estimators are defined and studied in the same models. The choice of the basis, with suitable parametrizations, and their estimation improve the existing methods and leads to applications to a wide class of models. The rates of convergence of the series estimators are the best among all nonparametric estimators with a great improvement in multidimensional models. Original methods are developed for the estimation in deconvolution and inverse problems. The asymptotic properties of test statistics based on the estimators are also established"--Publisher's website Series, Orthogonal Approximation theory Nonparametric statistics https://www.worldscientific.com/worldscibooks/10.1142/11563#t=toc Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Pons, Odile Orthonormal series estimators Series, Orthogonal Approximation theory Nonparametric statistics |
title | Orthonormal series estimators |
title_auth | Orthonormal series estimators |
title_exact_search | Orthonormal series estimators |
title_exact_search_txtP | Orthonormal series estimators |
title_full | Orthonormal series estimators Odile Pons |
title_fullStr | Orthonormal series estimators Odile Pons |
title_full_unstemmed | Orthonormal series estimators Odile Pons |
title_short | Orthonormal series estimators |
title_sort | orthonormal series estimators |
topic | Series, Orthogonal Approximation theory Nonparametric statistics |
topic_facet | Series, Orthogonal Approximation theory Nonparametric statistics |
url | https://www.worldscientific.com/worldscibooks/10.1142/11563#t=toc |
work_keys_str_mv | AT ponsodile orthonormalseriesestimators |